
Young Won Lim
7/21/17

Functor (1A)

Young Won Lim
7/21/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Functor (1A) 3 Young Won Lim
7/21/17

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 4 Young Won Lim
7/21/17

Typeclasses

Typeclasses are like interfaces

defines some behavior
comparing for equality
comparing for ordering
enumeration

Instances of that typeclass
 types possessing such behavior

Such behavior is defined by
function definition
type declaration to be implemented

a type is an instance of a typeclass implies
the functions defined by the typeclass with that type can be used

No relation with classes in Java or Python

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 5 Young Won Lim
7/21/17

A Typeclass Example

the Eq typeclass

defines the functions == and /=

a type Car

comparing two cars c1 and c2 with the equality function ==

The Car type is an instance of Eq typeclass

Instances : various types

Typeclass : a group or a class of these similar types

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

a type Car

a type Bag

a type Phone

Eq typeclass

functions
== and /=

Functor (1A) 6 Young Won Lim
7/21/17

Eq Typeclass Example

 class Eq a where
 (==) :: a -> a -> Bool - a type declaration
 (/=) :: a -> a -> Bool - a type declaration
 x == y = not (x /= y) - a function definition
 x /= y = not (x == y) - a function definition

 data TrafficLight = Red | Yellow | Green

 instance Eq TrafficLight where
 Red == Red = True
 Green == Green = True
 Yellow == Yellow = True
 _ == _ = False

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

ghci> Red == Red
True
ghci> Red == Yellow
False
ghci> Red `elem` [Red, Yellow, Green]
True

Functor (1A) 7 Young Won Lim
7/21/17

Show Typeclass Example

 class Show a where
 show :: a -> String - a type declaration
 * * *

 data TrafficLight = Red | Yellow | Green

 instance Show TrafficLight where
 show Red = "Red light"
 show Yellow = "Yellow light"
 show Green = "Green light"

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

ghci> [Red, Yellow, Green]
[Red light,Yellow light,Green light]

Functor (1A) 8 Young Won Lim
7/21/17

Show Typeclass Example

 class (Eq a) => Num a where
 ...

 class Num a where
 ...

class constraint on a class declaration
only we state that our type a must be an instance of Eq

an instance of Eq
before being an instance of Num

When defining the required function bodies
in the class declaration or
in instance declarations,

we can safely use == because a is a part of Eq

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 9 Young Won Lim
7/21/17

Show Typeclass Example

class constraints in class declarations

to make a typeclass a subclass of another typeclass

class constraints in instance declarations

to express requirements about the contents of some type.

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 10 Young Won Lim
7/21/17

Show Typeclass Example

the a : a concrete type

Maybe : not a concrete type

: a type constructor that takes one parameter

 produces a concrete type.

Maybe a : a concrete type

 instance (Eq m) => Eq (Maybe m) where

 Just x == Just y = x == y

 Nothing == Nothing = True

 _ == _ = False

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 11 Young Won Lim
7/21/17

Functor typeclass

the Functor typeclass is basically for things that can be mapped over

ex) mapping over lists

the list type is part of the Functor typeclass

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 12 Young Won Lim
7/21/17

Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

The Functor typeclass

defines one function, fmap,

no default implementation

the type variable f

not a concrete type (a concrete type can hold a value)

a type constructor taking one type parameter

Maybe Int : a concrete type

Maybe : a type constructor that takes one type as the parameter

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

function fmap

type constructor f
function func

Functor (1A) 13 Young Won Lim
7/21/17

Function map & fmap

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

fmap takes
● a function from one type to another (a -> b)
● a Functor f applied with one type (f a)

fmap returns
● a Functor f applied with another type (f b)

 map :: (a -> b) -> [a] -> [b]

map takes
● a function from one type to another (* 2)
● take a list of one type [1, 2, 3]
● returns a list of another type [2, 4, 6]

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

(a -> b) -> f a -> f b

function type

typefunc

Functor (1A) 14 Young Won Lim
7/21/17

List : an instance of Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 map :: (a -> b) -> [a] -> [b]

map is just a fmap that works only on lists

a list is an instance of the Functor typeclass.

 instance Functor [] where

 fmap = map

f : a type constructor that takes one type

[] : a type constructor that takes one type

[a] : a concrete type ([Int], [String] or [[String]])

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

funca b

map[a] [b]

function fmap

type constructor f
function func

Functor (1A) 15 Young Won Lim
7/21/17

List Examples

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 map :: (a -> b) -> [a] -> [b]

 instance Functor [] where

 fmap = map

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

 map :: (a -> b) -> [a] -> [b]

 ghci> fmap (*2) [1..3]

 [2,4,6]

 ghci> map (*2) [1..3]

 [2,4,6]

*21 2

map[1,2,3] [2,4,6]

