
1 Young Won Lim
10/19/19

Monad P3 : IORef Mutable Variable (2C)

2 Young Won Lim
10/19/19

 Copyright (c) 2016 - 2019 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice/OpenOffice.

mailto:youngwlim@hotmail.com

IORef Mutable Variable
(2C)

3 Young Won Lim
10/19/19

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

IORef Mutable Variable
(2C)

4 Young Won Lim
10/19/19

every name in Haskell is bound to one fixed (immutable) value.

Sometimes it is easy to program, if updatable variables are used

the value associated with a variable,

can be different at different execution times,

so reading its value can't be

considered as a pure function

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Reading / writing updatable variable

IORef Mutable Variable
(2C)

5 Young Won Lim
10/19/19

main = do let a0 = readVariable varA

 _ = writeVariable varA 1

 a1 = readVariable varA

 print (a0, a1)

Problems:

the two calls to 'readVariable' look the same,

so the compiler reuses the result of the first call.

the result of the 'writeVariable' call is not used

so the compiler omits this call completely.

these three calls may be rearranged in any order

because they appear to be independent of each other.

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Problems with updatable variable

IORef Mutable Variable
(2C)

6 Young Won Lim
10/19/19

 Using IO actions guarantees that:

 the result of the "same" action will not be reused

 each action will have to be executed

 the execution order will be retained as written

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Use IO actions

IORef Mutable Variable
(2C)

7 Young Won Lim
10/19/19

import Data.IORef

main = do varA <- newIORef 0 -- Create and initialize a new variable

 a0 <- readIORef varA

 writeIORef varA 1

 a1 <- readIORef varA

 print (a0, a1)

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Solution – using IORef

IORef Mutable Variable
(2C)

8 Young Won Lim
10/19/19

varA has the type "IORef Int" varA :: IORef Int

a variable (reference) in the IO monad holding a value of type Int

newIORef creates a new variable (reference) and returns it,

and then read/write actions use this reference.

The value returned by the readIORef varA action

depends not only on the variable involved

but also on the time this operation is performed

so it can return different values on each call (not pure)

https://wiki.haskell.org/IO_inside#IO_actions_as_values

IORef

import Data.IORef

main = do varA <- newIORef 0

 a0 <- readIORef varA

 writeIORef varA 1

 a1 <- readIORef varA

 print (a0, a1)

IORef Mutable Variable
(2C)

9 Young Won Lim
10/19/19

liftM :: (a -> b) -> (IO a -> IO b)

liftM f action = do x <- action

 return (f x)

https://wiki.haskell.org/IO_inside#IO_actions_as_values

liftM

IORef Mutable Variable
(2C)

10 Young Won Lim
10/19/19

put :: s -> State s ()

put :: s -> (State s) ()

one value input type s

the effect-monad State s

the value output type ()

the operation is used only for its effect;

the value delivered is uninteresting

putStr :: String -> IO ()

delivers a string to stdout but does not return anything exciting.

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

IO ()

IORef Mutable Variable
(2C)

11 Young Won Lim
10/19/19

newtype IORef a = IORef (STRef RealWorld a)

data STRef s a = STRef (MutVar# s a)

data MutVar# s a

A MutVar# behaves like a single-element mutable array.

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.IORef.html#IORef

IORef Definition (1)

IORef Mutable Variable
(2C)

12 Young Won Lim
10/19/19

 type IO t = World -> (t, World)

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO (IORef a)

World -> (t, World)

IO t

World (t, World)

World (t, World)

type view

World -> (IORef a, World)

IO (IORef a)

World (IORef a, World)

World (IORef a, World)

type view

 IO (IORef a)

IORef Mutable Variable
(2C)

13 Young Won Lim
10/19/19

IORef Methods

data IORef a A mutable variable in the IO monad

newIORef :: a -> IO (IORef a)
Build a new IORef

readIORef :: IORef a -> IO a
Read the value of an IORef

writeIORef :: IORef a -> a -> IO ()
Write a new value into an IORef

modifyIORef :: IORef a -> (a -> a) -> IO ()
Mutate the contents of an IORef.

modifyIORef‘ :: IORef a -> (a -> a) -> IO ()
Strict version of modifyIORef

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-IORef.html

0

1

2

3 4(+1)

4 5

0

33

(+1)

1

0

1

IORef Mutable Variable
(2C)

