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Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps
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A State Transformer ST Example 

in  https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A good example to learn State monad and similar monads

do not be confused with monad transformers

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A State Transformer 
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type State = ... 

type ST = State -> State -- a function type

about functions that manipulate some kind of state 

this state can be represented by a type  (State)

 

a state transformer (ST) a state manipulating function 

takes the current state as its argument 

produces a modified state as its result 

which reflects any side effects performed by the function:

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A State Transformer (ST) 

a State Transformer (ST)

not Monad Transformer  
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type State = ... 

type ST = State -> State

type ST a = State -> (a, State)

generalized state transformers

return a result value in addition to the modified state

 specify the result type as a parameter of the ST type

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Generalized State Transformer
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type ST a = State -> (a, State)

Types

State -> (a, State)

Values

         s          (x, s’)   

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Types and Values 

func
State (a, State)

funcs (x, s’)  

func :: ST a

func :: State -> (a, State)

x :: a    the result value

s :: State input state

s’ :: State output state
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type ST a = State -> (a, State)

func :: ST a func :: State -> (a, State)

func s   (x, s’)  func s :: (a, State)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

func and func s type signatures

func :: ST a

x :: a    

s :: State

s’ :: State

 

func :: ST a

func :: State -> (a, State)

func s   (x, s’)  

func s :: (a, State)

s :: State

application of 
input s gives
output (x, s’)
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type ST a = State -> (a, State) generalized ST

  st    s (x, s’) 

type ST a   State = (a, State)

  st    s      (x, s’) 

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Function input and output types

(a_result, updated_state) :: (a, State)   

  st s :: ST a State    st s :: (a, State)

(x, s’) :: ST a State (x, s’) :: (a, State)

st
State (a, State)

st s (x, s’) 

x :: a
s :: State
(x, s’) :: (a, State)

st :: ST a
s :: State
st s :: (a, State)

application of 
input s gives
output (x, s’)
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type ST Int = State -> (Int, State)

How to convert ST Int into a state transformer 

that takes a character and returns an integer ?

further generalization of the state transformer ST

which takes an argument of type b 

● no need to use more generalized ST type

● instead, use currying. 

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Taking an additional argument

type ST2 a b 

type ST3 b a 

type ST2 a b = b -> State -> (a, State) 

type ST3 b a = b -> State -> (a, State)
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type ST a = State -> (a, State) generalized ST

type ST3 b a  = b -> State -> (a, State)   further generalized ST

 b -> ST a = b -> State -> (a, State) think currying 

a state transformer 

that takes a character 

and returns an integer 

would have type Char -> ST Int

Char -> State -> (Int, State)  curried form 

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A Curried Generalized State Transformer 

f x y

(f x) y

g y

f :: a -> b -> c    

g :: b -> c    

f :: a -> (b -> c)    

f x returns a function of type b -> c 

* Curried Function 
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instance Monad ST where

   -- return :: a -> ST a

   return x  =  \s -> (x,s)

   -- (>>=)  :: ST a -> (a -> ST b) -> ST b

   st >>= f  =  \s -> let (x,s') = st s in f x s'

ST : an instance of a monadic type

return converts a value (x) 

into a state transformer (s ->(x,s)) 

that simply returns that value (x) 

without modifying the state (s → s) 

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad Instance – return 
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instance Monad ST where

   -- return :: a -> ST a

   return x  =  \s -> (x,s)

   -- (>>=)  :: ST a -> (a -> ST b) -> ST b

   st >>= f  =  \s -> let (x,s') = st s in f x s'

sequencing state transformers: st >>= f 

● the 1st state transformer st (1) input monad (update + compute)

● the 2nd state transformer (f x) (2) return monad (result argument) 

1) apply st to an initial state s, to get (x,s')

2) apply the function f to the x, the value of result 

3) apply (f x) to the updated state s' 

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad Instance – >>= 

st s  (x,s')

f x s'     (y,s')

st >>= f  =  \s -> f x s' 

where (x,s') = st s 

st >>= f  =  \s -> (y,s') 

where (x,s') = st s 

  (y,s') = f x s'
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instance Monad ST where

   -- return :: a -> ST a

   return x  =  \s -> (x,s)

