Expectation

Young W Lim

May 6, 2020

Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on
Probability, Random Variables and Random Signal Principles, P.Z. Peebles,Jr. and B. Shi

Outline

(1) Expected Value of Random Variables
(2) Expected Values of a Function of Random Variables
(3) Conditional Expected Value

Outline

(1) Expected Value of Random Variables

(2) Expected Values of a Function of Random Variables

(3) Conditional Expected Value

Expectation

Definition

For a random variable X :

$$
E[X]
$$

- the mathematical expectation of X
- the expected value of X
- the mean value of X
- the statistical average of X

Computing $E[X]$

Definitions

for a continuous random variable X

$$
E[X]=\int_{-\infty}^{+\infty} x f_{x}(x) d x
$$

for a discrete random variable X

$$
E[X]=\sum_{i=1}^{N} x_{i} P\left(x_{i}\right)
$$

Outline

(1) Expected Value of Random Variables
(2) Expected Values of a Function of Random Variables
(3) Conditional Expected Value

Computing $E[g(X)]$

Definitions

for a continuous random variable X

$$
E[g(X)]=\int_{-\infty}^{+\infty} g(x) f_{x}(x) d x
$$

for a discrete random variable X

$$
E[g(X)]=\sum_{i=1}^{N} g\left(x_{i}\right) P\left(x_{i}\right)
$$

Outline

(1) Expected Value of Random Variables

(2) Expected Values of a Function of Random Variables
(3) Conditional Expected Value

Computing $E[X \mid B]$

Definitions

for a continuous random variable X and for a conditional density $f_{x}(x \mid B)$

$$
E[X \mid B]=\int_{-\infty}^{+\infty} x f_{X}(x \mid B) d x
$$

Defining Conditioning Event B

event B is defined in terms of the random variable X let $B=\{X \leq b\}$, where b is a real number $-\infty<b<\infty$, then

$$
F_{X}(x \mid X \leq b)=P\{X \leq x \mid X \leq b\}=\frac{P\{X \leq x \cap X \leq b\}}{P\{X \leq b\}}
$$

consider the case $x<b$ then $\{X \leq x\} \cap\{X \leq b\}=\{X \leq x\}$

$$
f_{X}(x \mid X \leq b)= \begin{cases}\frac{f_{X}(x)}{F_{X}(b)}=\frac{f_{X}(x)}{\int_{-\infty}^{b} f_{X}(x) d x} & x<b \\ 0 & b \leq x\end{cases}
$$

Computing $E[X \mid B]$ with $B=\{x<b\}$

Definitions

for a continuous random variable X and for a conditional density $f_{x}(x \mid B)$

$$
\begin{gathered}
E[X \mid B]=\int_{-\infty}^{+\infty} x f_{X}(x \mid B) d x \\
E[X \mid X \leq b]= \begin{cases}\frac{\int_{-\infty}^{b} x f_{X}(x) d x}{\int_{-\infty}^{b} f_{X}(x) d x} & x<b \\
0 & b \leq x\end{cases}
\end{gathered}
$$

Expected Value of Random Variables

