
Young Won Lim
2/3/22

Exception Handlers

Exception Handlers 2 Young Won Lim
2/3/22

 Copyright (c) 2022 - 2014 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Exception Handlers 3 Young Won Lim
2/3/22

Based on

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

Introduction to ARM Cortex-M Microcontrollers
– Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture,
D. M. Harris and S. L. Harris

ARM assembler in Raspberry Pi
Roger Ferrer Ibáñez

https://thinkingeek.com/arm-assembler-raspberry-pi/

Exception Handlers 4 Young Won Lim
2/3/22

Finding the right handler

When an exception occurs, the hardware determines
the source of the exception as a 3-bit number,
which it uses to index the vector table
(which starts in memory at address 0)

0x1c FIQ
0x18 IRQ
0x14 (Reserved)
0x10 Data Abort
0x0c Prefetch Abort
0x08 SWI
0x04 Undefined Instruction
0x00 Reset

http://www2.unb.ca/~owen/courses/2253-2017/slides/08-interrupts.pdf

Exception Handlers 5 Young Won Lim
2/3/22

Finding the right handler

http://www2.unb.ca/~owen/courses/2253-2017/slides/08-interrupts.pdf

0x30008000

FIQ Handler

B_IRQ Handler

Reserved

Data Abort Vector

Prefetch Abort Vector

MOV PC #0x30000000

LDR PC, [PC, #+0xFF0]

Reset vector

IRQ Handler

SVC Handler

Undef Handler

0xFFC

0x1000

0x30000000

0x30008000

0xFFFFFFFF

0x20000000

Undef handler outside 32MB
Branch instruction range

SVC exception handler placed on
Appropriate address boundary

IRQ handler within 32MB branch
Instruction range

Literal pool containing address
Of undef handler

FIQ handler follows vector table

Exception Handlers 6 Young Won Lim
2/3/22

CPSR and SPSR’s

https://www.sciencedirect.com/topics/computer-science/software-interrupt

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

To disable Interrupt (IRQ), set I

To disable Fast Interrupt (FIQ), set F

the T bit shows running in the Thumb state

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fiq SPSR_irq SPSR_svc SPSR_abt SPSR_und6 control registers

Current Program Status Register (CPSR)

Saved Program Status Register (SPSR)

Exception Handlers 7 Young Won Lim
2/3/22

SWI (Software Interrupt) Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Software Interrupt SWI {<cond>} <24-bit immediate>

cond 1 1 1 1 Ignored by processor (15)

● the SWI instruction is used to enter Supervisor mode in a controlled manner.
● the instruction causes the software interrupt trap to be taken,

which effects the mode change.
● the PC is then forced to a fixed value (0x08) and
● the CPSR is saved in SPSR_svc.

If the SWI vector address is suitably protected
(by external memory management hardware)
from modification by the user,
a fully protected operating system may be constructed

https://iitd-plos.github.io/col718/ref/arm-instructionset.pdf

SPSR_svc ← CPSR

Exception Handlers 8 Young Won Lim
2/3/22

SWI (Software Interrupt) Assembly Instruction

SWI immed_8

immed_8 is a numeric expression evaluating to an integer in the range 0-255.

● The SWI instruction causes a SWI exception.
● the processor state changes to ARM,
● the processor mode changes to Supervisor,
● the CPSR is saved to the Supervisor Mode SPSR_svc, and
● execution branches to the SWI vector

● immed_8 is ignored by the processor.
● However, it is present in bits[7:0] of the instruction opcode.
● It can be retrieved by the exception handler

to determine what service is being requested.

● this instruction does not affect the flags.

https://developer.arm.com/documentation/dui0068/b/Thumb-Instruction-Reference/Thumb-software-interrupt-and-breakpoint-instructions/SWI

Exception Handlers 9 Young Won Lim
2/3/22

SWI Number

the SWI number is determined by

SWI_Number = <SWI instruction> AND NOT (0xff000000)

Here the SWI instruction is
the actual 32-bit SWI instruction executed by the processor.