   -- (>>=)  :: ST a -> (a -> ST b) -> ST b

   st >>= f  =  \s -> let (x,s') = st s in f x s'

st :: ST a

f :: a -> ST b 

(>>=) :: ST a -> (a -> ST b) -> ST b

st :: State -> (a, State)

f :: a -> State -> (b, State) 

(>>=) :: State -> (a, State) -> (a -> State -> (b, State)) -> State -> (b, State)

type ST a = State -> (a, State) https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

The types of the sequencer >>=

(x,s') = st s

(y,s')= f x s'

s → (x,s')

s' → (y,s')
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st :: State -> (a, State)

f :: a -> State -> (b, State) 

(>>=) :: State -> (a, State) -> (a -> State -> (b, State)) -> State -> (b, State)

st :: State -> (a, State)

st s ::  (a, State) 

f :: a -> State -> (b, State) 

f  x :: State -> (b, State) 

f  x s’ :: (b, State) 

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

The type of st s and f x s’ 

st s Ü  (x,s') 

f x s'   Ü (y,s') 

s -> (x,s')

s' -> (y,s')
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https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST Monad – return and >>= 

(–,s) (x,s’) (y,s’)

st s á (x,s') f x s' á (y,s') 

s (x,s)

s (y,s’)

return x    ≡

st >>= f    ≡

instance Monad ST where

   -- return :: a -> ST a

   return x  =  \s -> (x,s)

   -- (>>=)  :: ST a -> (a -> ST b) -> ST b

   st >>= f  =  \s -> let (x,s') = st s in f x s'
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instance Monad [] where

   -- return :: a -> [a]

   return x  =  [x]

   -- (>>=)  :: [a] -> (a -> [b]) -> [b]

   xs >>= f  =  concat (map f xs)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List, Maybe, and ST Monads 

instance Monad Maybe where

   -- return:: a->Maybe a

   return x       =  Just x

   -- (>>=) :: 

   Maybe a -> (a -> Maybe b) -> M aybe b

   Nothing  >>= _ =  Nothing

   (Just x) >>= f =  f x

instance Monad ST where

   -- return :: a -> ST a

   return x  =  \s -> (x,s)

   -- (>>=)  :: ST a -> (a -> ST b) -> ST b

   st >>= f  =  \s -> let (x,s') = st s in f x s'



ST Monad (5A)
Introduction 18 Young Won Lim

9/3/18

type ST a = State -> (a, State)  instances  (X)

data ST0 a = DC (State -> (a, State)) instances (O)

to make instances

use the data mechanism 

with a dummy constructor (DC)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Dummy Constructor DC
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type ST a = State -> (a, State)

data ST0 a = DC (State -> (a, State))

to remove (unwrap) the dummy constructor, 

the application function apply0 is defined 

apply0  :: ST0 a -> State -> (a, State)

          input          output

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

The application function apply0 

TYPE – NO INSTANCE is allowed 

DATA – INSTANCE is allowed

an accessor function 

like a runState function  



ST Monad (5A)
Introduction 20 Young Won Lim

9/3/18

type ST a = State -> (a, State)

data ST0 a = DC (State -> (a, State))

apply0  :: ST0 a -> State -> (a, State)

          input          output

apply0   ST0 a  ::  State -> (a, State) unwrapping

DC (State -> (a, State)) :: ST0 a wrapping

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

apply0 and DC

TYPE – NO INSTANCE is allowed 

DATA – INSTANCE is allowed

an accessor function 

like a runState function  
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data ST0 a = DC (State -> (a, State)) Data Constructor

DC :: (State -> (a, State)) -> ST0 a   

apply0  :: ST0 a -> State -> (a, State) Application Function 

s :: State

g :: State -> (a, State)

g s :: (a, State)

(DC  g)  :: ST0 a State Transformer

apply0 (DC  g) :: State -> (b, State)

apply0 (DC  g) = g

apply0 (DC  g) s = g s Definition to remove DC

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Unwrapping Data Constructor in (DC g)

(.)     :: (b->c) -> (a->b) -> (a->c)

f . g   = \x -> f (g x)

f . g  x = f (g x)

(DC . f) x = DC  (f x)

not a composite function

but a function argument

(DC  g) :: DC (State -> (b, State))

