
Young Won Lim
9/3/18

ST Monad – Introduction (5A)

Young Won Lim
9/3/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

ST Monad (5A)
Introduction 3 Young Won Lim

9/3/18

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

ST Monad (5A)
Introduction 4 Young Won Lim

9/3/18

A State Transformer ST Example

in https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A good example to learn State monad and similar monads

do not be confused with monad transformers

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A State Transformer

ST Monad (5A)
Introduction 5 Young Won Lim

9/3/18

type State = ...

type ST = State -> State -- a function type

about functions that manipulate some kind of state

this state can be represented by a type (State)

a state transformer (ST) a state manipulating function

takes the current state as its argument

produces a modified state as its result

which reflects any side effects performed by the function:

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A State Transformer (ST)

a State Transformer (ST)

not Monad Transformer

ST Monad (5A)
Introduction 6 Young Won Lim

9/3/18

type State = ...

type ST = State -> State

type ST a = State -> (a, State)

generalized state transformers

return a result value in addition to the modified state

 specify the result type as a parameter of the ST type

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Generalized State Transformer

ST Monad (5A)
Introduction 7 Young Won Lim

9/3/18

type ST a = State -> (a, State)

Types

State -> (a, State)

Values

 s (x, s’)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Types and Values

func
State (a, State)

funcs (x, s’)

func :: ST a

func :: State -> (a, State)

x :: a the result value

s :: State input state

s’ :: State output state

ST Monad (5A)
Introduction 8 Young Won Lim

9/3/18

type ST a = State -> (a, State)

func :: ST a func :: State -> (a, State)

func s (x, s’) func s :: (a, State)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

func and func s type signatures

func :: ST a

x :: a

s :: State

s’ :: State

func :: ST a

func :: State -> (a, State)

func s (x, s’)

func s :: (a, State)

s :: State

application of
input s gives
output (x, s’)

ST Monad (5A)
Introduction 9 Young Won Lim

9/3/18

type ST a = State -> (a, State) generalized ST

 st s (x, s’)

type ST a State = (a, State)

 st s (x, s’)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Function input and output types

(a_result, updated_state) :: (a, State)

 st s :: ST a State st s :: (a, State)

(x, s’) :: ST a State (x, s’) :: (a, State)

st
State (a, State)

st s (x, s’)

x :: a
s :: State
(x, s’) :: (a, State)

st :: ST a
s :: State
st s :: (a, State)

application of
input s gives
output (x, s’)

ST Monad (5A)
Introduction 10 Young Won Lim

9/3/18

type ST Int = State -> (Int, State)

How to convert ST Int into a state transformer

that takes a character and returns an integer ?

further generalization of the state transformer ST

which takes an argument of type b

● no need to use more generalized ST type

● instead, use currying.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Taking an additional argument

type ST2 a b

type ST3 b a

type ST2 a b = b -> State -> (a, State)

type ST3 b a = b -> State -> (a, State)

ST Monad (5A)
Introduction 11 Young Won Lim

9/3/18

type ST a = State -> (a, State) generalized ST

type ST3 b a = b -> State -> (a, State) further generalized ST

 b -> ST a = b -> State -> (a, State) think currying

a state transformer

that takes a character

and returns an integer

would have type Char -> ST Int

Char -> State -> (Int, State) curried form

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Curried Generalized State Transformer

f x y

(f x) y

g y

f :: a -> b -> c

g :: b -> c

f :: a -> (b -> c)

f x returns a function of type b -> c

* Curried Function

ST Monad (5A)
Introduction 12 Young Won Lim

9/3/18

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

ST : an instance of a monadic type

return converts a value (x)

into a state transformer (s ->(x,s))

that simply returns that value (x)

without modifying the state (s → s)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad Instance – return

ST Monad (5A)
Introduction 13 Young Won Lim

9/3/18

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

sequencing state transformers: st >>= f

● the 1st state transformer st (1) input monad (update + compute)

● the 2nd state transformer (f x) (2) return monad (result argument)

1) apply st to an initial state s, to get (x,s')

2) apply the function f to the x, the value of result

3) apply (f x) to the updated state s'

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad Instance – >>=

st s (x,s')

f x s' (y,s')

st >>= f = \s -> f x s'

where (x,s') = st s

st >>= f = \s -> (y,s')

where (x,s') = st s

 (y,s') = f x s'

ST Monad (5A)
Introduction 14 Young Won Lim

9/3/18

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

st :: ST a

f :: a -> ST b

(>>=) :: ST a -> (a -> ST b) -> ST b

st :: State -> (a, State)

f :: a -> State -> (b, State)