Functor (1A) 16 Young Won Lim
7/21/17

Maybe : an instance of Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

funca b

fmapMaybe a Maybe b

f a

f b

f

Maybe a

Maybe b

Maybe

Functor (1A) 17 Young Won Lim
7/21/17

Maybe : a type constructor

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

funca b

fmapMaybe a Maybe bMaybe : an instance of Functor typeclass

f : a type variable

f : a type constructor taking one type parameter

Functor (1A) 18 Young Won Lim
7/21/17

Maybe : an argument to fmap, together with a

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

funca b

fmapMaybe a Maybe bfmap :: (a -> b) -> f a -> f b

fmap func (Just x) = Just (func x)

fmap func Nothing = Nothing

Just x

Nothing

Just (func x)

Nothing

Functor (1A) 19 Young Won Lim
7/21/17

Maybe : fmap takes a function

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

fa b

fmapf a f b

fa b

fmapMaybe a Maybe b

f is different from the type constructor f

func : a -> b

 f : a -> b

 f

func

 f

Functor (1A) 20 Young Won Lim
7/21/17

Maybe Examples (1)

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

*2200 400

fmapJust 200 Just 400

 ghci> fmap (*2) (Just 200)

 Just 400

 ghci> fmap (*2) Nothing

 Nothing

Functor (1A) 21 Young Won Lim
7/21/17

Maybe Examples (2)

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

 (++ "BBB")

fmap

 ghci> fmap (++ "BBB") (Just "AAA")

 Just "AAABBB"

 ghci> fmap (++ "BBB") Nothing

 Nothing

"AAA"

Just "AAA"

"AAABBB"

Just "AAABBB"

Functor (1A) 22 Young Won Lim
7/21/17

Maybe as a functor

Functor typeclass:
● transforming one type to another
● transforming operations of one type to those of another

Maybe a is an instance of a functor type class

Functor provides fmap method
maps functions of the base type (such as Integer)
to functions of the lifted type (such as Maybe Integer).

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Functor (1A) 23 Young Won Lim
7/21/17

Maybe as a functor

A function f transformed with fmap
can work on a Maybe value

case maybeVal of
 Nothing -> Nothing -- there is nothing, so just return Nothing
 Just val -> Just (f val) -- there is a value, so apply the function to it

 father :: Person -> Maybe Person
 mother :: Person -> Maybe Person

 f :: Int -> Int
fmap f :: Maybe Integer -> Maybe Integer

a Maybe Integer value: m_x

fmap f m_x

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

Functor (1A) 24 Young Won Lim
7/21/17

Transforming operations

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

fa b

fmapMaybe a

fInt Int

fmap fMaybe Int

Maybe b

Maybe Int

Functor provides fmap method
maps functions of the base type (such as Integer)
to functions of the lifted type (such as Maybe Integer).

Functor (1A) 25 Young Won Lim
7/21/17

Maybe as a functor

In fact, you could apply a whole chain of
lifted Integer -> Integer functions to Maybe Integer values
and only have to worry about explicitly checking for Nothing once when you're finished.

https://stackoverflow.com/questions/18808258/what-does-the-
just-syntax-mean-in-haskell

fa a

fmapMaybe a

→ Maybe a

Maybe Maybe a

Maybe Maybe Maybe a

Maybe Maybe Maybe Maybe a

Functor (1A) 26 Young Won Lim
7/21/17

Then Operator (>>) and do Statements

putStr "Hello" >>

putStr " " >>

putStr "world!" >>

putStr "\n"

do { putStr "Hello"

 ; putStr " "

 ; putStr "world!"

 ; putStr "\n" }

https://en.wikibooks.org/wiki/Haskell/do_notation

Functor (1A) 27 Young Won Lim
7/21/17

Translating in do notation

do { action1

 ; action2

 ; action3 }

action1 >>

do { action2

 ; action3 }

do { action1

 ; do { action2

 ; action3 } }

do { action1

 ; do { action2

 ; do { action3 } } }

https://en.wikibooks.org/wiki/Haskell/do_notation

can chain any actions

as long as all of them are

in the same monad

action1 action2 action3

Functor (1A) 28 Young Won Lim
7/21/17

Bind Operator (>==) and do statements

The bind operator (>>=)

passes a value (the result of an action or function),

downstream in the binding sequence.

action1 >>= (\ x1 ->

 action2 >>= (\ x2 ->

 mk_action3 x1 x2))

do notation assigns a variable name

to the passed value using the <-

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

https://en.wikibooks.org/wiki/Haskell/do_notation

anonymous function

(lambda expression)

is used

Functor (1A) 29 Young Won Lim
7/21/17

Translation using the bind operator (>>=)

