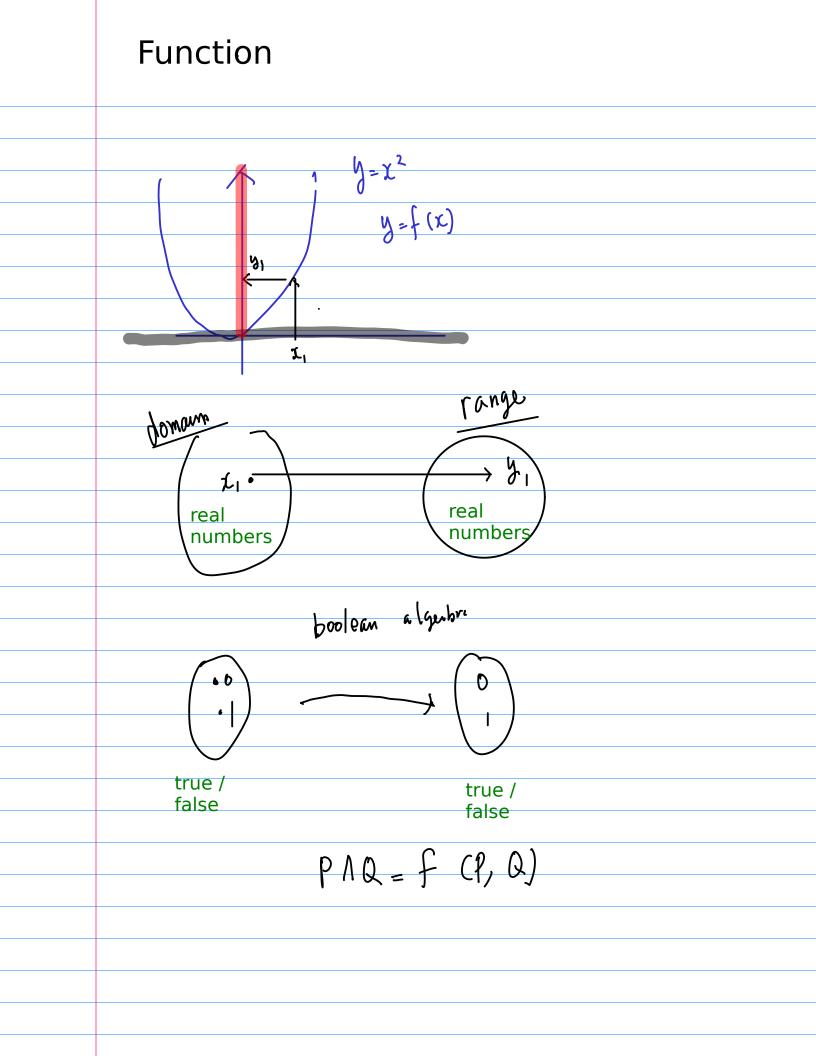
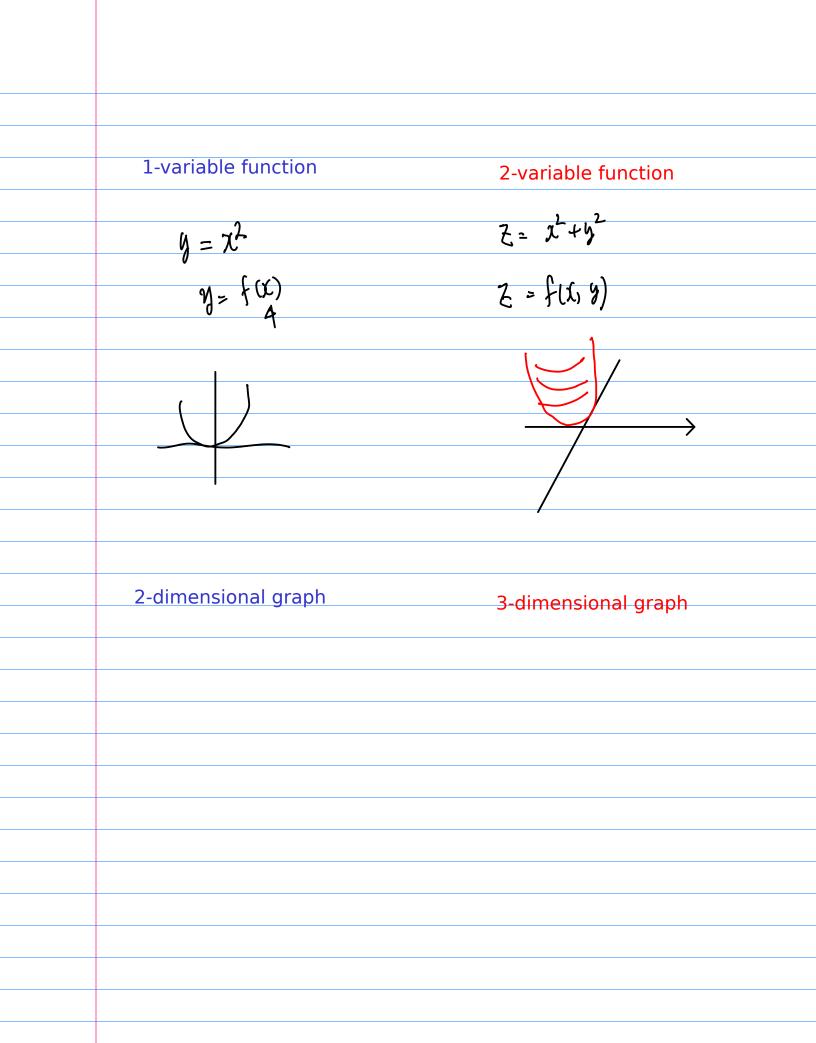