(>>=) :: State -> (a, State) -> (a -> State -> (b, State)) -> State -> (b, State)

type ST a = State -> (a, State) https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

The types of the sequencer >>=

(x,s') = st s

(y,s')= f x s'

s → (x,s')

s' → (y,s')

ST Monad (5A)
Introduction 15 Young Won Lim

9/3/18

st :: State -> (a, State)

f :: a -> State -> (b, State)

(>>=) :: State -> (a, State) -> (a -> State -> (b, State)) -> State -> (b, State)

st :: State -> (a, State)

st s :: (a, State)

f :: a -> State -> (b, State)

f x :: State -> (b, State)

f x s’ :: (b, State)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

The type of st s and f x s’

st s Ü (x,s')

f x s' Ü (y,s')

s -> (x,s')

s' -> (y,s')

ST Monad (5A)
Introduction 16 Young Won Lim

9/3/18

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad – return and >>=

(–,s) (x,s’) (y,s’)

st s á (x,s') f x s' á (y,s')

s (x,s)

s (y,s’)

return x ≡

st >>= f ≡

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

ST Monad (5A)
Introduction 17 Young Won Lim

9/3/18

instance Monad [] where

 -- return :: a -> [a]

 return x = [x]

 -- (>>=) :: [a] -> (a -> [b]) -> [b]

 xs >>= f = concat (map f xs)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List, Maybe, and ST Monads

instance Monad Maybe where

 -- return:: a->Maybe a

 return x = Just x

 -- (>>=) ::

 Maybe a -> (a -> Maybe b) -> M aybe b

 Nothing >>= _ = Nothing

 (Just x) >>= f = f x

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

ST Monad (5A)
Introduction 18 Young Won Lim

9/3/18

type ST a = State -> (a, State) instances (X)

data ST0 a = DC (State -> (a, State)) instances (O)

to make instances

use the data mechanism

with a dummy constructor (DC)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Dummy Constructor DC

ST Monad (5A)
Introduction 19 Young Won Lim

9/3/18

type ST a = State -> (a, State)

data ST0 a = DC (State -> (a, State))

to remove (unwrap) the dummy constructor,

the application function apply0 is defined

apply0 :: ST0 a -> State -> (a, State)

 input output

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

The application function apply0

TYPE – NO INSTANCE is allowed

DATA – INSTANCE is allowed

an accessor function

like a runState function

ST Monad (5A)
Introduction 20 Young Won Lim

9/3/18

type ST a = State -> (a, State)

data ST0 a = DC (State -> (a, State))

apply0 :: ST0 a -> State -> (a, State)

 input output

apply0 ST0 a :: State -> (a, State) unwrapping

DC (State -> (a, State)) :: ST0 a wrapping

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

apply0 and DC

TYPE – NO INSTANCE is allowed

DATA – INSTANCE is allowed

an accessor function

like a runState function

ST Monad (5A)
Introduction 21 Young Won Lim

9/3/18

data ST0 a = DC (State -> (a, State)) Data Constructor

DC :: (State -> (a, State)) -> ST0 a

apply0 :: ST0 a -> State -> (a, State) Application Function

s :: State

g :: State -> (a, State)

g s :: (a, State)

(DC g) :: ST0 a State Transformer

apply0 (DC g) :: State -> (b, State)

apply0 (DC g) = g

apply0 (DC g) s = g s Definition to remove DC

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Unwrapping Data Constructor in (DC g)

(.) :: (b->c) -> (a->b) -> (a->c)

f . g = \x -> f (g x)

f . g x = f (g x)

(DC . f) x = DC (f x)

not a composite function

but a function argument

(DC g) :: DC (State -> (b, State))

(DC g) :: ST0 a

apply0 (DC g) s = g s -- definition

ST Monad (5A)
Introduction 22 Young Won Lim

9/3/18

type ST a = State -> (a, State)

st :: State -> (a, State)

st = \s -> (s, s+1)

st s :: (b, State)

f :: a -> ST a

f x :: State -> (b, State)

f x s :: (b, State)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST a and ST0 a

data ST0 a = DC (State -> (a, State))

 st0 :: DC (State -> (a, State))

 st0 = DC (\s -> (s, s+1))

apply0 st0 :: State -> (a, State)

apply0 st0 s :: (b, State)

 f :: a -> ST0 a

 f x :: ST0 a

 f x :: DC (State -> (a, State))

apply0 f x :: State -> (a, State)

apply0 f x s :: (b, State)

