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A

f x  = x

f 1 = 1 f 2 = 2 f 3 = 3 f 4 = 4

slope = 1

slope = 2

slope = 3

slope = 4
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∫ f x dx =
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?

Anti-derivative 

f (x)

differentiation derivative of ?

?
Anti-differentiation

f (x)
Anti-derivative of f(x)
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F ' (x) = f (x)

F (x)

Anti-derivative and Indefinite Integral 

∫ f (x)dx

Anti-derivative without constant
the most simple anti-derivative

Indefinite Integral 

F (x) + C the most general anti-derivative

∫ f (x)dx = F (x) + C

: a function of x



Integrals 7 Young Won Lim
12/29/15

Anti-derivative Examples 

f (x)=x2

F1(x)=
1
3

x3

F2(x)=
1
3

x3 + 100

F3(x)=
1
3

x3
− 49

All are 
Anti-derivative
of f(x)

the most general  
anti-derivative of 
f(x)

1
3

x3 + C

≡ ∫ x2dxindefinite 
Integral of f(x)

differentiation

Anti-differentiation
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Indefinite Integrals 

∫
a

x1

1 dx

x1 − a

∫
a

x1

d f
d x

dx

f (x1) − f (a)

∫
a

x

1 dx

x − a

∫ dx

x + C

∫
−c

x
d f
d x

dx

f (x) − f (a)

∫ d f
d x

dx

f (x) + C

∫ dy

y + C

given x
1

a variable x indefinite 
integral

given x
1

a variable x indefinite 
integral
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Indefinite Integrals via the Definite Integral

∫ f (x )dx
indefinite integral

∫
a

x

f (t ) dt
definite integral 

∫ f (x) d x = F (x ) + C

∫
a

x

f (t) d t = F (x) − F (a)

a common reference point : arbitrary

∫
a

x

f (t ) dt

f (x )

f (x )

anti-derivative 

anti-derivative 
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Definite Integrals via the Definite Integral

∫
x1

x2

f (t) dt

a common reference point : arbitrary

[ F (x) + c ]x1

x2 = F( x2)−F (x1) [ F (x) ]x1

x2 = F (x1) − F (x2)

Anti-derivative without constant

= ∫
a

x1

f (t) dt + ∫
a

x2

f (t ) dt

∫
a

x

f (t ) dt

∫ f (x)dx
indefinite integral

∫
a

x

f (t ) dt
definite integral 

f (x)

f (x)

anti-derivative 

anti-derivative 
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Indefinite Integral Examples 

f (x)=x2

=
1
3

x3
+ C∫ x2dxindefinite integral 

of f(x)

∫
0

x

f (x) dx = [ 1
3

x3]
0

x

=
1
3

x3

∫
a

x

f (x) dx = [ 1
3

x3]
a

x

=
1
3

x3
−

1
3
a3

∫
a

x

f (t ) dt = [ 1
3

t3]
a

x

=
1
3

x3
−

1
3

a3

∫
a

x

t 2 dt =
1
3

x3
−

1
3

a2anti-derivative by 
the definite 
integral of f(x)

d
dx∫a

x

f (t ) dt = f (x ) = x2
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Definite Integrals on [a, x
1
] 

∫
a

x1

f ' (x) dx [ f (x) ]a
x1 = f (x1)−f (a)

∫
a

x1

g(x) dx [G (x)]a
x1 = G (x1)−G(a)

view (I)

view (II)

∫
a

x1

1 dx f ' (x) = 1

g(x) = 1

∫
a

x1

f ' (x) dx

∫
a

x1

1 dx ∫
a

x1

g(x) dx

view (I)

view (II)
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Definite Integrals on [a, x
1
] 

a x1

1

∫
a

x1

1 dx

a x1

1

x1−a

∫
a

x1

1 dx

dx

dy =
dy
dx

dx = f ' (x)dx

f ' ( x)= 1 g(x) = 1

view (I) view (II)