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

action1 >>= (\ x1 -> action2 >>= (\ x2 -> mk_action3 x1 x2))

action1

 >>=

 (\ x1 -> action2

 >>=

 (\ x2 -> mk_action3 x1 x2))

action1 >>= (\ x1 ->

 action2 >>= (\ x2 ->

 mk_action3 x1 x2))

https://en.wikibooks.org/wiki/Haskell/do_notation

action1

action2

mk_action3

x1

x2

Functor (1A) 30 Young Won Lim
7/21/17

Anonymous Function

\x -> x + 1

(\x -> x + 1) 4

5 :: Integer

(\x y -> x + y) 3 5

8 :: Integer

addOne = \x -> x + 1

https://wiki.haskell.org/Anonymous_function

Lambda Expression

Functor (1A) 31 Young Won Lim
7/21/17

Functor Typeclass

 instance Functor IO where

 fmap f action = do

 result <- action

 return (f result)

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

fa b

fmapIO a IO b

action1 fresult

(a -> b) -> IO a -> IO b

f action

f result

Functor (1A) 32 Young Won Lim
7/21/17

Functor Typeclass

 main = do line <- getLine

 let line' = reverse line

 putStrLn $ "You said " ++ line' ++ " backwards!"

 putStrLn $ "Yes, you really said" ++ line' ++ " backwards!"

 main = do line <- fmap reverse getLine

 putStrLn $ "You said " ++ line ++ " backwards!"

 putStrLn $ "Yes, you really said" ++ line ++ " backwards!"

 instance Functor IO where

 fmap f action = do

 result <- action

 return (f result)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 fmap reverse getLine = do

 result <- getLine

 return (reverse result)

Functor (1A) 33 Young Won Lim
7/21/17

$ Operator

$ operator to avoid parentheses

Anything appearing after $

will take precedence over anything that comes before.

putStrLn (show (1 + 1))

putStrLn (show $ 1 + 1)

putStrLn $ show (1 + 1)

putStrLn $ show $ 1 + 1

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

Functor (1A) 34 Young Won Lim
7/21/17

. Operator

 . operator to chain functions

putStrLn (show (1 + 1))

 (1 + 1) is not a function, so the . operator cannot be applied

 show can take an Int and return a String.

 putStrLn can take a String and return an IO().

(putStrLn . show) (1 + 1)

putStrLn . show $ 1 + 1

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

show putStrLn
Int String IO()

Functor (1A) 35 Young Won Lim
7/21/17

Functor Typeclass

 instance Functor ((->) r) where

 fmap f g = (\x -> f (g x))

A function takes any thing and returns any thing

g :: a -> b

g :: r -> a

fmap :: (a -> b) -> f a -> f b

fmap :: (a -> b) -> ((->) r a) -> ((->) r b)

fmap :: (a -> b) -> (r -> a) -> (r -> b)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

fa b

fmapg a g b

ga b

gr a

gr b

Functor (1A) 36 Young Won Lim
7/21/17

Functor Typeclass

 instance Functor ((->) r) where

 fmap f g = (\x -> f (g x))

 instance Functor ((->) r) where

 fmap = (.)

 ghci> :t fmap (*3) (+100)

 fmap (*3) (+100) :: (Num a) => a -> a

 ghci> fmap (*3) (+100) 1

 303

 ghci> (*3) `fmap` (+100) $ 1

 303

 ghci> (*3) . (+100) $ 1

 303

 ghci> fmap (show . (*3)) (*100) 1

 "300"

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

(*3)a b

fmap(+100) a (+100) b

Functor (1A) 37 Young Won Lim
7/21/17

Functor Typeclass

 ghci> :t fmap (*2)

 fmap (*2) :: (Num a, Functor f) => f a -> f a

 ghci> :t fmap (replicate 3)

 fmap (replicate 3) :: (Functor f) => f a -> f [a]

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(*2)a a

fmapf a f a

(replicate 3)a [a]

fmapf a f [a]

Functor (1A) 38 Young Won Lim
7/21/17

Functor Typeclass

 ghci> fmap (replicate 3) [1,2,3,4]

 [[1,1,1],[2,2,2],[3,3,3],[4,4,4]]

 ghci> fmap (replicate 3) (Just 4)

 Just [4,4,4]

 ghci> fmap (replicate 3) (Right "blah")

 Right ["blah","blah","blah"]

 ghci> fmap (replicate 3) Nothing

 Nothing

 ghci> fmap (replicate 3) (Left "foo")

 Left "foo"

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Functor (1A) 39 Young Won Lim
7/21/17

Functor Laws

fmap id = id

fmap (f . g) = fmap f . fmap g

fmap (f . g) F = fmap f (fmap g F)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

ida a

fmapF a F a

f . ga a

fmapF a F a

ga

fmap F a

a

F a

fa a

fmapfmap g F fmap g F

Functor (1A) 40 Young Won Lim
7/21/17

Functor Laws

fmap id = id

fmap (f . g) = fmap f . fmap g

fmap (f . g) F = fmap f (fmap g F)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

ida a

fmapF a F a

f . ga a

fmapF a F a

ga

fmap F a

a

F a

ga

fmapF a

fa

fmapF a

f

Young Won Lim
7/21/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41

