
ELF1 7D Virtual Memory

Young W. Lim

2020-12-29 Tue

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 1 / 74



Outline

1 Based on

2 Virtual memory
Virtual memory
Kernal virtual / logical addresses
Kernel logical address
Kernel virtual address
User virtual address
Memory management unit
User space

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 2 / 74



Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 3 / 74

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html


Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 4 / 74



Virtual address and physical address (1)

Physical addresses are provided directly by the machine

one physical address space per machine
addresses typically range
from some minumum (sometimes0) to some maximum,
though some portions of this range are usually used
by the OS and/or devices,
but not available for user processes

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 5 / 74



Virtual address and physical address (2)

Virtual addresses (or logical addresses) are
addresses provided by the OS

one virtual address space per process
addresses typically start at zero, but not necessarily
space may consist of several segments

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 6 / 74



Virtual address and physical address (3)

address translation (or address binding) means
mapping virtual addresses to physical addresses

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 7 / 74



Virtual address and physical address (4)

size of each section except stack is specified in ELF file
sections which are initialized from the ELF file

code (i.e., .text)
read-only data
initialized data segments

other remaining sections are initially zero-filled
sections have their own specified alignment
segments are page aligned
3 segments = (.text + .rodata), (.data + .sbss + .bss), (stack)
not all programs contain this many segments and sections

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 8 / 74



Single address space (1)

simple systems
sharing the same memory space

memory and peripherals
all processes and OS

no memory proctection

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 9 / 74



Single address space (2)

CPUs with single address space

8086 - 80286
ARM Cortex-M
8 / 16-bit PIC
AVR
most 8- and 16-bit systems

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 10 / 74



Single address space (3)

portable c programs expect flat memory
multiple memory access methods limit portability

management is tricky
need to know / detect total RAM
need to keep processes separated

no protection

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 11 / 74



Virtual memory (1)

a system that uses an address mapping
maps virtual address space to physical address space

to physical RAM
to hardware devices

PCI devices
GPU RAM
On-SOC IP blocks

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 12 / 74



Virtual memory (2)

Advantages

each process can have a different memory mapping
one process’ RAM is invisible to other processes
built in memory protection
kernel RAM is invisiable to user space processes
memory can be moved
memory can be swapped to disk

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 13 / 74



Virtual memory (3)

Advantages (continued)

hardware device memory can be mapped
into process’ address space
requires the kernel to perform the mapping
physical RAM can be mapped
into multiple processes at once
shared memory
memory regions can have access permissions
read / write / execute

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 14 / 74



Virtual memory (4)

Physical addresses
addresses used by the hardware (DMA, peripherals)
Virtual addresses
addresses used by software

RISC: load/store instructions
CISC: any instruction accessing memory

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 15 / 74



Virtual memory (5)

mapping is performed in hardware
no performance penalty
for accessing already mapped RAM regions
permissions are handled without penalty
the same instructions are used
to access RAM and mapped hardware
software will only use virtual addreses
in its normal operation

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 16 / 74



MMU (Memory Management Unit) (1)

MMU is the hardware responsible for
implementing virtual memory
sits between the CPU core and memory
usually the part of the physical CPU
on ARM, it’s part of the licensed core
separate from the RAM controller
DDR controller is a separate IP block

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 17 / 74



MMU (Memory Management Unit) (2)

transparently handels all memory accesses
from load / store instructions
maps memory acceses using virtual addresses
to system RAM and peripheral hardware
handles permissions
generates an exception (page fault)
on an invalid access

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 18 / 74



TLB (Translation Lookaside Buffer)

TLB is consulted by the MMU
when CPU accesses a virtual address
if the virtual address is in the TLB,
the MMU can look up the physical address
if the virtual address is not in the TLB,
the MMU will generate a page fault exception
and interrupt the CPU
if the virtual address is in the TLB,
but the permissions are insufficient,
the MMU will generate a page fault

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 19 / 74



Page faults

a page fault is a CPU exception
generated when software attempts
to use an invalide virtual address

the virtual address is not mapped for the process requesting it
the processes has insufficient permissions for the address
the virtual address is valide, but swapped out