=∫
a

x1

f ' (x) dx

G( x1) = x 1 − a

=∫
a

x1

g (x) dx

G (x) = x

= [x ]a
x1 = x1 − a
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Definite Integrals over an interval [x
1
, x

2
] 

a x1

1

x2
a x1 x2

x

area

length

f ' ( x)= 1

g(x) = 1

view (I) view (II)
G( x) = x

[ f (x) ]x1

x2 = f (x2)−f (x1) [G(x)]x1

x 2 = G (x2)−G(x1)

arbitrary reference 
point (a, f(a))

arbitrary reference 
point (a, G(a))

∫
x1

x2

f ' (x) dx = ∫
x1

x2

g (x) dx =
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A reference point : integration constant C

x2 − x1

f (x) = x∫
x1

x2

1 dx

= [ f (x)]x1

x2

= [ f (x) − f (a)]x1

x2

= [ f (x) + C ]x1

x2

arbitrary reference 
point (a, f(a))

x2 − x1

G (x) = x∫
x1

x2

1 dx

= [G (x)]x1

x2

= [G (x) − G (a)]x1

x2

= [G(x) + C ]x1

x2

arbitrary reference 
point (a, G(a))

view (I) view (II)Anti-derivative
without a constant

= ∫c

x2

f ' (x)dx −∫c

x1

f ' (x)dx = ∫c

x2

g(x )dx −∫c

x1

g(x)dx

f ' (x) g (x)

Anti-derivative
without a constant
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Indefinite Integrals through Definite Integrals

∫ 1 dx

= f (x) − f (a) = x − a

∫
a

x1

f ' (x) dx ∫ 1 dx

= G(x) − G (a) = x − a

∫
a

x1

g(x) dx

a x1

x1−a

−a

a x1

x1−a

−a

G(x )= x − a

view (I) view (II)

= f (x) + C = G (x) + C

G(x )= x + C

x − a

x − a

f (x )= x − a

f (x )= x + C

arbitrary reference 
point (a, f(a))

arbitrary reference 
point (a, G(a))
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Definite Integrals on [x
1
, x

2
] 

a x2

f ' (x)

x1 a x2

G(x2)

x1

G(x1)

G(x )

area

length

∫
x1

x2

f ' (x) dx ∫
x1

x2

g (x) dxview (I) view (II)



Integrals 18 Young Won Lim
12/29/15

Definite Integrals on [a, x
1
] and [a, x

2
]

a x2

a x2x1 a x2

G(x2)

x1

G(x1)

G(x )

length

a x2

G(x2)

x1

G(x1)

G(x )

length

f ' (x)

area

area

∫c

x2

f ' (x)dx −∫c

x1

f ' ( x)dx ∫c

x2

g(x )dx −∫c

x1

g(x)dx
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Indefinite Integrals through Definite Integrals

a x1
a x1

G(x1)− G(a) y = G (x) − G(a)

f ' (x)

= f (x) − f (a) = x − a = G (x) − G(a) = x − a

= f (x) + C = G(x) + C

∫
a

x1

f ' (x) dx ∫
a

x1

g(x) dxview (I) view (II)

arbitrary reference 
point (a, f(a))

arbitrary reference 
point (a, G(a))
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Derivative Function and Indefinite Integrals

lim
h→0

f (x1 + h) − f ( x1)

h
f ' (x1)

lim
h→0

f (x2 + h) − f (x2)

h
f ' (x2)

lim
h→0

f (x3 + h) − f (x3)

h
f ' (x3)

f ' (x ) = lim
h→0

f (x + h) − f (x)

h

x1 , x2 , x3

f ' (x1) , f ' (x2) , f ' (x3)

∫
x1

x2

f (x ) dx

F (x ) + C = ∫
a

x

f ( x) dx

[ x1 , x2] ,[ x3 , x4] , [x5 , x6]