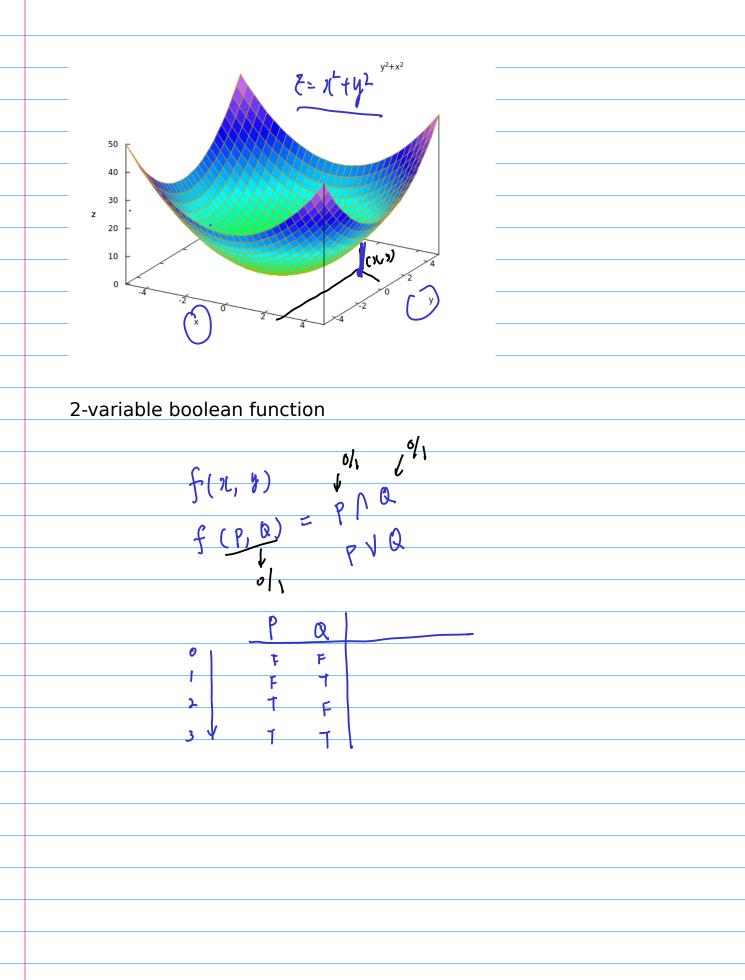
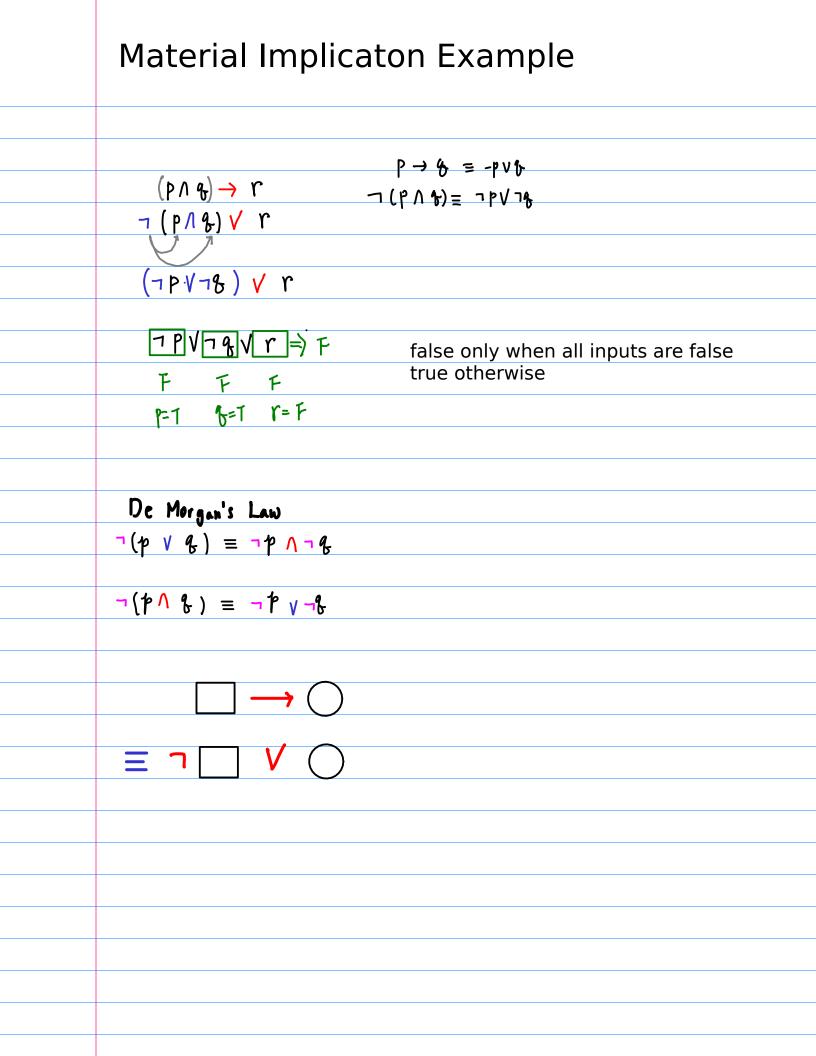
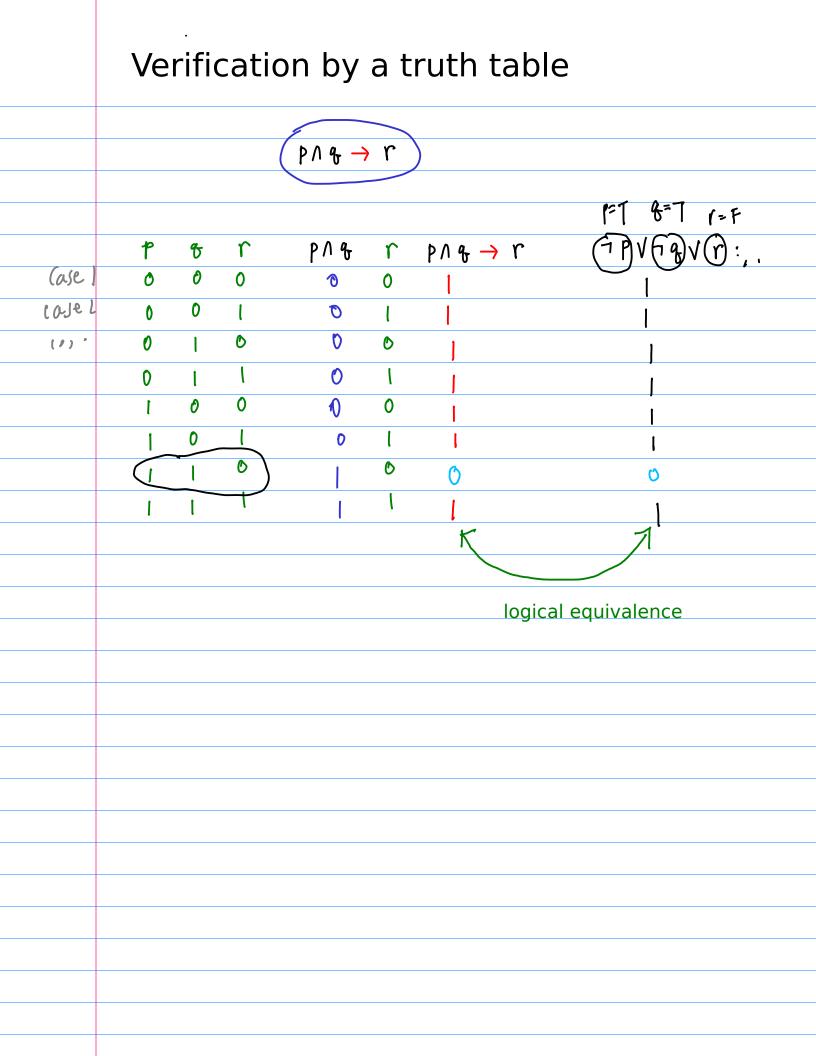

Logic (H.2)
20180308
Copyright (c) 2017 - 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".