14 Young Won Lim
10/19/19

IORef Usage

ref <- newIORef 0
ref :: IORef a

modifyIORef ref (+1)

readIORef ref :: IO a

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-IORef.html

0

1

0 1(+1)

0

1

IORef Mutable Variable
(2C)

15 Young Won Lim
10/19/19

IORef Example

newIORef :: a -> IO (IORef a)
newIORef 0 :: IO (IORef a)
ref <- newIORef 0
ref :: IORef a

(+1) :: (a -> a)
modifyIORef :: IORef a -> (a -> a) -> IO ()
modifyIORef ref (+1) :: IO ()

readIORef :: IORef a -> IO a
readIORef ref :: IO a

ref <- newIORef 0
replicateM_ 1000000 $ modifyIORef ref (+1)
readIORef ref >>= print

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-IORef.html

data IORef a

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()
modifyIORef :: IORef a -> (a -> a) -> IO ()
modifyIORef‘ :: IORef a -> (a -> a) -> IO ()

IORef Mutable Variable
(2C)

16 Young Won Lim
10/19/19

IORef modifyIORef’

data IORef a

modifyIORef :: IORef a -> (a -> a) -> IO ()

Warning: modifyIORef does not apply the function strictly.
This means if the program calls modifyIORef many times,
but seldomly uses the value,
thunks will pile up in memory resulting in a space leak.
This is a common mistake made when using an IORef as a counter.
For example, the following will likely produce a stack overflow:

ref <- newIORef 0
replicateM_ 1000000 $ modifyIORef ref (+1)
readIORef ref >>= print

To avoid this problem, use modifyIORef' instead.

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-IORef.html

IORef Mutable Variable
(2C)

17 Young Won Lim
10/19/19

Global Variable Access Examples

import Data.IORef

type Counter = Int -> IO Int

makeCounter :: IO Counter

makeCounter = do

 r <- newIORef 0

 return (\i -> do modifyIORef r (+i)

 readIORef r)

https://stackoverflow.com/questions/16811376/simulate-global-variable

testCounter :: Counter -> IO ()

testCounter counter = do

 b <- counter 1

 c <- counter 1

 d <- counter 1

 print [b,c,d]

main = do

 counter <- makeCounter

 testCounter counter

 testCounter counter

IORef Mutable Variable
(2C)

18 Young Won Lim
10/19/19

makeCounter

type Counter = Int -> IO Int

makeCounter :: IO v

makeCounter = do

 r <- newIORef 0

 return (\i -> do modifyIORef r (+i)

 readIORef r)

https://stackoverflow.com/questions/16811376/simulate-global-variable

x

0

(+i) x+i

 r

1. create r::IORef once

 r

2. returns a function which takes an input i
and updates r and outputs its modified value

i x+i

i

x+i

the underlying operation
using a global variable like r

r <- newIORef 0

IORef Mutable Variable
(2C)

19 Young Won Lim
10/19/19

makeCounter creates a r IORef value

https://stackoverflow.com/questions/16811376/simulate-global-variable

 r <- newIORef 0

0 0

 r

0

creation of r::IORef once

IORef Mutable Variable
(2C)

20 Young Won Lim
10/19/19

makeCounter returns a function

https://stackoverflow.com/questions/16811376/simulate-global-variable

x+i

x x+i(+i)

x+i

 r r

 r

x+i

i

i x+i

makeCounter

A function that is returned by return

\i -> do modifyIORef r (+i)

 readIORef r

modifyIORef r (+i)

 readIORef r

type signature of the
returned function

 r

r refers the same IORef
data value created by
r <- newIORef 0

IORef Mutable Variable
(2C)

21 Young Won Lim
10/19/19

makeCoutner type signature

type Counter = Int -> IO Int

makeCounter :: IO Counter

makeCounter :: IO (Int -> IO Int)

makeCounter = do

 r <- newIORef 0

 return (\i -> do modifyIORef r (+i)

 readIORef r)

 return (a -> IO a)

 return (Int -> IO Int)

https://stackoverflow.com/questions/16811376/simulate-global-variable

newIORef :: a -> IO (IORef a)
newIORef 0 :: IO (IORef a)
r <- newIORef 0
r :: IORef a

modifyIORef :: IORef a -> (a -> a) -> IO ()
modifyIORef r (+i) :: IO ()

readIORef :: IORef a -> IO a
readIORef r :: IO a

i x+i

IORef Mutable Variable
(2C)