[ F(x ) ]x 1

x 2 , [ F(x) ]x 3

x 4 , [ F (x ) ]x5

x6

∫
x3

x4

f (x ) dx

∫
x5

x6

f ( x ) dx

function of x function of x
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a
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Differentiation & Integration of sinusoidal functions

f  x = sin  x 
d
d x

f  x  = cos  x  leads

g (x) = cos (x )
d
d x

g(x ) = −sin(x) leads

f  x = sin  x ∫ f  x dx = −cos  x  C lags

g (x) = cos (x )∫ g(x ) dx = sin(x ) + C lags
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Plotting Lineal Elements

F (x , f (x )) = f ' (x)(x , y) f ' (x)

F (x , y)

tangent
slope

x y

f (x)

a single variable function

a two variable function
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Derivative of sin(x)

f (x) = sin(x)

+1 0 -1 0 +1 0 -1 0 +1 0 -1 0 slope

d
d x

f (x ) = cos (x )

leads

A1
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Plot of F(x,y) = f'(x) (= cos(x))

+1 0 -1 0 +1 0 -1 0 +1 0 -1 0 slope

f (x ) = sin (x)

+1 0 -1 0 +1 0 -1 0 +1 0 -1 0 slope m

(x , y ) = (x , f (x)) = (x ,sin (x )) x y

(x , y )

(x , y ) m = slope of a tangent f ' (x )

F (x , y ) = f ' ( x)

F (x , sin(x )) = cos(x )

y '

A2
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Plot of f'(x)=cos(x) from a lineal element plot

+1 0 -1 0 +1 0 -1 0 +1 0 -1 0 slope

+1

0

-1

0

+1

0

-1

0

+1

0

-1

0

f (x ) = sin (x)

f ' (x ) = cos(x)

F (x , y ) = f ' ( x)

f (x ) = cos(x)

A3
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Derivative of cos(x)

f  x = cos  x

0 -1 0 +1 0 -1 0 +1 0 -1 0 +1 slope

d
d x

f  x  = −sin  x 

leads

B1
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Plot of F(x,y) = f'(x) (= -sin(x))

+1 0 -1 0 +1 0 -1 0 +1 0 -1 0 slope

f (x ) = cos(x)

+1 0 -1 0 +1 0 -1 0 +1 0 -1 0 slope m

(x , y ) = (x , f (x)) = (x ,cos(x )) x y

(x , y )

(x , y ) m = slope of a tangent f ' (x )

F (x , y ) = f ' (x)

F (x , cos(x )) = −sin(x )

y '

B2



Integrals 29 Young Won Lim
12/29/15

Plot of f'(x)=-sin(x) from a lineal element plot

+1

-1

+1

-1

+1

-1

0 -1 0 +1 0 -1 0 +1 0 -1 0 +1 slope

0 0 0 0 0 0

cos(x)

f (x ) = cos(x)

f ' (x ) = −sin(x)

f (x ) = −sin (x )

B3
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Definite Integrals of sin(x)

f  x = sin  x 

0 1 2 1 0 1 2 1 0 1 2 1 area + 0

-1 0 +1 0 -1 0 +1 0 -1 0 +1 0 area - 1

∫0

/2
sin t  d t = 1

∫0

x
sin (t) d t

∫−π /2

x
sin (t ) d t

= [−cos(t)]0
x

= [−cos(t)]−π /2
x

=−cos(x)+1

=−cos(x)+0

C1
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Indefinite Integrals of sin(x)

f  x = sin  x 

∫ f (x ) dx = −cos(x) + C

∫0

/2
sin t  d t = 1

lags

C2
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Definite Integrals of cos(x)

f  x = cos  x

0 1 0 -1 0 1 0 -1 0 1 0 -1

∫0

/2
cos x  d x = 1

D1

∫0

x
cos(t) d t

∫−π /2

x
cos(t) d t

= [sin (t)]0
x

= [sin (t)]−π/2
x

= sin (x)−0

= sin (x)+1

1 2 1 0 1 2 1 0 1 2 1 0

area - 0

area + 1
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Indefinite Integrals of cos(x)

f  x = cos  x

∫ f (x ) dx = sin( x) + C

∫0

/2
cos x  d x = 1

lags

D2
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