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 20 / 74



Kernel virtual address (1)

in linux, the kernel uses virtual addresses
as user space processes do
this is not true of all OS’s

virtual address space is split
1 the upper part is used for the kernel
2 the lower part is used for user space
3 32-bit linux have the split address 0xc0000000

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 21 / 74



Kernel virtual address (2)

By default, the kernel uses the top 1GB
of virtual address space
each user space process gets the lower 3GB
of virtual address space

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 22 / 74



Virtual addresses - linux (1)

kernel address space is the area
above CONFIG_PAGE_OFFSET

for 32-bit, this is configurable at kernel build time

the kernel can be given a different amount
of address space as desired

for 64-bit, the split varies by architecture
but it is high enough

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 23 / 74



Virtual addresses - linux (2)

three kinds of virtual addresses in Linux
Kernel

Kernel Logical Address
Kernel Virtual Address

User Space

User Virtual Address

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 24 / 74



Kernel virtual / logical addresses (1)

The Linux kernel maps most of
the kernel virtual address space
to perform 1:1 mapping with an offset of
the first part of physical memory.

slightly less then for 1Gb for 32bit x86
can be different for other processors or configurations

for kernel code on x86 address 0xc00000001
is mapped to physical address 0x1.
This is called logical mapping

a 1:1 mapping (with an offset) that allows the kernel
to access most of the physical memory of the machine.

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 25 / 74



Kernel virtual / logical addressess (2)

when we have more then 1Gb physical memory on a 32bit machine,
when we want to reference non-contiguous
physical memory blocks as contiguous
when we want to map memory mapped IO regions

for these, the kernel keeps a region at the top of
its virtual address space where it maps a "random" page

this mapping does not follow the 1:1 pattern of
the logical mapping area.
This is what we call the virtual mapping.

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 26 / 74



Kernel virtual / logical addresses (3)

on many platforms (x86 is an example),
both the logical and virtual mapping are done
using the same hardware mechanism
(TLB controlling virtual memory).

In many cases, the logical mapping is actually done
using virtual memory facility of the processor,
(this can be a little confusing)

The difference therefore is the pattern
according to which the mapping is done:

1:1 for logical
something random for virtual

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 27 / 74



Kernel virtual / logical addresses (4)

3 kinds of addressing
1 Logical Addressing : Address is formed by base and offset

This is nothing but segmented addressing,
where the address (or offset) in the program is always used
with the base value in the segment descriptor

2 Linear Addressing : also called virtual address
Here virtual adresses are contigous,
but the physical address are not
Paging is used to implement this.

3 Physical Addressing : the actual address on the Main Memory

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 28 / 74



Kernel virtual / logical addresses (5)

in linux, Kernel memory (in address space) is
beyond 3 GB, i.e. 0xc000000. (from 3GB to 4GB)
the addresses used by Kernel are not physical addresses
to map the virtual address it uses PAGE_OFFSET.

no page translation is involved.
contiguous address
except 896 MB on x86.

beyond 3GB to 4GB, paging is used for translation.

vmalloc returns these addresses

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 29 / 74



Kernel virtual / logical addresses (6)

when virtual memory is referred
in context of user space,
then it is through paging

if kernel memory is mentioned
then it is address
either by PAGE_OFFSET
or by vmalloc

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 30 / 74



Kernel virtual / logical addresses (6)

PAGE_OFFSET in x86
is 0XC0000000,
(1100_0000_0000_0000_0000_0000_0000_0000)
or 3 gigabytes (3 * 2ˆ30)
this is where the 3G/1G split is defined.
every address above PAGE_OFFSET
is the kernel virtual address
any address below PAGE_OFFSET
is a user space address

https://linux-mm.org/VirtualMemory

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 31 / 74



Kernel virtual / logical addresses (7)