ST Monad (5A)
Introduction 23 Young Won Lim

9/3/18

type ST a = Int -> (a, Int)

data ST0 a = DC (Int->(a, Int))

st0 :: ST0 Int

st0 = DC(\s -> (s, s+1))

apply0 :: ST0 a -> Int -> (a, Int)

apply0 (DC f) = f

st :: ST Int

st = (\s -> (s, s+1))

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST a and ST0 a Examples

:load t.hs

 …

*Main> :t st

st :: ST Int

*Main> :t st0

st0 :: ST0 Int

*Main> :t st 3

st 3 :: (Int, Int)

*Main> :t apply0 st0 3

apply0 st0 3 :: (Int, Int)

*Main>

t.hs

ST Monad (5A)
Introduction 24 Young Won Lim

9/3/18

data ST0 a = DC (State -> (a, State))

apply0 :: ST0 a -> State -> (a, State)

apply0 (DC f) x = f x

apply0 st0 s = (x,s') s → (x,s')

apply0 f x s’ = (y,s') s' → (y,s')

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

apply0 st0 s and apply0 f x s’

st0 :: ST0 a

st0 :: DC (State -> (a, State))

st0 = DC (\s -> (s, s+1))

apply0 st0 s :: (a, State)

f :: a -> ST0 a

f :: a -> DC (State -> (b, State))

f x :: DC (State -> (b, State))

apply0 f x s’ :: (b, State)
(–,s) (x,s’) (y,s’)

st s á (x,s') f x s' á (y,s')

ST Monad (5A)
Introduction 25 Young Won Lim

9/3/18

 st >>= f = \s -> let (x,s') = st s in f x s'

 st0 >>= f = DC (\s -> let (x, s') = apply0 st s in apply0 f x s')

apply0 st0 s á (x,s') s → (x,s')

apply0 f x s á (y,s') s' → (y,s')

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

st0 >> f using apply0

type ST a = State -> (a, State))

data ST0 a = DC (State -> (a, State))

st s á (x,s')

f x s' á (y,s')

s → (x,s')

s' → (y,s')

binding variables

ST Monad (5A)
Introduction 26 Young Won Lim

9/3/18

instance Monad ST0 where

 -- return :: a -> ST0 a

 return x = DC(\s -> (x,s))

 -- (>>=) :: ST0 a -> (a -> ST0 b) -> ST0 b

 st >>= f = DC(\s -> let (x, s') = apply0 st s in apply0 (f x) s')

the runtime overhead of manipulating the dummy constructor DC

can be eliminated by defining ST0 using the newtype mechanism

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST0 Monad Instance

instance Monad ST where

 -- return :: a -> ST a

 return x = \s -> (x,s)

 -- (>>=) :: ST a -> (a -> ST b) -> ST b

 st >>= f = \s -> let (x,s') = st s in f x s'

ST Monad (5A)
Introduction 27 Young Won Lim

9/3/18

a value of type ST a (or ST0 a) is simply

an action that returns an a value.

(like state processor function of State Monad)

The sequencing combinators (>>) allow us

to combine simple actions to get bigger actions,

the apply0 allows us

to execute an action from some initial state.

(like runState accessor function of State Monad)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A value of type ST0 a

connecting

action

function

executing an action

ST Monad (5A)
Introduction 28 Young Won Lim

9/3/18

consider the simple sequencing combinator

(>>) :: Monad m => m a -> m b -> m b;

a1 >> a2 takes the actions a1 and a2 and

returns the mega action which is

a1-then-a2-returning-the-value-returned-by-a2.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Sequencing Combinator (>>)

ST Monad (5A)
Introduction 29 Young Won Lim

9/3/18

the >>= sequencer is kind of like >>

only it allows you to “remember” intermediate values

that may have been returned.

return :: a -> ST0 a

takes a value x and yields an action

that doesn’t actually change the state,

but just returns the same value x

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Sequencer (>>=) and return

action

the same state

remember

intermediate

return

ST Monad (5A)
Introduction 30 Young Won Lim

9/3/18

pairs :: [a] -> [b] -> [(a,b)] do method

pairs xs ys = do x <- xs

 y <- ys

 return (x, y)

this function returns all possible ways

of pairing elements from two lists

each possible value x from the list xs x <- xs

each possible value y from the list ys y <- ys

return the pair (x, y).