`

https://www.sciencedirect.com/topics/computer-science/software-interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Software Interrupt SWI {<cond>} <24-bit immediate>

cond 1 1 1 1 SWI Number (15)

Used by SWI handlers

Exception Handlers 10 Young Won Lim
2/3/22

Inverse operations on 4 types of stacks

STMFA

LDMFA

STMFD

LDMFD

STMEA

LDMEA

STMED

LDMED

Full Ascending Stack Full Descending Stack

Empty Ascending Stack Empty Descending Stack

Exception Handlers 11 Young Won Lim
2/3/22

STM and LDM at a Full Descending Stack

r4
r1
r0r8’

r8

High

Low

Full
Descending

first, decrement;
then, store

STMFD r8! {r0,r1,r4}

! auto
index

PUSH

STM

r4
r1
r0r8

r8’

High

Low

Full
Descending

first, decrement;
then, store

LDMFD r8! {r0,r1,r4}

! auto
index

POP

LDM

Exception Handlers 12 Young Won Lim
2/3/22

Suffix ^

^ must not be used in User mode or System mode.

If op is LDM and reglist contains the pc (r15),
in addition to the normal multiple register transfer,
the SPSR is copied into the CPSR.

This is for returning from exception handlers.
Use this ^ suffix only from exception modes.

Otherwise, data is transferred into or out of the User mode registers
instead of the current mode registers.

https://stackoverflow.com/questions/12091697/arm-instruction-meaning

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_fiq SPSR_irq SPSR_svc SPSR_abt SPSR_und6 control registers

LDMFD r8! {r0,r1,r4}^

CPSR ← SPSR_mode

LDMFD r8! {r0,r1,r4}^

SWI

Exception Handlers 13 Young Won Lim
2/3/22

Software Interrupts (1)

1) The SWI is invoked in the user program (either C or ASM).
parameters may have been placed in registers before the SWI.
the SWI number is embedded in the SWI instruction itself.

2) The SWI vector is taken.

This includes switch to SVC mode.

3) The vector points to a handler which is written in ASM.

This is where the SWI number is extracted
from the SWI instruction (by back-tracing through LR).

Optionally, parameters may be placed on the stack
prior to calling a C handler.
If a C handler is not used,
the parameters may be used directly from the registers.

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 14 Young Won Lim
2/3/22

Software Interrupts (2)

4) Optionally, a C handler may be used
to carry out the major part of the SWI processing.

in order to be able to pass the SWI number
plus four other parameters to this C handler routine
(more than we can usually pass in registers),

the SWI number is passed in a register
together with a pointer to the other parameters
which are placed on the stack prior to the call.

The C handler is a normal C function.

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 15 Young Won Lim
2/3/22

Software Interrupts (3)

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

0x1c FIQ
0x18 IRQ
0x14 (Reserved)
0x10 Data Abort
0x0c Prefetch Abort
0x08 SWI
0x04 Undefined Inst
0x00 Reset

SWI 0x01

User Program
(C/ASM)

Vector Table

SWI Handler
(ARM Assembly)

SWI Handler
(ARM/Thumb C Code)

User program invokes SWI
SWI handler contain assembly part and optional C part

Exception Handlers 16 Young Won Lim
2/3/22

Software Interrupts (4)

● a SWI is called with an appropriate SWI number
• SWI 0x24 for example
• SWI has now been renamed to SVC (RVDS 2.2 and later)

● calling a SWI when in supervisor mode will corrupt LR_svc
• Solution: push LR_svc onto stack before calling the SWI

● parameters are passed in:
• the SWI number e.g. for semihosting (for debugging)

use 0x123456 (ARM) or 0xAB (Thumb)
• core registers

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 17 Young Won Lim
2/3/22

Software Interrupts (5)

on taking an exception,
ARM state is automatically entered

to return from an exception
an ARM instruction is needed

exception handlers are usually
written in ARM code.

Sometimes, it may be better
● the main part of an exception handler

in Thumb code,
● entry and exit from the handler

with an ARM code stub

better code density and also performance
if running from narrow memory.

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

when performance is critical and
the exception handling code
can be located in fast 32-bit wide memory

eg. interrupt handlers.

this does apply generally to other exceptions,
but SWIs are the most common one
that you may want to use Thumb code in
(e.g. for a large handler for OS calls)

Exception Handlers 18 Young Won Lim
2/3/22

Software Interrupts (6)

● the core provides no mechanism
for passing the SWI number directly
to the handler

● SWI handler must extract
the comment field (the SWI number)
from the SWI instruction itself

● to do this, the SWI handler must
determine which state (ARM/Thumb)
the SWI was called from

➔ Check the T bit in the SPSR
The SWI instruction is at
• LR-4 for ARM state,
• LR-2 for Thumb state

•

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

● To pass the parameters to a C handler,
they are typically pushed on the stack

● Pass a pointer to those parameters
to the C subroutine implementing
the main body of the handler

