
Structures and Unions

Young W. Lim

2020-10-08 Thr

Young W. Lim Structures and Unions 2020-10-08 Thr 1 / 22



Outline

1 Structures and unions
Based on
Structure Background
Union Background

Young W. Lim Structures and Unions 2020-10-08 Thr 2 / 22



Based on

1 "Self-service Linux: Mastering the Art of Problem Determination",

Mark Wilding

1 "Computer Architecture: A Programmer’s Perspective", Bryant &
O’Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Structures and Unions 2020-10-08 Thr 3 / 22



Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim Structures and Unions 2020-10-08 Thr 4 / 22



Strudctures (1)

structures
combining objects of different types

unions
aggregate multiple objects into a single unit
allows an objects to be referenced using several different types

Young W. Lim Structures and Unions 2020-10-08 Thr 5 / 22



Strudctures (2)

group objects possible different types into a single object
like arrays

stored in a contiguous region
a pointer to a structure : the address of its 1st byte

compiler maintains information about each structure type
indicating the byte offset of each field
compiler generates references to structure elements
using these offset as displacements in memory referencing instructions

Young W. Lim Structures and Unions 2020-10-08 Thr 6 / 22



Rectangle Structure Exmaple (1)

to represent a rectangle as a structure
struct rect {

int llx; // x coordinate of lower-left corner
int lly; // y coordinate of lower-left corner
int color; // coding of color
int width; // width (in pixels)
int height; // height (in pixels)

};

to declare a structure variable r
struct rect r;

to access fields of a structure variable r
r.llx = r.lly = 0;
r.color = 0xFF00FF;
r.width = 10;
r.height = 20;

Young W. Lim Structures and Unions 2020-10-08 Thr 7 / 22



Rectangle Structure Exmaple (2)

to represent a rectangle as a structure
struct rect {

int llx; // x coordinate of lower-left corner
int lly; // y coordinate of lower-left corner
int color; // coding of color
int width; // width (in pixels)
int height; // height (in pixels)

};

to compute the area of a rectangle
int area (struct rect *rp)
{

return (*rp).width * (*rp).height;
}

Young W. Lim Structures and Unions 2020-10-08 Thr 8 / 22



Rectangle Structure Exmaple (3)

to represent a rectangle as a structure
struct rect {

int llx; // x coordinate of lower-left corner
int lly; // y coordinate of lower-left corner
int color; // coding of color
int width; // width (in pixels)
int height; // height (in pixels)

};

to rotage a rectangle
void rotate_left (struct rect *rp)
{ // swap width and height

int t = rp->height;
rp->height = rp->width;
rp->width = t;
return (*rp).width * (*rp).height;

}

Young W. Lim Structures and Unions 2020-10-08 Thr 9 / 22



Strudcture fields accessing Exmaple (1)

struct rec { 0x00 : i
int i; // 4 bytes 0x04 : j
int j; // 4 bytes 0x08 : a[0]
int a[3]; // 12 bytes 0x0C : a[1]
int *p; // 4 bytes 0x10 : a[2]

0x14 : p
0x1C :

offset 0 4 8 12 16
contents i j a[0] a[1] a[2]
size 4 bytes 4 bytes 4 bytes 4 bytes 4 bytes

Young W. Lim Structures and Unions 2020-10-08 Thr 10 / 22



Strudcture Exmaple (4)

movl (%edx), %eax ; Get r->i
movl %eax, 4(%edx) ; Store in r->j

; r in %eax, i in %edx
leal 8(%eax, %edx, 4) ; %ecx = &r->a[i]

Young W. Lim Structures and Unions 2020-10-08 Thr 11 / 22



Strudcture Exmaple (5)

r->p = &r->[r->i + r->j];

movl 4(%edx), %eax ; Get r-j
addl (%edx), %eax ; Add r-i
leal 8(%edx, %eax, 4), %eax ; Compute &r->[r->i + r->j]
movl %eax, 20(%edx) ; Store in r->p