(DC  g) :: ST0 a 

apply0 (DC  g) s =  g s -- definition 
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type ST a = State -> (a, State)

st :: State -> (a, State)

st = \s -> (s, s+1)

st s ::  (b, State) 

f     ::  a -> ST a

f  x :: State -> (b, State) 

f  x s :: (b, State) 

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST a and ST0 a 

data ST0 a = DC (State -> (a, State))

            st0 ::  DC (State -> (a, State))

   st0 =  DC (\s -> (s, s+1))

apply0 st0 ::  State -> (a, State)

apply0 st0 s ::  (b, State) 

            f     ::  a -> ST0 a

            f  x ::  ST0 a

            f  x ::  DC (State -> (a, State))

apply0 f  x ::  State -> (a, State)

apply0 f  x s ::  (b, State) 
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type ST a = Int -> (a, Int)

data ST0 a = DC (Int->(a, Int))

st0 :: ST0 Int

st0 = DC(\s -> (s, s+1))

apply0 :: ST0 a -> Int -> (a, Int)

apply0 (DC f)  = f  

st :: ST Int

st = (\s -> (s, s+1))

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST a and ST0 a Examples

:load t.hs

 … 

*Main> :t st

st :: ST Int

*Main> :t st0

st0 :: ST0 Int

*Main> :t st 3

st 3 :: (Int, Int)

*Main> :t apply0 st0 3

apply0 st0 3 :: (Int, Int)

*Main> 

t.hs
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data ST0 a = DC (State -> (a, State))

apply0  :: ST0 a -> State -> (a, State)

apply0 (DC f) x = f x

apply0 st0 s =  (x,s') s → (x,s')

apply0 f x s’ =  (y,s') s' → (y,s')

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

apply0 st0 s and apply0 f x s’ 

st0 :: ST0 a

st0 ::  DC (State -> (a, State))

st0 = DC (\s -> (s, s+1))

apply0 st0 s ::  (a, State)

f :: a -> ST0 a

f :: a -> DC (State -> (b, State))

f  x :: DC (State -> (b, State))

apply0 f  x s’ :: (b, State) 
(–,s) (x,s’) (y,s’)

st s á (x,s') f x s' á (y,s') 
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   st >>= f  =  \s -> let (x,s') = st s in f x s'

  st0 >>= f  = DC (   \s -> let (x, s') = apply0 st s in apply0 f  x  s'   )

apply0 st0 s á  (x,s') s → (x,s')

apply0 f x s á  (y,s') s' → (y,s')

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

st0 >> f using apply0

type ST a = State -> (a, State))

data ST0 a = DC (State -> (a, State))

st s á (x,s')

f x s' á (y,s')

s → (x,s')

s' → (y,s')

binding variables



ST Monad (5A)
Introduction 26 Young Won Lim

9/3/18

instance Monad ST0 where

  -- return :: a -> ST0 a

 return x   = DC( \s -> (x,s) )

  -- (>>=)  :: ST0 a -> (a -> ST0 b) -> ST0 b

  st >>= f   = DC(   \s -> let (x, s') = apply0 st s in apply0 (f x) s'   )

the runtime overhead of manipulating the dummy constructor DC 

can be eliminated by defining ST0 using the newtype mechanism 

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

ST0 Monad Instance 

instance Monad ST where

   -- return :: a -> ST a

   return x  =  \s -> (x,s)

   -- (>>=)  :: ST a -> (a -> ST b) -> ST b

   st >>= f  =  \s -> let (x,s') = st s in f x s'
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a value of type ST a (or ST0 a) is simply 

an action that returns an a value. 

(like state processor function of State Monad) 

The sequencing combinators (>>) allow us 

to combine simple actions to get bigger actions, 

the apply0 allows us 

to execute an action from some initial state.

(like runState accessor function of State Monad) 

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

A value of type ST0 a 

connecting

action

function

executing an action
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consider the simple sequencing combinator

(>>) :: Monad m => m a -> m b -> m b;

a1 >> a2 takes the actions a1 and a2 and 

returns the mega action which is 

a1-then-a2-returning-the-value-returned-by-a2.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Sequencing Combinator (>>)
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the >>= sequencer is kind of like >> 

only it allows you to “remember” intermediate values 

that may have been returned. 

return :: a -> ST0 a

takes a value x and yields an action 

that doesn’t actually change the state, 

but just returns the same value x

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Sequencer (>>=) and return 

action

the same state

remember

intermediate

return
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pairs :: [a] -> [b] -> [(a,b)] do method

pairs xs ys =  do x <- xs

                  y <- ys

                  return (x, y)

this function returns all possible ways 

of pairing elements from two lists 

each possible value x from the list xs x <- xs

each possible value y from the list ys  y <- ys

return the pair (x, y). 