Exception Handlers 19 Young Won Lim
2/3/22

Software Interrupts (6)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR CPSR

User Supervisor

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

http://www.cs.otago.ac.nz/cosc440/readings/arm-syscall.pdf

SPSR_svc

SP_svc

LR_svc

= vectors + 0x08

= address of instruction following the SWI

= SVC mode, I (mask IRQ interrupts)

Exception Handlers 20 Young Won Lim
2/3/22

SWI Handler Example I (1)

lr_svc = address of instruction following the SWI
spsr_svc = cpsr
pc = vectors + 0x08
cpsr mode = SVC
cpsr_I = 1 (mask IRQ interrupts)

https://www.sciencedirect.com/topics/computer-science/software-interrupt

0x1c FIQ
0x18 IRQ
0x14 (Reserved)
0x10 Data Abort
0x0c Prefetch Abort
0x08 SWI_handler
0x04 Undefined Inst
0x00 Reset

SWI 0x0123456

User Program
(C/ASM) Vector Table

SWI handler

CPSR CPSR_svc

SPSR_svc

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

To disable Interrupt (IRQ), set I
To disable Fast Interrupt (FIQ), set F
the T bit shows running in the Thumb state

LR_svc PC
0 0 1 11

 Supervisor (svc)

Exception Handlers 21 Young Won Lim
2/3/22

SWI Handler Example I (2)

cpsr = nzcVqift_USER
spsr = X
pc = 0x00008000
lr = 0x003fffff
r0 = 0x12

https://www.sciencedirect.com/topics/computer-science/software-interrupt

cpsr = nzcVqIft_SVC
spsr = nzcVqift_USER
pc = 0x00000008
lr = 0x00008004
r0 = 0x12

0x00008000 SWI 0x123456
0x00008004 0x1c FIQ

0x18 IRQ
0x14 (Reserved)
0x10 Data Abort
0x0c Prefetch Abort
0x08 SWI
0x04 Undefined Inst
0x00 Reset

Vector Table

SWI number 0x123456
used by ARM toolkits as a debugging SWI.

0x12R0

parameter

0x12R0

parameter

Exception Handlers 22 Young Won Lim
2/3/22

SWI Handler Example I (3)

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

0x1c FIQ
0x18 IRQ
0x14 (Reserved)
0x10 Data Abort
0x0c Prefetch Abort
0x08 SWI_handler

0x04 Undefined Inst
0x00 Reset

User Program
(C/ASM)

Vector Table

SWI Handler
(ARM Assembly) SWI Handler

(ARM/Thumb C Code)

User program invokes SWI
SWI handler contain assembly part and optional C part

0x00008000 SWI 0x123456

0x00008004

SWI_handler
STMFD sp!, {r0-r12, lr}
LDR r10, [lr, #-4]
BIC r10, r10, #0xff000000
BL service_routine
LDMFD sp!, {r0-r12, pc}^

service_routine

0x12R0

parameter

0x12R0

parameter

0x00008004R14 LR_svc

lr, #-4 =
0x00008000

[lr, #-4] =
SWI 0x123456

return address

0x123456R10

SWI number

used by service_routine

Exception Handlers 23 Young Won Lim
2/3/22

SWI Handler Example I (4)

r14
r12
r11

r13’

r13

High

Low

STMFD sp!, {r0-r12, lr}

r13’

r13’’

High

Low

LDMFD sp!, {r0-r12, pc}^

r10
r9
r8
r7
r6
r5
r4
r3
r2
r1
r0

r14
r12
r11
r10
r9
r8
r7
r6
r5
r4
r3
r2
r1
r0

r15(PC)

in SVC mode

r12
r11
r10
r9
r8
r7
r6
r5
r4
r3
r2
r1
r0

r14(LR)
r12
r11
r10
r9
r8
r7
r6
r5
r4
r3
r2
r1
r0

R13 (SP_svc)
R14 (LR_svc)
R15 (PC)

parameter 0x12

SWI # 0x1234566

Exception Handlers 24 Young Won Lim
2/3/22

SWI Handler Example I (5)

r14
r12
r11

r13’

r13

High

Low

STMFD sp!, {r0-r12, lr}

! auto
Index
updates
SP_svc

r13’

r13’’

High

Low

LDMFD sp!, {r0-r12, pc}^

r10
r9
r8
r7
r6
r5
r4
r3
r2
r1
r0

SWI Handler
(ARM Assembly)