The kmalloc() & vmalloc() functions are
a simple interface for obtaining kernel memory
in byte-sized chunks.
The kmalloc() function guarantees that
the pages are physically contiguous
(and virtually contiguous)
The vmalloc() function allocates memory
that is only virtually contiguous and
not necessarily physically contiguous

https://stackoverflow.com/questions/116343/what-is-the-difference-between-vmalloc-and-kmalloc

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 32 / 74



Kernel virtual / logical addresses (8)

On a 32-bit system, kmalloc() returns the kernel logical address (its a
virtual address though) which has the direct mapping (actually with
constant offset) to physical address. This direct mapping ensures that
we get a contiguous physical chunk of RAM. Suited for DMA where
we give only the initial pointer and expect a contiguous physical
mapping thereafter for our operation.
vmalloc() returns the kernel virtual address which in turn might not be
having a contiguous mapping on physical RAM. Useful for large
memory allocation and in cases where we don’t care about that the
memory allocated to our process is continuous also in Physical RAM.

https://stackoverflow.com/questions/116343/what-is-the-difference-between-vmalloc-and-kmalloc

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 33 / 74



Kernel virtual / logical addresses (9)

Kernel logical addresses are mappings accessible to kernel code
through normal CPU memory access functions. On 32-bit systems,
only 4GB of kernel logical address space exists, even if more physical
memory than that is in use. Logical address space backed by physical
memory can be allocated with kmalloc.
Virtual addresses do not necessarily have corresponding logical
addresses. You can allocate physical memory with vmalloc and get
back a virtual address that has no corresponding logical address (on
32-bit systems with PAE, for example). You can then use kmap to
assign a logical address to that virtual address.

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 34 / 74



Kernel logical addresses (1)

normal address space of the kernel
kmalloc()

virtual addresses are a fixed offset
from their physical addresses
virtual 0xc0000000 → physical 0x00000000
easy conversion between physical and virtual addresses

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 35 / 74



Kernel logical addresses (2)

kernel logical addreses can be converted to and from
physical addresses using these macros
__pa(x)
__va(x)

for small memory systems (less than 1G of RAM)
kernel logical address space starts at PAGE_OFFSET
and goes through the end of physical memory

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 36 / 74



Kernel logical addresses (3)

kernel logical address space includes

memory allocated with kmalloc()
and most other allocation methods
kernel stacks per process

kernel logical memory can never
be swapped out

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 37 / 74



Kernel logical addresses (4)

kernel logical addresses use a fixed mapping
between physical and virtual address space
this means virtually contiguous regions
are by nature also physically contiguous
this combined with inability to be swapped out,
makes them suitable for DMA transfers

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 38 / 74



Kernel logical addresses (5)

for 32-bit large memory systems (> 1GB RAM)
not all of the physical RAM can be mapped
into the kernel’s address space
kernel address space is the top 1GB of
virtual address space, by default
upto 104 MB is reserved at the top of
the kernel memory space
for non-contiguous allocation
vmalloc()

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 39 / 74



Kernel logical addresses (6)

in a large memory case,
only the bottom part of physical RAM
is mapped directly into
kernel logical address space
only the bottom part of physical RAM has
a kernel logical address
this case is never applied to 64-bit systems

there is always enough kernel address space
to accommodate all the RAM

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 40 / 74



Low and High Memory

low memory

physical memory which has a kernel logical address
physically contiguous

high memory

physical memory beyond -~896MB
has no logical address
not physically contiguous when used in the kernel
only on 32-bit

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 41 / 74



Kernel virtual addresses (1)

kernel virtual addresses are
above the kernel logical address mapping

kernel virtual addresses - vmalloc()
kernel logical addresses - kmalloc()

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 42 / 74



Kernel virtual addresses (2)

kernel virtual addresses are used for

non-contiguous memory mappings

often for large buffers which could potentially
be too large to find contiguous memory
vmalloc()

memory-mapped I/O

map peripheral devices into kernel
PCI, SoC IP blocks
ioremap(), kmap()

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 43 / 74



Kernel virtual addresses (3)

the important difference is that memory
in the kernel virtual address area (vmalloc() area)
is non-contiguous physically
this makes it easier to allocate, especially
for large buffers on small memory systems
this makes it unsuitable for DMA