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Pairs Example (1)

ST Monad (5A)
Introduction 31 Young Won Lim

9/3/18

pairs :: [a] -> [b] -> [(a,b)] do method

pairs xs ys = do x <- xs

 y <- ys

 return (x, y)

pairs xs ys = [(x, y) | x <- xs, y <- ys] comprehension notation

In fact, there is a formal connection

between the do notation and

the comprehension notation.

simply different shorthands

for repeated use of the >>= operator for lists.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Pairs Example (2)

x <- xs

x
1
 x

2
 x

3
 x

4
 x

5

y <- ys

y
1
 y

2
 y

3
 y

4
 y

5

Generators

ST Monad (5A)
Introduction 32 Young Won Lim

9/3/18

the state processing function can be defined

using the notion of a state transformer,

in which the internal state is simply the next fresh integer

type State = Int

fresh :: ST0 Int

fresh = DC (\n -> (n, n+1))

return next state

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Counter Example (1)

ST Monad (5A)
Introduction 33 Young Won Lim

9/3/18

type State = Int

fresh :: ST0 Int

fresh = DC (\n -> (n, n+1))

In order to generate a fresh integer,

we define a special state transformer

that simply returns the current state as its result,

and the next integer as the new state:

Note that fresh is a state transformer

(where the State is itself just Int),

that is an action that happens to return integer values.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Counter Example (2)

ST Monad (5A)
Introduction 34 Young Won Lim

9/3/18

type State = Int

fresh :: ST0 Int

fresh = DC (\n -> (n, n+1))

wtf1 = fresh >>

 fresh >>

 fresh >>

 fresh

ghci> apply0 wtf1 0

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (1)

wtf1 = DC (\n -> (n, n+1)) >>

 DC (\n -> (n, n+1)) >>

 DC (\n -> (n, n+1)) >>

 DC (\n -> (n, n+1))

ST Monad (5A)
Introduction 35 Young Won Lim

9/3/18

data ST0 a = DC (State -> (a, State))

data ST0 a = DC (Int -> (a, Int))

data ST0 Int = DC (Int -> (Int, Int))

apply0 :: ST0 a -> State -> (a, State)

apply0 :: ST0 a -> Int -> (a, Int)

apply0 :: ST0 Int -> Int -> (Int, Int)

apply0 fresh 0 (0 , 1)

apply0 fresh 0 á (0 , 1)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (2)

apply0 st s = (x,s') s → (x,s')

apply0 f x s = (y,s') s' → (y,s')

fresh :: ST0 Int

fresh = DC (\n -> (n, n+1))

ST Monad (5A)
Introduction 36 Young Won Lim

9/3/18

apply0 wtf1 0

apply0 (fresh >> fresh >> fresh >> fresh) 0 á (0 , 1)

apply0 (fresh >> fresh >> fresh) 1 á (1 , 2)

apply0 (fresh >> fresh) 2 á (2 , 3)

apply0 (>> fresh) 3 á (3 , 4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (3)

Not used
wtf1 = fresh >>

 fresh >>

 fresh >>

 fresh

ST Monad (5A)
Introduction 37 Young Won Lim

9/3/18

type State = Int

fresh :: ST0 Int

fresh = DC (\n -> (n+0, n+1))

fresh >> fresh = DC (\n -> (n+1, n+2))

fresh >> fresh >> fresh = DC (\n -> (n+2, n+3))

fresh >> fresh >> fresh >> fresh = DC (\n -> (n+3, n+4))

wtf1 = fresh >>

 fresh >>

 fresh >>

 fresh

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (4)

wtf1 = DC (\n -> (n, n+1)) >>

 DC (\n -> (n, n+1)) >>

 DC (\n -> (n, n+1)) >>

 DC (\n -> (n, n+1))

wtf1 = DC (\n+3 -> (n, n+4))

ST Monad (5A)
Introduction 38 Young Won Lim

9/3/18

wtf1 0= DC (0 -> (0, 1)) >>

 DC (1 -> (1, 2)) >>

 DC (2 -> (2, 3)) >>

 DC (3 -> (3, 4))

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (5)

wtf1 0= DC (0 -> (0, 1)) >>

 DC (1 -> (1, 2)) >>

 DC (2 -> (2, 3)) >>

 DC (3 -> (3, 4))

internal state s

external output x

Not used

Not used

Not used

Not used

ST Monad (5A)
Introduction 39 Young Won Lim

9/3/18

wtf2 = fresh >>= \n1 -> n1 = 0

 fresh >>= \n2 -> n2 = 1

 fresh >>

 fresh >>

 return [n1, n2]

wtf2 = fresh >>=

 (\n1 -> fresh >>=

 (\n2 -> fresh >> fresh >> return [n1, n2]))

