The Growth of Functions (2A)

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Functions and Ranges

All are distinguishable

for x > -0.5 $x^2 < x^2 + 2x + 1$

The Growth of Functions (2A)

Medium Range

Functions and Ranges

Small Range, $2x^2$

Medium Range, $2x^2$

Large Range, $2x^2$

Functions and Ranges

Small Range, *10x*²

Medium Range, $10x^2$

The Growth of Functions (2A)

Functions and Ranges

Small Range, *10x*

Medium Range, *10x*

Large Range, *10x*

Big-O Definition

Big- Ω Definition

Big-O Definition

for
$$k < x$$

 $f(x) \le C|g(x)|$
 $f(x)$ is $O(g(x))$

g(x) : upper bound of f(x)

g(x) has a simpler form than f(x) is usually a single term

Big- Ω Definition

for
$$k < x$$

 $f(x) \ge C|g(x)|$
 $f(x)$ is $\Omega(g(x))$

g(x) : lower bound of f(x)

g(x) has a simpler form than f(x) is usually a single term

for
$$k < x$$

$$f(x) \le C|g(x)| \iff f(x) \text{ is } O(g(x))$$

$$C|g(x)| \le f(x) \qquad \longleftrightarrow \qquad f(x) \text{ is } \Omega(g(x))$$

$$C_1|g(x)| \le f(x) \le C_2|g(x)| \iff f(x) \text{ is } \Theta(g(x))$$

$Big-\Theta = Big-\Omega$ and Big-O

$$\Omega(g(x)) \wedge O(g(x)) \iff \Theta(g(x))$$

Big-O, Big- Ω , Big- Θ Examples

$$x^{2}+2x+1$$
 is $\Theta(x^{2})$

for x > 7.87310 $x < x^2 + 2x + 1$ $x^2 + 2x + 1$ is $\Omega(x)$ lower bound

The Growth of Functions (2A)

Many Larger Upper Bounds

the least upper bound?

Many Smaller Lower Bound

the greatest lower bound?

The Growth of Functions (2A)

Upper and Lower Bounds

Simultaneously Lower and Upper Bound

$f(x) = x^2 + 2x + 1$

Big-**O** Examples (1)

Big-**O** Examples (2)

Big-**O** Examples (3)

Tight bound Implications

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } O(g(x))$$

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } \Omega(g(x))$$

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } O(g(x))$$

$$f(x) \text{ is } \Theta(g(x)) \longrightarrow f(x) \text{ is } \Omega(g(x))$$

The Growth of Functions (2A)

Common Growth Functions

Upper bounds

 $f_1(x)$ is $O(\log x) \longrightarrow O(\sqrt{x}) \longrightarrow O(x) \longrightarrow O(x \log x) \longrightarrow O(x^2)$

Lower bounds

$$f(n) = n^6 + 3n$$
 $f(n) = O(n^6)$ $f(n) = \Omega(n)$ $f(n) = 2^n + 12$ $f(n) = O(2^n)$ $f(n) = \Omega(1)$ $f(n) = 2^n + 3^n$ $f(n) = O(3^n)$ $f(n) = \Omega(2^n)$ $f(n) = n^n + n$ $f(n) = O(n^n)$ $f(n) = \Omega(n)$

$$\begin{array}{ll} f(n) = n^{6} + 3n & f(n) = O(n^{6}) & f(n) = \Omega(n^{6}) & f(n) = \Theta(n^{6}) \\ f(n) = 2^{n} + 12 & f(n) = O(2^{n}) & f(n) = \Omega(2^{n}) & f(n) = \Theta(2^{n}) \\ f(n) = 2^{n} + 3^{n} & f(n) = O(3^{n}) & f(n) = \Omega(3^{n}) & f(n) = \Theta(3^{n}) \\ f(n) = n^{n} + n & f(n) = O(n^{n}) & f(n) = \Omega(n^{n}) & f(n) = \Theta(n^{n}) \end{array}$$

 $\Theta(n)$ $\Theta(n^2)$ $\Theta(1)$ $\Theta(n)$ $\Theta(n)$

O(n)	upper bound	tight
$O(n^3)$	upper bound	
O(n)	upper bound	
O(1)	upper bound	wrong
O(2n)	upper bound	tight

$$O(2n) = O(n)$$

 $\Theta(1)$ $\Theta(\sqrt{n})$ $\Theta(n)$ $\Theta(n^{2})$ $\Theta(n^{3})$ $\Theta(1)$ $\Theta(\sqrt{n})$ $\Theta(n)$

 $\Theta(n^2)$ $\Theta(n^3)$

O(1)	tig
$O(\sqrt{n})$	tig
O(n)	tig
$O(n^2)$	tig
$O(n^3)$	tig

tight upper bound tight upper bound tight upper bound tight upper bound tight upper bound

 $\Omega(1)$ tight lower bound $\Omega(\sqrt{n})$ tight lower bound $\Omega(n)$ tight lower bound $\Omega(n^2)$ tight lower bound $\Omega(n^3)$ tight lower bound O(n) O(n) $O(n^2)$ $O(n^3)$ $O(n^4)$

upper bound upper bound upper bound upper bound

 $\Omega(1)$ lower bound $\Omega(\sqrt{n})$ lower bound $\Omega(n)$ lower bound $\Omega(n^2)$ lower bound

The Growth	of
Functions (2	.A)

References