22 Young Won Lim
10/19/19

counter function

type Counter = Int -> IO Int

makeCounter :: IO Counter

makeCounter :: IO (Int -> IO Int)

counter <- makeCounter

counter :: Int -> IO Int

https://stackoverflow.com/questions/16811376/simulate-global-variable

i x+i

makeCounter

i x+i

counter

x (+i) x+i

 r r

the underlying operation
using a global variable like r

IORef Mutable Variable
(2C)

23 Young Won Lim
10/19/19

counter function application

type Counter = Int -> IO Int

testCounter :: Counter -> IO ()

testCounter :: Int -> IO Int -> IO ()

testCounter counter :: IO ()

counter :: Counter

counter :: Int -> IO Int

counter 1 :: IO Int

b <- counter 1

b :: Int

https://stackoverflow.com/questions/16811376/simulate-global-variable

1 x+1

counter 1

x (+1) x+1

 r r

x+1

b <- counter 1

IORef Mutable Variable
(2C)

24 Young Won Lim
10/19/19

testCounter

type Counter = Int -> IO Int

testCounter :: Counter -> IO ()

testCounter :: Int -> IO Int -> IO ()

testCounter counter :: IO ()

counter :: Counter

counter :: Int -> IO Int

counter 1 :: IO Int

b <- counter 1

b :: Int

https://stackoverflow.com/questions/16811376/simulate-global-variable

testCounter :: Counter -> IO ()

testCounter counter = do

 b <- counter 1 :: Int

 c <- counter 1 :: Int

 d <- counter 1 :: Int

 print [b,c,d]

i x+i

counter

IORef Mutable Variable
(2C)

25 Young Won Lim
10/19/19

testCounter applies the counter function successively

https://stackoverflow.com/questions/16811376/simulate-global-variable

1 0+1

x (+i) x+i

 r r

1 1+1 2 2+1

counter 1 counter 1 counter 1

0 (+1) 1

 r r

1 (+1) 2

 r r

2 (+1) 3

 r r

 b <- counter 1
 c <- counter 1
 d <- counter 1

1 2 3

IORef Mutable Variable
(2C)

26 Young Won Lim
10/19/19

main

main = do

 counter <- makeCounter :: Int -> IO Int

 testCounter counter :: IO ()

 testCounter counter :: IO ()

testCounter :: Counter -> IO ()

testCounter counter = do

 b <- counter 1

 c <- counter 1

 d <- counter 1

 print [b,c,d]

https://stackoverflow.com/questions/16811376/simulate-global-variable

0 (+1) 1

 r r

1 (+1) 2

 r r

2 (+1) 3

 r r

b

c

d

3 (+1) 4

 r r

4 (+1) 5

 r r

5 (+1) 6

 r r

b

c

d

IORef Mutable Variable
(2C)

27 Young Won Lim
10/19/19

put :: s -> State s ()

put :: s -> (State s) ()

one value input type s

the effect-monad State s

the value output type ()

the operation is used only for its effect;

the value delivered is uninteresting

putStr :: String -> IO ()

delivers a string to stdout but does not return anything exciting.

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

IO ()

IORef Mutable Variable
(2C)

28 Young Won Lim
10/19/19

- |A mutable variable in the 'IO' monad

newtype IORef a = IORef (STRef RealWorld a)

 deriving Eq -- ^ @since 4.2.0.0

 -- ^ Pointer equality.

 --

 -- @since 4.1.0.0

-- |Build a new 'IORef'

newIORef :: a -> IO (IORef a)

newIORef v = stToIO (newSTRef v) >>= \var -> return (IORef var)

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.IORef.html#IORef

IORef Definition (1)

IORef Mutable Variable
(2C)

29 Young Won Lim
10/19/19

-- |Read the value of an 'IORef'

readIORef :: IORef a -> IO a

readIORef (IORef var) = stToIO (readSTRef var)

-- |Write a new value into an 'IORef'

writeIORef :: IORef a -> a -> IO ()

writeIORef (IORef var) v = stToIO (writeSTRef var v)

atomicModifyIORef :: IORef a -> (a -> (a,b)) -> IO b

atomicModifyIORef (IORef (STRef r#)) f = IO $ \s -> atomicModifyMutVar# r# f s

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.IORef.html#IORef

IORef Definition (2)

IORef Mutable Variable
(2C)