	Р 1 f 1/0	Q 115 70		and $\cdot \operatorname{conjunction}$ $P \land Q = f(P) Q$ function
	P T T F F	Q T F T F	ΡΛQ Τ	all inputs are true
	P T T F F	Q T F T F	PΛQ F F F	at least one input is false
CAJE 1=) (WK 2=) (41: 3=) (41: 4=)	P T T F F	Q T F T F	РЛQ T F F F F	<pre>} all inputs are true at least one input is false</pre>


All possible	combinatio	n of inputs	
	$\begin{array}{cccc} T & T & T \\ T & T & F \\ T & F & T \\ T & F & T \\ T & F & T \\ F & T & F \\ F & F & T \\ F & F & T \\ F & F & T \\ \end{array}$	T T T F F T F F	
1-1 7 F30 6 5 4 9 2 1 0	2 2 2 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	


bit-wise operators in C			
· PAq.	b o 9		
	p & q.		
PV B	p q		
7 1	~ P		

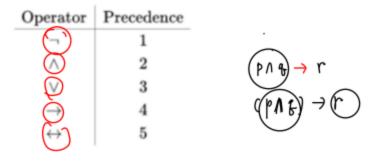



2-variable real function

Material Implication

	_ P V Q ///		
 PQP	\rightarrow Q		
h y pothesi s	conclusion		
(가선)	(결론)		
antece dont	Consequence		
(સૃ સ્ન)	(겯라)		
수학과 에 6간 달비를 기	원한다 P		
수학과에 신입과들 한명			
P Q P→0	~PQ	~PV Q	
CARITIT	FÎ		
 Cose 2 T · F F	(FF)	/ F	
case 3 F T T	\overline{O}	(<u></u>	
 Case 4 F F T			
p-) Q 47		1	
	ogical equivalent		
 ~~~			






### Precedence

#### Order of precedence [edit]

As a way of reducing the number of necessary parentheses, one may introduce precedence rules:  $\neg$  has higher precedence than  $\land$ ,  $\land$  higher than  $\lor$ , and  $\lor$  higher than  $\rightarrow$ . So for example,  $P \lor Q \land \neg R \rightarrow S$  is short for  $(P \lor (Q \land (\neg R))) \rightarrow S$ .

Here is a table that shows a commonly used precedence of logical operators.[15]



https://en.wikipedia.org/wiki/Logical_connective

Logical Connectives (2A)		gical Connectives (2A)	7	Young Won Lim 3/1/18

### Associativity

#### Truth functional connectives [edit]

Associativity is a property of some logical connectives of truth-functional propositional logic. The following logical equivalences demonstrate that associativity is a property of particular connectives. The following are truth-functional tautologies.

#### Associativity of disjunction:

 $((P \lor Q) \lor R) \leftrightarrow (P \lor (Q \lor R))$  $(P \lor (Q \lor R)) \leftrightarrow ((P \lor Q) \lor R)$ 

#### Associativity of conjunction:

$$((P \land Q) \land R) \leftrightarrow (P \land (Q \land R)) (P \land (Q \land R)) \leftrightarrow ((P \land Q) \land R)$$

#### Associativity of equivalence:

$$((P \leftrightarrow Q) \leftrightarrow R) \leftrightarrow (P \leftrightarrow (Q \leftrightarrow R)) (P \leftrightarrow (Q \leftrightarrow R)) \leftrightarrow ((P \leftrightarrow Q) \leftrightarrow R)$$

https://en.wikipedia.org/wiki/Associative_property

_	Logical Cor	nnectives (2A)	9	Young Won Lim 3/1/18

### Commutativity

#### Truth functional connectives [edit]

*Commutativity* is a property of some logical connectives of truth functional propositional logic. The following logical equivalences demonstrate that commutativity is a property of particular connectives. The following are truth-functional tautologies.