*Main> apply0 wtf2 0

([0,1],4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf2

ST Monad (5A)
Introduction 40 Young Won Lim

9/3/18

wtf2' = do { n1 <- fresh; n1 = 0

 n2 <- fresh; n2 = 1

 fresh ;

 fresh ;

 return [n1, n2];

 }

*Main> apply0 wtf2' 0

([0,1],4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf2‘

wtf2 = fresh >>= \n1 ->

 fresh >>= \n2 ->

 fresh >>

 fresh >>

 return [n1, n2]

ST Monad (5A)
Introduction 41 Young Won Lim

9/3/18

wtf3 = do n1 <- fresh n1=0

 fresh

 fresh

 fresh

 return n1 3 → (0, 4) instead of (3, 4)

*Main> apply0 wtf3 0

(0,4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf3

ST Monad (5A)
Introduction 42 Young Won Lim

9/3/18

wtf4 = fresh >>= \n1 -> n1 = 0

 fresh >>= \n2 -> n2 = 1

 fresh >>= \n3 -> n3 = 2

 fresh

*Main> apply0 wtf4 0

(3,4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf4

ST Monad (5A)
Introduction 43 Young Won Lim

9/3/18

import Control.Applicative

import Control.Monad (liftM, ap)

instance Functor ST0 where

 fmap = liftM

instance Applicative ST0 where

 pure = return

 (<*>) = ap

https://stackoverflow.com/questions/31652475/defining-a-new-monad-in-haskell-raises-no-instance-for-applicative

Make Functor and Applicative Instances

newtype ST0 a = DC (Int -> (a, Int))

instance Monad ST0 where

 return x = DC(\s -> (x,s))

 st >>= f = DC(\s -> let (x, s') = apply0 st s

in apply0 (f x) s')

ST Monad (5A)
Introduction 44 Young Won Lim

9/3/18

apply0 :: ST0 a -> Int -> (a, Int)

apply0 (DC f) = f

fresh :: ST0 Int

fresh = DC (\n -> (n, n+1))

wtf1 = fresh >>

 fresh >>

 fresh >>

 fresh

wtf2 = fresh >>= \n1 ->

 fresh >>= \n2 ->

 fresh >>

 fresh >>

 return [n1, n2]

Example Code Listing

wtf2' = do { n1 <- fresh

 n2 <- fresh

 fresh

 fresh

 return [n1, n2]

 }

wtf3 = do n1 <- fresh

 fresh

 fresh

 fresh

 return n1

wtf4 = fresh >>= \n1 ->

 fresh >>= \n2 ->

 fresh >>= \n3 ->

 fresh

ST Monad (5A)
Introduction 45 Young Won Lim

9/3/18

*Main> :load st.hs

[1 of 1] Compiling Main (st.hs, interpreted)

Ok, modules loaded: Main.

*Main> apply0 (fresh) 0

(0,1)

*Main> apply0 (fresh >> fresh) 0

(1,2)

*Main> apply0 (fresh >> fresh >> fresh) 0

(2,3)

*Main> apply0 (fresh >> fresh >> fresh >> fresh) 0

(3,4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Results

*Main> apply0 wtf1 0

(3,4)

*Main> apply0 wtf2 0

([0,1],4)

*Main> apply0 wtf2' 0

([0,1],4)

*Main> apply0 wtf3 0

(0,4)

*Main> apply0 wtf4 0

(3,4)

ST Monad (5A)
Introduction 46 Young Won Lim

9/3/18

making a double, triple, quadruple, ... monad

by wrapping around existing monads

that provide wanted functionality.

You have an innermost monad (usually Identity or IO

but you can use any monad). You then wrap monad transformers

around this monad to make bigger, better monads.

To do stuff in an inner monad → cumbersome → monad transformers

https://wiki.haskell.org/Monad_Transformers_Explained

Transformer Stacks

a M a N M a O N M a

 lift $ lift $ lift $ foo

ST Monad (5A)
Introduction 47 Young Won Lim

9/3/18

Precursor Transformer Original Type Combined Type

Writer WriterT (a, w) m (a, w)

Reader ReaderT r -> a r -> m a

State StateT s -> (a, s) s -> m (a, s)

Cont ContT (a -> r) -> r (a -> m r) -> m r

https://wiki.haskell.org/Monad_Transformers_Explained

Monad Transformers

Young Won Lim
9/3/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48