Young W. Lim Structures and Unions 2020-10-08 Thr 12 / 22



Strudcture Exmaple (6)

struct prob {
int *p;
struct {

int x;
int y;

} s;
struct prob *next;

};

movl 8(%ebp), %eax
movl 8(%eax), %edx
movl %edx, 4(Teax)
leal 4(%eax), %eax
movl %edx, (%eax)
movl %eax, 12(%eax)

Young W. Lim Structures and Unions 2020-10-08 Thr 13 / 22



Structure Declaration (2)

struct rec *r;

copy the element of r->i to element r->j
r->j = r->i
movl (%edx), %eax ; Get r->i
movl %eax, 4(%edx) ; Store in r->j

Young W. Lim Structures and Unions 2020-10-08 Thr 14 / 22



Structure Declaration (3)

struct rec *r;

to generate a pointer to an object within a structure
simply addthe field’s offset to the structure address

generate the pointer &(r->a[i])
by adding offset 8+ 4 · 1 = 12
for pointer r in register %eax
integer variable i in register %edx

r in %eax, i in %edx
leal 8(%eax, %edx, 4), %ecx ; %ecx = &r->a[i]

Young W. Lim Structures and Unions 2020-10-08 Thr 15 / 22



Structure Declaration (4)

struct rec *r;

r->p = &r->a[r->i + r->j];
movl 4(%edx), %eax ; get r->j
addl (%edx), %eax ; add r->i
leal 8(%edx, %eax, 4), %eax ; compute &r->[r->i + r->j]
movl %eax, 20(%edx) ; store in r->p

Young W. Lim Structures and Unions 2020-10-08 Thr 16 / 22



Unions (1)

structures
combining objects of different types

unions
aggregate multiple objects into a single unit
allows an objects to be referenced using several different types

Young W. Lim Structures and Unions 2020-10-08 Thr 17 / 22



Unions (2)

allow a single object to be referenced according to mulitple types
the syntax of a union declaration is identical to that for structures
the different semantics
rather than having the different fields reference different blocks
but they all reference the same block
the use of two different fields is mutually exclusive
can reduce memory usage3
can be used to access the bit patterns of different data types

Young W. Lim Structures and Unions 2020-10-08 Thr 18 / 22



Union Declaration (1)

struct S3 {
char c;
int i[2];
double v;

};

0x00 : c
0x04 : i[0]
0x08 : i[1]
0x0c : v
0x20 :

union U3 {
char c;
int i[2];
double v;

}

0x00 : c
0x00 : i[0]
0x00 : i[1]
0x00 : v
0x08 :

Young W. Lim Structures and Unions 2020-10-08 Thr 19 / 22



Union Declaration (2)

struct NODE {
struct NODE *left;
struct NODE *right;
double data;

};

union NODE{
struct NODE {

struct NODE *left;
struct NODE *right;

} internal;
double data;

};

struct NODE {
int is_leaf;
union NODE{

struct NODE {
struct NODE *left;
struct NODE *right;

} internal;
double data;

} info;
};

Young W. Lim Structures and Unions 2020-10-08 Thr 20 / 22



Union Declaration (3)

unsigned float2bit(float f)
{

union {
float f;
unsigned u;

} temp;
temp.f = f;
return temp.u;

};

unsigned copy(unsigned u)
{

return u;
}

movl 8(%ebp), %eax

Young W. Lim Structures and Unions 2020-10-08 Thr 21 / 22



Union Declaration (4)

double bit2double(unsigned word0, unsigned word1)
{

union {
double d;
unsigned u[2];

} temp;

temp.u[0] = word0;
temp.u[1] = word1;
return temp.d;

}

Young W. Lim Structures and Unions 2020-10-08 Thr 22 / 22


	Structures and unions
	Based on
	Structure Background
	Union Background