Commutativity of conjunction  $(P \land Q) \leftrightarrow (Q \land P)$ Commutativity of disjunction  $(P \lor Q) \leftrightarrow (Q \lor P)$ Commutativity of implication (also called the law of permutation)  $(P \rightarrow (Q \rightarrow R)) \leftrightarrow (Q \rightarrow (P \rightarrow R))$ Commutativity of equivalence (also called the complete commutative law of equivalence)  $(P \leftrightarrow Q) \leftrightarrow (Q \leftrightarrow P)$ 

https://en.wikipedia.org/wiki/Commutative_property

Young Won Lim 3/1/18	10	Logical Connectives (2A)	

### Distributivity (1)

#### Truth functional connectives [edit]

*Distributivity* is a property of some logical connectives of truthfunctional propositional logic. The following logical equivalences demonstrate that distributivity is a property of particular connectives. The following are truth-functional tautologies.

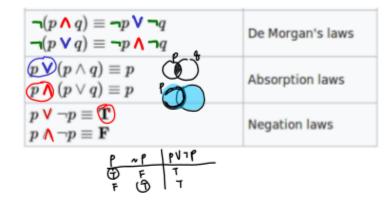
Distribution of conjunction over conjunction  $(P \land (Q \land R)) \leftrightarrow ((P \land Q) \land (P \land R))$ Distribution of conjunction over disjunction  $(P \land (Q \lor R)) \leftrightarrow ((P \land Q) \lor (P \land R))$ Distribution of disjunction over conjunction  $(P \lor (Q \land R)) \leftrightarrow ((P \lor Q) \land (P \lor R))$ Distribution of disjunction over disjunction  $(P \lor (Q \lor R)) \leftrightarrow ((P \lor Q) \lor (P \lor R))$  (3 •)(4 + h)(3 •)4 + (3 •)1

Logical Connectives (2A)

https://en.wikipedia.org/wiki/Distrib

11

Young Won Lim 3/1/18


# Laws of logical equivalence (1)

Equivalence	Name
$ \begin{array}{c} 1 \equiv T \wedge 1 \\ \hline             \hline             T \\ \hline           $	Identity laws
$ p \lor \mathbf{T} \equiv \mathbf{T} \qquad \stackrel{P}{\longrightarrow} r = \mathbf{F} $	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$ eg( eg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p \ p \land q \equiv q \land p$	Commutative laws