SWI_handler
STMFD sp!, {r0-r12, lr}
LDR r10, [lr, #-4]
BIC r10, r10, #0xff000000
BL service_routine
LDMFD sp!, {r0-r12, pc}^

r14
r12
r11
r10
r9
r8
r7
r6
r5
r4
r3
r2
r1
r0

CPSR CPSR_svc

SPSR_svc

Suffix ^

R13 (SP_svc)
R14 (LR_svc)
R15 (PC)

in SVC mode

LR_svc
points to the next instruction

after SWI 0x123456

! auto
Index
updates
SP_svc

Exception Handlers 25 Young Won Lim
2/3/22

SWI Handler Example I (6)

An example of an SWI call with SWI number 0x123456, SWI 0x123456
used by ARM toolkits as a debugging SWI.

typically the SWI instruction is executed in user mode.

Since SWI instructions are used to call operating system routines,
you need some form of parameter passing.

this is achieved using registers.
for example, register r0 is used to pass the parameter 0x12.
the return values are also passed back via registers.

Code called the SWI handler is required to process the SWI call.

the handler obtains the SWI number R10
using the address of the executed SWI instruction, LR_svc - #4
which is calculated from the link register lr.

https://www.sciencedirect.com/topics/computer-science/software-interrupt

Exception Handlers 26 Young Won Lim
2/3/22

SWI Handler Example I (7)

SWI_handler
;
; Store registers r0-r12 and link register
;
STMFD sp!, {r0-r12, lr}

; Read the SWI instruction
LDR r10, [lr, #-4]

; Mask off top 8 bits
BIC r10, r10, #0xff000000

; r10 – contains the SWI number
BL service_routine

; return from SWI handler
LDMFD sp!, {r0-r12, pc}^

https://www.sciencedirect.com/topics/computer-science/software-interrupt

the start of an SWI handler implementation.

● what SWI number is being called
● places that number into register r10.
● the load instruction first copies

the complete SWI instruction
into register r10.

● BIC masks off the top bits of the instruction,
leaving the SWI number.

● assume the SWI has been called
from ARM state.

● the number in register r10 is then used
by the SWI handler to call the appropriate

 SWI service routine.

Exception Handlers 27 Young Won Lim
2/3/22

__swi and swi_indirect

● In C, map a call to a function onto a SWI using the keyword “__swi”
• pass up to 4 parameters in r0 - r3
• no stack parameters because of the supervisor mode change

● using the keyword “__swi_indirect”
• takes the number of the SWI to call as an argument in r12

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 28 Young Won Lim
2/3/22

Inline assembler SWI call

For a SWI returning 0 result use:
void __swi(swi_num) swi_name(int arg1,..., int argn);

For example:
void __swi(42) terminate_proc(int procnum);

For a SWI returning 1 result, use:
int __swi(swi_num) swi_name(int arg1,..., int argn);

For a SWI returning more than 1 result use:
struct { int res1,...,resn; }
__value_in_regs
__swi(swi_num) swi_name(int arg1,...,int argn);:

https://developer.arm.com/documentation/dui0041/c/Babcigfa

Exception Handlers 29 Young Won Lim
2/3/22

Inline assembler SWI call

An indirect SWI that takes the number of the SWI
to call as an argument in r12

int __swi_indirect(ind_num) swi_name(int real_num, int arg1, ... argn);

ind_num : the SWI number used in the SWI instruction.
real_num : the SWI number passed in r12 to the SWI handler.

int __swi_indirect(0) ioctl(int swino, int fn, void *argp);

ioctl(IOCTL+4, RESET, NULL);

It compiles to a SWI 0 with IOCTL+4 in r12.

Note that your system SWI handlers must support __swi_indirect.

https://developer.arm.com/documentation/dui0041/c/Babcigfa

Exception Handlers 30 Young Won Lim
2/3/22

SWI Handler Example II (1)

__swi(0x24) void my_swi (char *s);

void foo (void)
{
 my_swi(“Hello world\n”);
}

foo
 STMFD sp!, {r4,lr}
 LDR r0, =text
 SWI 0x24
 LDMFD sp!, {r4,pc}
...
text DCB “Hello world\n”,0

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

In C, map a call to a function
onto a SWI using the keyword “__swi”

• pass up to 4 parameters in r0 - r3
up to only four arguments
for __swi functions.

Instead of using the user SP
Design the handler interface.