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Pairs Example (1)
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pairs :: [a] -> [b] -> [(a,b)] do method

pairs xs ys =  do x <- xs

                  y <- ys

                  return (x, y)

pairs xs ys = [(x, y) | x <- xs, y <- ys] comprehension notation

In fact, there is a formal connection 

between the do notation and 

the comprehension notation. 

simply different shorthands 

for repeated use of the >>= operator for lists.

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Pairs Example (2)

x <-      xs

x
1
 x

2
 x

3
 x

4
 x

5

y <-      ys

y
1
 y

2
 y

3
 y

4
 y

5

Generators
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the state processing function can be defined 

using the notion of a state transformer, 

in which the internal state is simply the next fresh integer

type State = Int

fresh :: ST0 Int

fresh =  DC (\n -> (n, n+1))

return   next state

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Counter Example (1)
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type State = Int

fresh :: ST0 Int

fresh =  DC (\n -> (n, n+1))

In order to generate a fresh integer, 

we define a special state transformer 

that simply returns the current state as its result, 

and the next integer as the new state:

Note that fresh is a state transformer 

(where the State is itself just Int), 

that is an action that happens to return integer values. 

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Counter Example (2)
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type State = Int

fresh :: ST0 Int

fresh =  DC (\n -> (n, n+1))

wtf1 = fresh >> 

          fresh >> 

           fresh >> 

           fresh

ghci> apply0 wtf1 0

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (1) 

wtf1 = DC (\n -> (n, n+1)) >> 

           DC (\n -> (n, n+1)) >> 

           DC (\n -> (n, n+1)) >> 

           DC (\n -> (n, n+1))
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data ST0 a = DC (State -> (a, State))

data ST0 a = DC (Int -> (a, Int))

data ST0 Int = DC (Int -> (Int, Int))

apply0  :: ST0 a -> State -> (a, State)

apply0  :: ST0 a -> Int -> (a, Int)

apply0  :: ST0 Int -> Int -> (Int, Int)

apply0      fresh          0    ( 0 ,   1)      

apply0 fresh 0    á      ( 0 ,   1) 

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (2) 

apply0 st s =  (x,s') s → (x,s')

apply0 f x s =  (y,s') s' → (y,s')

fresh :: ST0 Int

fresh =  DC (\n -> (n, n+1))
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apply0 wtf1 0

apply0 (fresh >> fresh >> fresh >> fresh) 0   á      ( 0 ,   1) 

 

apply0 (               fresh >> fresh >> fresh) 1   á      ( 1 ,   2)

apply0 (                              fresh >> fresh) 2  á      ( 2 ,   3)

apply0 (                                        >> fresh) 3  á      ( 3 ,   4)

   

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (3) 

Not used 
wtf1 = fresh >> 

          fresh >> 

           fresh >> 

           fresh
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type State = Int

fresh :: ST0 Int

fresh = DC (\n -> (n+0, n+1))

fresh >> fresh  = DC (\n -> (n+1, n+2))

fresh >> fresh >> fresh  = DC (\n -> (n+2, n+3))

fresh >> fresh >> fresh >> fresh  = DC (\n -> (n+3, n+4))

wtf1 = fresh >> 

          fresh >> 

           fresh >> 

           fresh

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (4) 

wtf1 = DC (\n -> (n, n+1)) >> 

           DC (\n -> (n, n+1)) >> 

           DC (\n -> (n, n+1)) >> 

           DC (\n -> (n, n+1))

wtf1 = DC (\n+3 -> (n, n+4))  
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wtf1 0= DC (0 -> (0, 1)) >> 

            DC (1 -> (1, 2)) >> 

             DC (2 -> (2, 3)) >> 

             DC (3 -> (3, 4))