30 Young Won Lim
10/19/19

newIORef :: a -> IO (IORef a)

newIORef v = stToIO (newSTRef v) >>= \var -> return (IORef var)

newtype IORef a = IORef (STRef RealWorld a)

stToIO :: ST RealWorld a -> IO a

stToIO (ST m) = IO m

newSTRef :: a -> ST s (STRef s a)

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.IORef.html#IORef

newIORef Method (1)

IORef Mutable Variable
(2C)

31 Young Won Lim
10/19/19

newIORef :: a -> IO (IORef a)

newIORef v = stToIO (newSTRef v) >>= \var -> return (IORef var)

newSTRef :: a -> ST s (STRef s a)

newSTRef v :: ST s (STRef s a)

stToIO :: ST RealWorld a -> IO a a … STRef s a; s … RealWorld

ST RealWorld (STRef s a) -> IO (STRef s a)

ST RealWorld (STRef RealWorlds a) -> IO (STRef RealWorld a)

stToIO (newSTRef v) :: IO (STRef RealWorld a)

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.IORef.html#IORef

newIORef Method (2)

IORef Mutable Variable
(2C)

32 Young Won Lim
10/19/19

newIORef :: a -> IO (IORef a)

newIORef v = stToIO (newSTRef v) >>= \var -> return (IORef var)

stToIO (newSTRef v) :: IO (STRef RealWorld a)

stToIO (newSTRef v) >>= \var -> return (IORef var)

var :: STRef RealWorld a

newtype IORef a = IORef (STRef RealWorld a)

IORef var = IORef (STRef RealWorld a)

IORef var :: IORef a

return (IORef var) :: IO (IORef a)

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.IORef.html#IORef

newIORef Method (3)

IORef Mutable Variable
(2C)

33 Young Won Lim
10/19/19

readIORef :: IORef a -> IO a

readIORef (IORef var) = stToIO (readSTRef var)

newtype IORef a = IORef (STRef RealWorld a)

stToIO :: ST RealWorld a -> IO a

stToIO (ST m) = IO m

readSTRef :: STRef s a -> ST s a

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.IORef.html#IORef

readIORef (1)

IORef Mutable Variable
(2C)

34 Young Won Lim
10/19/19

readIORef :: IORef a -> IO a

readIORef (IORef var) = stToIO (readSTRef var)

IORef var :: IORef a

newtype IORef a = IORef (STRef RealWorld a)

var :: STRef RealWorld a

readSTRef :: STRef s a -> ST s a

readSTRef var :: ST RealWorld a

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.IORef.html#IORef

readIORef (2)

IORef Mutable Variable
(2C)

35 Young Won Lim
10/19/19

readIORef :: IORef a -> IO a

readIORef (IORef var) = stToIO (readSTRef var)

readSTRef var :: ST RealWorld a

stToIO :: ST RealWorld a -> IO a

stToIO (readSTRef var) :: IO a

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.IORef.html#IORef

readIORef (3)

IORef Mutable Variable
(2C)

36 Young Won Lim
10/19/19

writeIORef :: IORef a -> a -> IO ()

writeIORef (IORef var) v = stToIO (writeSTRef var v)

newtype IORef a = IORef (STRef RealWorld a)

stToIO :: ST RealWorld a -> IO a

stToIO (ST m) = IO m

writeSTRef :: STRef s a -> a -> ST s ()

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.IORef.html#IORef

writeIORef (1)

IORef Mutable Variable
(2C)

37 Young Won Lim
10/19/19

writeIORef :: IORef a -> a -> IO ()

writeIORef (IORef var) v = stToIO (writeSTRef var v)

IORef var :: IORef a

v :: a

newtype IORef a = IORef (STRef RealWorld a)

var :: STRef RealWorld a

writeSTRef :: STRef s a -> a -> ST s ()

writeSTRef var v :: ST RealWorld ()

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.IORef.html#IORef

writeIORef (2)

IORef Mutable Variable
(2C)

38 Young Won Lim
10/19/19

writeIORef :: IORef a -> a -> IO ()

writeIORef (IORef var) v = stToIO (writeSTRef var v)

writeSTRef var v :: ST RealWorld ()

stToIO :: ST RealWorld a -> IO a

stToIO (readSTRef var) :: IO ()

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.IORef.html#IORef

writeIORef (3)

IORef Mutable Variable
(2C)

39 Young Won Lim
10/19/19

-- | A

https://osa1.net/posts/2016-07-25-IORef-STRef-exposed.html

IORef

IORef Mutable Variable
(2C)

40 Young Won Lim
10/19/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