The SWI number = 0x24
1 parameters in r0 =text

Exception Handlers 31 Young Won Lim
2/3/22

SWI Handler Example II (2)

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

__swi(0x24) void my_swi (char *s);

void foo (void)
{
 my_swi(“Hello world\n”);
}

0x1c FIQ
0x18 IRQ
0x14 (Reserved)
0x10 Data Abort
0x0c Prefetch Abort
0x08 my_swi
0x04 Undefined Inst
0x00 Reset

SWI 0x24

User Program
foo

Vector Table

SWI Handler
my_swi

foo
 STMFD sp!, {r4,lr}
 LDR r0, =text
 SWI 0x24
 LDMFD sp!, {r4,pc}
...
text DCB “Hello world\n”,0

R0
“Hello world\n”

parameter

Exception Handlers 32 Young Won Lim
2/3/22

SWI Handler Example II (3)

https://developer.arm.com/documentation/dui0041/c/Babcigfa

int __swi_indirect(0) ioctl(int swino, int fn, void *argp);

void foo (void)
{
 ioctl(IOCTL+4, RESET, NULL);
}

0x1c FIQ
0x18 IRQ
0x14 (Reserved)
0x10 Data Abort
0x0c Prefetch Abort
0x08 ioctl
0x04 Undefined Inst
0x00 Reset

SWI 0x00

User Program
foo

Vector Table

SWI Handler
ioctl(IOCTL+4, RESET, NULL);

It compiles to
a SWI 0
with IOCTL+4 in r12.

IOCTL+4R12

parameter

Exception Handlers 33 Young Won Lim
2/3/22

SWI Handler Example III (1)

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

0x1c FIQ
0x18 IRQ
0x14 (Reserved)
0x10 Data Abort
0x0c Prefetch Abort
0x08 SWI_Handler
0x04 Undefined Inst
0x00 Reset

SWI 0x24

User Program
foo

Vector Table

SWI Handler
C_SWI_Handler

R0

parameter

R1

R2

R3

Exception Handlers 34 Young Won Lim
2/3/22

SWI Handler Example III (1)

T_bit EQU 0x20

 SWI_Handler
 STMFD sp!, {r0-r4,r12,lr}
 MOV r1, sp

 MRS r0, spsr
 STR r0, [sp, #-4]!

 TST r0, #T_bit
 LDRNEH r0, [lr,#-2]
 BICNE r0, r0, #0xff00
 LDREQ r0, [lr,#-4]
 BICEQ r0, r0, #0xff000000

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

 ; r0 now contains SWI number
 ; r1 now contains pointer to parameters on stack

 BL C_SWI_Handler

 LDR r1, [sp], #4
 MSR spsr_csxf, r1
 LDMFD sp!, {r0-r4,r12,pc}^

Exception Handlers 35 Young Won Lim
2/3/22

SWI Handler Example III (2)

T_bit EQU 0x20

 SWI_Handler
 STMFD sp!, {r0-r4,r12,lr}
 MOV r1, sp

 MRS r0, spsr
 STR r0, [sp, #-4]!

 TST r0, #T_bit
 LDRNEH r0, [lr,#-2]
 BICNE r0, r0, #0xff00
 LDREQ r0, [lr,#-4]
 BICEQ r0, r0, #0xff000000

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Stack registers, and
set pointer to parameters

Get spsr and
store onto stack

Extract comment field
(24 bits if called from ARM,
8 bits if called from Thumb)

Exception Handlers 36 Young Won Lim
2/3/22

SWI Handler Example III (3)

 ; r0 now contains SWI number
 ; r1 now contains pointer to parameters on stack

 BL C_SWI_Handler

 LDR r1, [sp], #4
 MSR spsr_csxf, r1
 LDMFD sp!, {r0-r4,r12,pc}^

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Call 2nd level
SWI handler C code

Restore registers
and return

Exception Handlers 37 Young Won Lim
2/3/22

SWI Handler Example III (4)

the passing back of parameters
If the C handler modifies the parameters on the stack,
these modified values will be passed back
to the invocation in r0-r3

Example C handler:
int C_SWI_Handler(int swinum, int * params)
{
 switch(swinum)
 {
 case 0:
 return writechar(params[0], params[1]);
 break;
 case 1:
 return readchar(params[0]);
 break;
 }
 return -1;
}

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 38 Young Won Lim
2/3/22

Reset

The operations carried out by a Reset handler
depend upon the system in question

for example it may:
● Set up exception vectors
● Initialize the memory system (e.g. MMU/PU)
● Initialize all required processor mode stacks and registers
● Initialize variables required by C
● Initialize any critical I/O devices
● Enable interrupts
● Change processor mode and/or state
● Call the main application

Unlike the other exception handlers,
there should be no need to ‘return’ from the Reset handler
as it should call your main application.