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf1 (5) 

wtf1 0= DC (0 -> (0, 1)) >> 

            DC (1 -> (1, 2)) >> 

             DC (2 -> (2, 3)) >> 

             DC (3 -> (3, 4))

internal state s

external output x 

Not used 

Not used 

Not used 

Not used 
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wtf2 = fresh >>= \n1 -> n1 = 0

          fresh >>= \n2 ->  n2 = 1

       fresh >>

       fresh >>

       return [n1, n2]

wtf2 = fresh >>= 

           ( \n1 -> fresh >>= 

                       (\n2 ->  fresh >> fresh >>  return [n1, n2])  )

           

*Main> apply0 wtf2 0

([0,1],4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf2  
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wtf2' = do { n1 <- fresh;  n1 = 0

              n2 <- fresh; n2 = 1

               fresh ;

               fresh ;

               return [n1, n2];

         }

*Main> apply0 wtf2' 0

([0,1],4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf2‘  

wtf2 = fresh >>= \n1 ->

          fresh >>= \n2 ->  

       fresh >>

       fresh >>

       return [n1, n2]
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wtf3 = do n1 <- fresh n1=0

          fresh

          fresh

          fresh

          return n1 3 → (0, 4)   instead of (3, 4)

*Main> apply0 wtf3 0

(0,4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf3  
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wtf4 = fresh >>= \n1 -> n1 = 0

          fresh >>= \n2 ->  n2 = 1

       fresh >>= \n3 -> n3 = 2

       fresh 

*Main> apply0 wtf4 0

(3,4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Executing wtf4  
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import Control.Applicative

import Control.Monad (liftM, ap)

instance Functor ST0 where

  fmap = liftM

instance Applicative ST0 where

  pure  = return

  (<*>) = ap

https://stackoverflow.com/questions/31652475/defining-a-new-monad-in-haskell-raises-no-instance-for-applicative

Make Functor and Applicative Instances

newtype ST0 a = DC (Int -> (a, Int))

instance Monad ST0 where

  return x   = DC( \s -> (x,s) )

  st >>= f   = DC( \s -> let (x, s') = apply0 st s 

in apply0 (f x) s' )
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apply0 :: ST0 a -> Int -> (a, Int)

apply0 (DC f)   = f 

fresh :: ST0 Int

fresh = DC (\n -> (n, n+1))

wtf1 = fresh >> 

           fresh >> 

           fresh >> 

           fresh

wtf2 =  fresh >>= \n1 ->  

            fresh >>= \n2 ->

   fresh >>  

            fresh >>  

            return [n1, n2]

Example Code Listing 

wtf2' = do {  n1 <- fresh   

                     n2 <- fresh

                     fresh  

                     fresh  

                     return [n1, n2]

                  }

wtf3 = do   n1 <- fresh  

                  fresh  

                  fresh

                  fresh    

                  return n1

wtf4 = fresh >>= \n1 -> 

           fresh >>= \n2 ->  

           fresh >>= \n3 ->  

           fresh
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*Main> :load st.hs

[1 of 1] Compiling Main             ( st.hs, interpreted )

Ok, modules loaded: Main.

*Main> apply0 (fresh) 0

(0,1)

*Main> apply0 (fresh >> fresh) 0

(1,2)

*Main> apply0 (fresh >> fresh >> fresh) 0

(2,3)

*Main> apply0 (fresh >> fresh >> fresh >> fresh) 0

(3,4)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Results

*Main> apply0 wtf1 0

(3,4)

*Main> apply0 wtf2 0

([0,1],4)

*Main> apply0 wtf2' 0

([0,1],4)

*Main> apply0 wtf3 0

(0,4)

*Main> apply0 wtf4 0

(3,4)
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making a double, triple, quadruple, ... monad 

by wrapping around existing monads 

that provide wanted functionality. 

You have an innermost monad (usually Identity or IO

but you can use any monad). You then wrap monad transformers 

around this monad to make bigger, better monads. 

To do stuff in an inner monad → cumbersome → monad transformers  

https://wiki.haskell.org/Monad_Transformers_Explained

Transformer Stacks

a  M a N M a O N M a

 lift $ lift $ lift $ foo
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Precursor Transformer Original Type Combined Type

Writer WriterT (a, w) m (a, w)

Reader ReaderT  r -> a r -> m a

State StateT s -> (a, s) s -> m (a, s)

Cont ContT  (a -> r) -> r (a -> m r) -> m r

https://wiki.haskell.org/Monad_Transformers_Explained

Monad Transformers



Young Won Lim
9/3/18
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