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 44 / 74



Kernel virtual addresses (4)

in a large memory situation,
the kernel virtual address area is smaller,
because there is more physical memory
an interesting case, where more memory means
less space for kernel virtual addresses
in 64-bit, of course, this doesn’t happen,
as PAGE_OFFSET is large, and
there is much more virtual address space

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 45 / 74



User virtual addresses (1)

represent memory used by user space programs

the most of the memory on most systems
where the most of the compilation is

all addresses below PAGE_OFFSET

each process has its own mapping

threads share a mapping
complex behavior with clone(2)

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 46 / 74



User virtual addresses (2)

kernel logical addresses use a fixed mapping
user space processes make full use of the MMU

only the used portions of RAM are mapped
memory is not contiguous
memory may be swapped out
memory can be moved

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 47 / 74



User virtual addresses (3)

since user virtual addresses are not guaranteed
to be swapped in, or even allocated at all,

user buffers are not suitable for use
by the kernel (or for DMA), by default

each process has its own memory map
struct mm pointers in task_struct

at context switch time, the memory map is changed
this is part of the overhead

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 48 / 74



Memory management unit (1)

the MMU manages virtual address mappings

maps virtual addresses to physical addresses

the MMU operates on basic units of memory : pages

page size varies by architecture
some architectures have configurable page sizes

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 49 / 74



Memory management unit (2)

common page sizes

ARM - 4k
ARM64 - 4k or 64k
MIPS - widely configurable
x86 - 4k

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 50 / 74



Memory management unit (3)

a page is

a unit of memory size
aligned at the page size
abstract

a page frame refers to

a physical memory block
which is page sized and page aligned
physical

the pfn (page frame number) is often
used to refer to physical page frames
in the kernel

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 51 / 74



Memory management unit (4)

the MMU operates on pages
the MMU maps physical frames to virtual addresses
a memory map for a process contains many mappings
a mapping often covers multiple pages
the TLB holds each mapping

virtual address
physical address
permissions

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 52 / 74



Page faults

when a process acceses a region of memorythat is not mapped,
the MMU will generate a page fault exception

the kernel handles page fault exceptions regularly
as part of its memory management design

TLB can contain only the part of the required maps for a process
page faults at context switch time
lazy allocation

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 53 / 74



Basic TLB mappings (1)

user virtual address space
mapped pages unmapped space

physical address space
allocated frames

TLB mapings
TLB entries (page, page frame)
virtually contiguous regions
not physically contiguous

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 54 / 74



Basic TLB mappings (2)

mappings to virtually contiguous regions
do not have to be physically contiguous
easy memory allocation
almost all user space code does not need
physically contiguous memory

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 55 / 74



Multiple processes

each process has its own set of mappings
the same virtual addresses in two different processes
will likely be used to map different physical addresses

(page, page frame1) for process 1
(page, page frame2) for process 2

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 56 / 74



Shared memory (1)

shared memory is easily implemented with an MMU
simply map the same physical frame
into two different processes
the virtual addresses need not be the same

for pointers to values inside a shared memory region
the virtual addresses must be the same

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 57 / 74



Shared memory (2)

the shared memory region can be mapped to
different virtual addresses in each process

the mmap() system call allows the user space process
to request a specific virtual address
to map the shared memory region

if the kernel cannot grant a mapping at this address,
mmap() returns with failure

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 58 / 74



Lazy allocation (1)

the kernel does not allocate pages immeidately
that are requested by a process
the kernel will wait until those pages are actually used

lazy allocation to optimize a performance

if the requested pages may not be actually used,
then the allocation will never happen

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 59 / 74



Lazy allocation (2)

when memory is requested for allocation,
the kernel simply creates
a record of the request in its page tables
and then returns (quickly) to the process,
without updating the TLB

when that newly-allocated memory is actually accessed,
the CPU will generate a page fault,
because the CPU doesn’t know about the mapping
(no entry in the TLB)