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 39 Young Won Lim
2/3/22

Undefined Instruction (1)

an Undefined Instruction exception can occur if:
● The ARM tries to execute a real undefined instruction
● The ARM encounters a coprocessor instruction

for which the appropriate coprocessor hardware
does not exist in the system.

● The ARM encounters a coprocessor instruction
for which the appropriate coprocessor hardware exists,
but has not been enabled

● The ARM encounters a coprocessor instruction
for which the appropriate coprocessor does exist
but rejects the instruction because the ARM is
not in a privileged mode.

● For example access to cp15 - the system control coprocessor
Other privileged instructions

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 40 Young Won Lim
2/3/22

Prefetch and Data Aborts

A prefetch abort indicates a failed instruction fetch

● tagged as aborting when the fetch occurs;
abort only taken if instruction reaches the execute stage of the pipeline

● a data abort indicates a failed data access
● load/store between the core and memory system

● internal aborts are those from the core itself - the MMU/MPU
● MMU faults may indicate you need to take corrective action and

re-execute the appropriate instruction

● external aborts are those from the memory system
● may indicate a hardware fault
● could be an attempted access to non-existent memory

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 41 Young Won Lim
2/3/22

Abort Handlers (1)

● when an abort happens depends on the system
● in a simple system without any memory management,

this usually indicates a serious error (e.g. hardware fault, code bug)
● With memory management, you may need to

● identify the cause of the abort
● and take corrective action.
● for example:

● allocate more memory for a process
● load a new page of code or data which the process was trying to access
● terminate the process if it did not have permission to access the aborting address

● ARM7TDMI family devices have a different abort model - see appendix

● for a prefetch abort, the offending instruction is at LR_abt - 4
● for a data abort, the offending instruction is usually at LR_abt - 8
● However, use MMU to find the faulting address
● Instruction may not be at lr - 8 if it is an imprecise abort

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 42 Young Won Lim
2/3/22

Undefined Instruction (2)

Coprocessors may need to be enabled via cp15 register 1, opcode2 = 4

In the case of the non-existent coprocessor,
it is possible to write an undefined instruction handler
which emulates that coprocessor in software.

An emulator can examine the instruction
to see if it is one it can emulate.

If bits 27-24 = 1110 or 110x
then the instruction is a coprocessor instruction.

Can then extract bits 8-11 which define
which coprocessor should deal with this instruction.

If this emulator is the correct one,
then process the instruction and return to the application.

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 43 Young Won Lim
2/3/22

Undefined Instruction (2)

This is the way that floating point used to be done
on the ARM before the introduction of the floating point library.

Floating point would either be implemented in hardware, FPA
- Floating Point Accelerator, as used by ARM7500FE,
or in software using a Floating Point Emulator.

In reality the FPA actually used a combination of
hardware coprocessor for the common cases
and software emulation for the rare cases.

VFP10 (for use with ARM1020T) also uses
this combined hardware/software approach
for implementing floating point as coprocessor instructions.

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 44 Young Won Lim
2/3/22

The “Return Address”

The way the return address is set comes from the ARM7 pipeline
Newer cores have the same effective behaviour for backwards-compatibility

In ARM state:

● Upon exception occurring the core sets LR_mode = PC - 4
● Handler may need to adjust LR_mode

(depending on the exception which occurred)
to return to the correct address

In Thumb state:

● The address stored in LR_mode is
amended automatically by the processor
depending upon the exception that has occurred

● This ensures the ARM return instruction from the handler
will return to the correct address (and to the correct state),
regardless of the state that was current
when the exception occurred

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 45 Young Won Lim
2/3/22

Handler entry and exit code summary

SWI / Undef

SWI PC-8
Inst1 PC-4 <<<
Inst2 PC

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

FIQ / IRQ

inst0 PC-12
Inst1 PC-8 <<<
Inst2 PC-4
Inst3 PC

Prefetch Abort

inst0 PC-8 <<<
inst1 PC-4
inst2 PC

Data Abort

inst0 PC-12 <<<
inst1 PC-8
inst2 PC-4
inst3 PC
inst4 PC+4

Exception Handlers 46 Young Won Lim
2/3/22

Return instruction (1) SWI and Undef

Exception handler called, in effect, by instruction itself.
Thus PC has not been updated at the point that LR is calculated