$\begin{array}{l} (p \lor q) \lor r \equiv p \lor (q \lor r) \\ (p \land q) \land r \equiv p \land (q \land r) \end{array}$	Associative laws
$ \begin{array}{c} (p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \\ (p \land (q \lor r) \equiv (p \land q) \lor (p \land r) \end{array} $	Distributive laws
( \$ ∧ r) V p = ( \$ V p) ∧ (r vp) ( \$ V r) ∧ p = ( \$ ∧ p) V (r ∧ p)	

https://en.wikipedia.org/wiki/Logical_equivalence

Logical Connectives (2A)	24	Young Won Lim 3/1/18

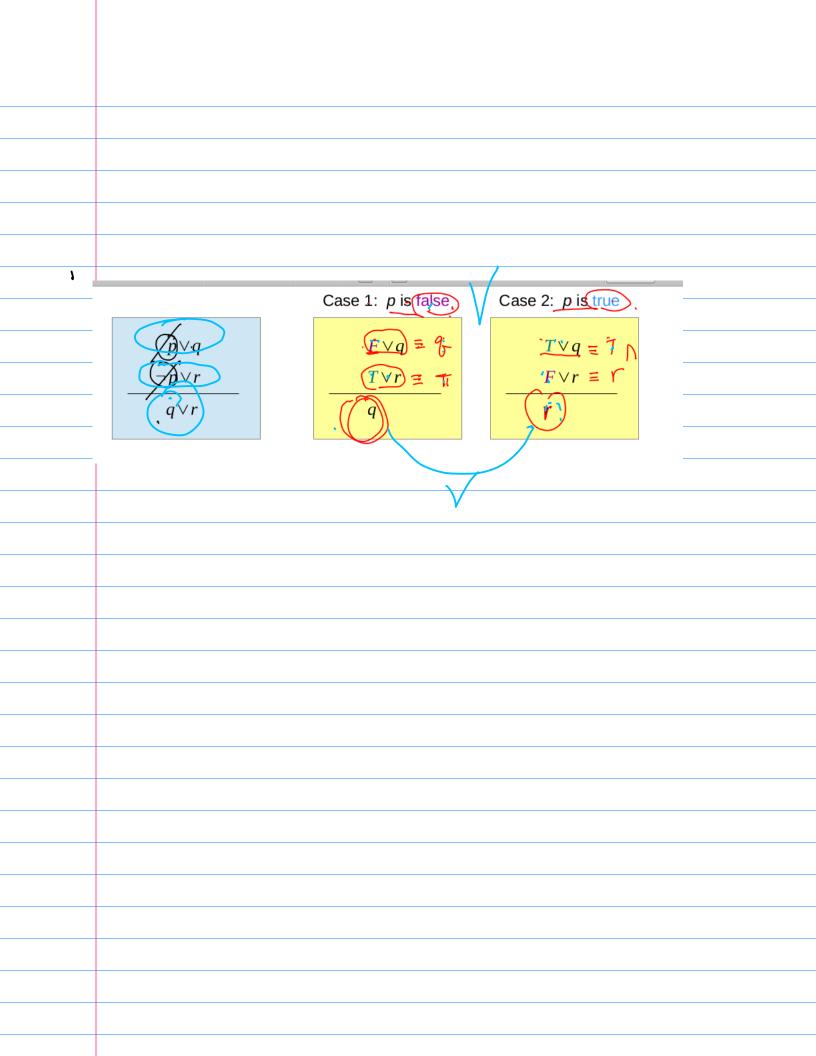
## Laws of logical equivalence (2)



https://en.wikipedia.org/wiki/Logical_equivalence

Logical Connectives (2A)	25	Young Won Lim 3/1/18

argument (29) bug는 module 17 또는 module 8 대 있다 Pvg, buge numerical errorolth module 8 lon & numerical error of Cf P: bug & module 19 on glcf f: bug & module 81 on glcf r: bug & numerical error of ch PVG).  $\Lambda$ 48  $(r) \land$  $(r \rightarrow r g)$ argument 2 (78) 6


 $(\mathbf{p} \mathbf{V} \mathbf{G}). \Lambda$  $(\mathbf{r})$   $\Lambda$  $(r \rightarrow \gamma \epsilon) \quad \gamma \Gamma \vee \gamma \zeta$ & r p V g 0 0 0 r rvib P 0 Ô 1 0 0 Ø I Ø t 0 1 0 I 0 0 1 1 T Ø Ø I Ø Τ 1 0 I 1 0 1 0 I ſ ł I 0 ī 1 1

bug & module 19 on glof P : f: bug & module 8 on exct numerical errorolth r: buge PVZ.V 45 П **৮**% ۷ 112 r argument 173 r> 7g V D M  $\rightarrow$ r V Q

**M** (g p (r ൃ 7 G لىس P Z G=F シ P -0

(A∨B)∧ (¬A)  $(A \vee B) \wedge (\neg A)$  $(A \land (\neg A)) \lor (B \land (\neg A))$  $F \vee (B \wedge (\neg A))$ (B/(¬A))  $(A \vee B) \wedge (\neg A)$  $(\mathbf{D} A = \mathbf{T} (\mathbf{T} \vee B) \wedge (\mathbf{F}) = B \wedge F = F$ (PA=F(FVB)(T) = BAT=B ß

AVB ( A ∨ B ) ∧ (¬A ) B (AVB)/ (¬A) ON FVB =(13)



(p V €). ∩ Λ  $\begin{array}{c} (r ) \\ (r \rightarrow \gamma q) \end{array}$ 78 178 p vg pvg P r r→ 7g  $\hat{\boldsymbol{\gamma}}$ resolution wrz