Introduction to ODE's (0B)

Copyright (c) 2011 - 2014 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Derivatives and Differentials (large dx)

Intro to ODEs (0B)

Euler Method of Approximation (large dx)

Intro to ODEs (0B)

Derivatives and Differentials (large dx)

Intro to ODEs (0B)

5

Derivatives and Differentials (small dx)

Euler's Method of Approximation

Octave Code

clf; hold off; dx = 0.2: x = 0 : dx : 8;y = sin(x);plot(x, y); $t = \sin(x) + \cos(x)^* dx;$ y1 = [y(1), t(1:length(y)-1)];y2 = [0]; $y^{2}(1) = y(1);$ for i=1:length(y)-1 $y_{2}(i+1) = y_{2}(i) + cos((i)*dx)*dx;$ endfor hold on t = 0:0.01:8;plot(t, sin(t), "color", "blue"); plot(x, y, "color", 'blue', "marker", 'o'); plot(x, y1, "color", 'red', "marker", '+'); plot(x, y2, "color", 'green', "marker", '*');

Direction Field (1)

Direction Field (2)

References

- [1] http://en.wikipedia.org/
- [2] M.L. Boas, "Mathematical Methods in the Physical Sciences"
- [3] E. Kreyszig, "Advanced Engineering Mathematics"
- [4] D. G. Žill, W. S. Wright, "Advanced Engineering Mathematics"