ARM Thumb
SWI PC-8 PC-4 Exception taken here
inst1 PC-4 PC-2 LR = next instruction
inst2 PC PC

● Return instruction

 MOVS pc,lr

● Note : the arrow denotes instruction to execute after return from exception

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 47 Young Won Lim
2/3/22

Return instruction (2) FIQs and IRQs

Exception handler called after instruction has finished executing.
Thus PC has been updated at the point LR is calculated

 ARM Thumb

inst0 PC - 12 PC - 6 Interrupt occurred during execution
inst1 PC - 8 PC - 4
inst2 PC - 4 PC - 2 ARM lr = next instruction
inst3 PC PC Thumb lr = two instructions ahead

● Return instruction

 SUBS pc,lr,#4

● Note : the arrow denotes instruction to execute after return from exception

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 48 Young Won Lim
2/3/22

Return instruction (3) Prefetch Aborts

● Exception taken when instruction reaches execute stage of pipeline.
Thus PC has not been updated at the point LR is calculated

● Need to attempt re-execution of the instruction which caused the abort

 ARM Thumb

inst0 PC – 8 PC - 4 Prefetch Abort occurred here
inst1 PC – 4 PC - 2 ARM lr = next instruction
inst2 PC PC Thumb lr = two instructions ahead

● Return instruction

 SUBS pc,lr,#4

● Note : the arrow denotes instruction to execute after return from exception

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 49 Young Won Lim
2/3/22

Return instruction (4) Data Aborts

● Exception taken (and LR calculated) after PC has been updated
● Need to attempt re-execution of instruction which caused the abort

 ARM Thumb
 inst0 PC - 12 PC - 6 Data abort occurred here
 inst1 PC - 8 PC - 4
 inst2 PC - 4 PC - 2 ARM lr = two instructions ahead
 inst3 PC PC
 inst4 PC + 4 PC + 2 Thumb lr = four instructions ahead

● Return instruction

 SUBS pc,lr,#8

● Note : the arrow denotes instruction to execute after return from exception

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 50 Young Won Lim
2/3/22

Returning from (1) SWI and Undef

The SWI and Undefined Instruction exceptions
are generated by the instruction itself,
so the program counter is not updated
when the exception is taken.

The processor stores (pc - 4) in lr_ mode.
This makes lr_mode point to the next instruction to be executed.

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 51 Young Won Lim
2/3/22

Returning from (2) FIQs and IRQs

After executing each instruction, the processor checks
to see whether the interrupt pins are LOW and
whether the interrupt disable bits in the CPSR are clear.
As a result, IRQ or FIQ exceptions are generated
only after the program counter has been updated.
The processor stores (pc - 4) in lr_mode.
This makes lr_mode point one instruction
beyond the end of the instruction in which the exception occurred.

When the handler has finished,
execution must continue from the instruction
prior to the one pointed to by lr_mode.
The address to continue from is
one word (four bytes) less than that in lr_mode,

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 52 Young Won Lim
2/3/22

Returning from (3) Prefetch Aborts

If the processor attempts to fetch
an instruction from an illegal address,
the instruction is flagged as invalid.
Instructions already in the pipeline continue to execute
until the invalid instruction is reached,
at which point a Prefetch Abort is generated.

The exception handler loads the unmapped instruction
into physical memory and uses the MMU,
if there is one, to map the virtual memory location
into the physical one.

The handler must then return to retry the instruction
that caused the exception.

The instruction should now load and execute.
Because the program counter is not updated
at the time the prefetch abort is issued,
lr_ABT points to the instruction
following the one that caused the exception.

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 53 Young Won Lim
2/3/22

Returning from (4) Data Aborts

When a load or store instruction tries to access memory,
the program counter has been updated.
The stored value of (pc - 4) in lr_ABT
points to the second instruction
beyond the address where the exception occurred.
When the MMU, if present, has mapped
the appropriate address into physical memory,
the handler should return to the original, aborted instruction
so that a second attempt can be made to execute it.
The return address is therefore
two words (eight bytes) less than that in lr_ABT,

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 54 Young Won Lim
2/3/22

Exception Handlers 55 Young Won Lim
2/3/22

Handler entry and exit code (1) SWI and Undef

Restoring the program counter from the lr with:

 MOVS pc, lr

returns control from the handler.