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 60 / 74



Lazy allocation (3)

in the page fault handler,
the kernel uses its page tables
to determine that the mapping is valid
(from the kernel’s point of view)
yet unmapped in the TLB

the kernel will allocate a physical page frame
and update the TLB with the new mapping

the kernel returns from the exception handler and
user space program can resume

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 61 / 74



Lazy allocation (4)

in a lazy allocation case, the user space program
is never aware that the page fault happened

the page fault can only be detected
at the time that was lost to handle it

for processses that are time-sensitive
pages can be pre-faulted, or simply touched,
at the start of execution

see also mlock() and mlockall()

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 62 / 74



Page tables (1)

the entries in the TLB are a limited resource
far more mappings can be made than can exist
in the TLB at one time
the kernel must keep track of all of the mappings
at all times
the krenel stores all these informations
in the page tables
stuct_mm and vm_area_struct

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 63 / 74



Page tables (2)

since the TLB can only hold a limited subset of
the total mappings for a process,
some valid mappings will not have TLB entries
when these addresses are touched
the CPU will generate a page fault
because the CPU has no knowledge of the mapping
only the kernel does

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 64 / 74



Page tables (3)

the page fault handler will

find the appropriate mapping for the offending addresses
in the krenel’s page tables
select and remove an existing TLB entry
create a TLB entry for the page
containing the address
return to the user space process

observe the similarities to lazy allocation handling

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 65 / 74



Swapping (1)

when memory utilization is high,
the kernel may swap some frames to disk
to free up RAM

the MMU makes this possible

the kernel may copy a frame to disk and
remove its TLB entry
the frame may be reused by another process

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 66 / 74



Swapping (2)

when the frame is needed again,
the CPU will generate a page fault
because the address is not in the TLB

at a page fault time, the kernel can

put the process to sleep
copy the frame from the disk
into an unused frame in RAM
fix the page table entry
wake the process

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 67 / 74



Swapping (3)

note that when the page is restored to RAM,
it is not necessarily restored to the same physical frame
where it originally was located (before being swapped out)

the MMU will use the same virtual address though,
so the user space program will not know the difference

this is why user space memory cannot
typically be used for DMA

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 68 / 74



User space

there are several ways to allocate memory
from user space

ignoring the familiar *alloc() functions,
which sit on top of platform methods

mmap() can be used directly to allocate
and map pages
brk() / sbrk() can be used to increase
the heap size

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 69 / 74



mmap()

mmap() is the standard way to allocate
large amounts of memory from user space
while mmap() is often used for files,
the MAP_ANONYMOUS flag causes mmap()
to allocate normal memory for the process
the MAP_SHARED flag can make the allocated pages
sharable with other processes

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 70 / 74



brk() / sbrk() (1)

brk() sets the top of the program break
this is the top of the data segment
but inspecton of kernel/sys.c shows
it separates from the data segment
this in effect increases the size of the heap
sbrk() increases the program break
rather than setting it directly

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 71 / 74



brk() / sbrk() (2)

lazy allocation
see mm/mmap.c for do_brk()
do_brk() is implemented similar to ~mmap()

modify the page tables for the new area
wait for the page fault
optionally, do_brk() can pre-fault the new area
and allocate it
see mlock(2) to control this behavior

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 72 / 74



High level implementation

malloc() and calloc() will use
either brk() or mmap()
depending on the requested allocation size

small allocations use brk()
large allocaion use mmap()
see mallopt(3) and the M_MMAP_THRESHOD parameter
to control this behavio

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 73 / 74



Stack

Stack expansion
if a process accesses memory beyond its stack,
the CPU will trigger a page fault
the page fault handler detects
the address is just beyond the stack, and
allocates a new page to extend the stack
the new page will not be physically contiguous
with the rest of the stack
see __do_page_fault() in /arch/arm/mm/fault.c

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2020-12-29 Tue 74 / 74


	Based on
	Virtual memory
	Virtual memory
	Kernal virtual / logical addresses
	Kernel logical address
	Kernel virtual address
	User virtual address
	Memory management unit
	User space