The handler entry and exit code
to stack the return address and pop it on return is:

 STMFD sp!,{reglist,lr}
 ;...
 LDMFD sp!,{reglist,pc}^

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 56 Young Won Lim
2/3/22

Handler entry and exit code (2) FIQs and IRQs

so the return instruction is:

 SUBS pc, lr, #4

The handler entry and exit code
to stack the return address and pop it on return is:

 SUB lr,lr,#4
 STMFD sp!,{reglist,lr}
 ;...
 LDMFD sp!,{reglist,pc}^

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 57 Young Won Lim
2/3/22

Handler entry and exit code (3) Prefetch Aborts

The handler must return to lr_ABT - 4 with:

 SUBS pc,lr, #4

The handler entry and exit code
to stack the return address and pop it on return is:

 SUB lr,lr,#4
 STMFD sp!,{reglist,lr}
 ;...
 LDMFD sp!,{reglist,pc}^

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 58 Young Won Lim
2/3/22

Handler entry and exit code (4) Data Aborts

making the return instruction:

 SUBS pc, lr, #8

The handler entry and exit code
to stack the return address and pop it on return is:

 SUB lr,lr,#8
 STMFD sp!,{reglist,lr}
 ;...
 LDMFD sp!,{reglist,pc}^

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 59 Young Won Lim
2/3/22

Handler entry and exit code summary

SWI / Undef

MOVS pc, lr

STMFD sp!, {reglist,lr}
 ;...
LDMFD sp!, {reglist,pc}^

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

FIQ / IRQ

SUBS pc, lr, #4

SUB lr, lr,#4
STMFD sp!, {reglist,lr}
 ;...
LDMFD sp!, {reglist,pc}^

Prefetch Abort

SUBS pc, lr, #4

SUB lr, lr,#4
STMFD sp!, {reglist,lr}
 ;...
LDMFD sp!, {reglist,pc}^

Data Abort

SUBS pc, lr, #8

SUB lr, lr,#8
STMFD sp!, {reglist,lr}
 ;...
LDMFD sp!, {reglist,pc}^

Exception Handlers 60 Young Won Lim
2/3/22

The Abort model

Many ARM memory access instructions cause
the base register to be updated e.g.

 LDR r0,[r1,#8]!

 causes r1 to be updated

● If the memory access results in a data abort, the effect on the base register is
● dependent on the particular ARM core in use
● “Base Restored Abort Model”
● Supported by StrongARM, ARM9 and ARM10, ARM11 and later families
● Base register is restored automatically by the ARM core
● “Base Updated Abort Model”
● Supported by ARM7TDMI family
● Base register may have to be restored by the handler before instruction can be

re-executed
● Example code for both models is included in RVDS examples directory

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Exception Handlers 61 Young Won Lim
2/3/22

Install an exception handler – Method I

Vector_Init_Block
b Reset_Addr
b Undefined_Addr
b SWI_Addr
b Prefetch_Addr
b Abort_Addr
NOP ;Reserved vector
b IRQ_Addr
b FIQ_Addr

Reset_Addr …
Undefined_Addr …
SWI_Addr …
Prefetch_Addr …
Abort_Addr …
IRQ_Addr …
FIQ_Addr …

http://osnet.cs.nchu.edu.tw/powpoint/Embedded94_1/Chapter%207%20ARM%20Exceptions.pdf

Exception Handlers 62 Young Won Lim
2/3/22

Install an exception handler – Method II

Vector_Init_Block
LDR PC, Reset_Addr
LDR PC, Undefined_Addr
LDR PC, SWI_Addr
LDR PC, Prefetch_Addr
LDR PC, Abort_Addr
NOP ;Reserved vector
LDR PC, IRQ_Addr
LDR PC, FIQ_Addr

Reset_Addr DCD Start_Boot
Undefined_Addr DCD Undefined_Handler
SWI_Addr DCD SWI_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler

DCD 0 ;Reserved vector
IRQ_Addr DCD IRQ_Handler
FIQ_Addr DCD FIQ_Handler

http://osnet.cs.nchu.edu.tw/powpoint/Embedded94_1/Chapter%207%20ARM%20Exceptions.pdf

Exception Handlers 63 Young Won Lim
2/3/22

References

[1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C
[2] http://blog.bobuhiro11.net/2014/01-13-baremetal.html
[3] http://www.valvers.com/open-software/raspberry-pi/
[4] https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

