System Type (4A)

Copyright (c) 2014 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Steady State Response

$$
\begin{aligned}
& \xrightarrow{R(s)} \mathrm{G}(\mathrm{~s}) \longrightarrow G(s)=\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{j}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)} \\
& r(t)=\frac{t^{k}}{k!} u(t) \quad R(s)=\frac{1}{s^{k+1}} \quad Y(s)=G(s) R(s)=\frac{G(s)}{s^{k+1}} \\
& y_{s s}(t)=\lim _{t \rightarrow \infty} y(t) \quad=\quad \lim _{s \rightarrow 0} s Y(s)=\lim _{s \rightarrow 0} s G(s) R(s)=\lim _{s \rightarrow 0} s \frac{G(s)}{s^{k+1}}=\lim _{s \rightarrow 0} \frac{G(s)}{s^{k}}
\end{aligned}
$$

System Types and Input Types

Type 0 System Responses

Type 1 System Responses

Type 2 System Responses

$$
\begin{aligned}
& \xrightarrow[\mathrm{R}(\mathrm{~s})]{\mathrm{G}(\mathrm{~s}) \longrightarrow} \quad \mathrm{Y}(\mathrm{~s}) \quad G(s)=\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{2}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)} \\
& r(t)=\frac{t^{k}}{k!} u(t) \\
& y_{s s}(t)=\lim _{s \rightarrow 0} \frac{G(s)}{s^{k}} \\
& u(t) \quad k=0 \quad \text { unit step } \quad \frac{1}{s^{1}} \longrightarrow y_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{s^{2+0}} \frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}=\infty \\
& t \cdot u(t) \quad k=1 \quad \text { unit ramp } \quad \frac{1}{s^{2}} \longrightarrow y_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{s^{2+1}} \frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}=\infty \\
& \frac{t^{2}}{2} \cdot u(t) \quad k=2 \quad \text { unit parabola } \frac{1}{s^{3}} \longrightarrow y_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{s^{2+2}} \frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)} \quad=\infty
\end{aligned}
$$

Unit Feedback

Steady State Error : Special Cases

Error Constants (1)

$$
\begin{array}{ll}
e_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{\left\{1+\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{0}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}\right\}} \frac{1}{s^{0}} & \lim _{s \rightarrow 0} s^{0} G(s)=\lim _{s \rightarrow 0} \frac{s^{0}\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{0}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}=K_{p} \\
e_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{\left\{1+\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{1}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}\right\}} \frac{1}{s^{1}} & \lim _{s \rightarrow 0} s^{1} G(s)=\lim _{s \rightarrow 0} \frac{s^{1}\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{1}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}=K_{v} \\
\left.e_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{\left\{1+\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{2}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}\right\}}\right\} & \lim _{s \rightarrow 0} s^{2} G(s)=\lim _{s \rightarrow 0} \frac{s^{2}\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{2}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}=K_{a}
\end{array}
$$

Error Constants (2)

$j=0 \quad$ type 0 system
$j=1 \quad$ type 1 system
$j=2$ type 2 system

$$
\lim _{s \rightarrow 0} s^{0} G(s)=\lim _{s \rightarrow 0} \frac{s^{0}\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{0}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}=K_{p}=\frac{z_{1} \cdots z_{m}}{p_{1} \cdots p_{n}}
$$

$$
\lim _{s \rightarrow 0} s^{1} G(s)=\lim _{s \rightarrow 0} \frac{s^{1}\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{1}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}=K_{v}=\frac{z_{1} \cdots z_{m}}{p_{1} \cdots p_{n}}
$$

$$
\lim _{s \rightarrow 0} s^{2} G(s)=\lim _{s \rightarrow 0} \frac{s^{2}\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{2}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}=K_{a}=\frac{z_{1} \cdots z_{m}}{p_{1} \cdots p_{n}}
$$

Type 0 Steady State Error

$$
\begin{aligned}
& \xrightarrow[+]{R(s)} \xrightarrow{E(s)} \square \mathrm{G}(\mathrm{~s}) \longrightarrow \\
& G(s)=\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{0}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)} \\
& u(t) \quad k=0 \text { unit step } \frac{1}{s^{1}} \square e_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{\left\{1+\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{0}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}\right\}} \frac{1}{s^{0}}=\frac{1}{1+K_{p}} \\
& t \cdot u(t) \quad k=1 \text { unit ramp } \frac{1}{s^{2}} \longrightarrow e_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{\left\{1+\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{0}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}\right\}} \frac{1}{s^{1}}=\infty \\
& \frac{t^{2}}{2} \cdot u(t) \quad k=2 \text { unit parabola } \frac{1}{s^{3}} \square e_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{\left\{1+\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{0}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}\right\}} \frac{1}{s^{2}}=\infty
\end{aligned}
$$

Type 1 Steady State Error

$$
\begin{aligned}
& \xrightarrow[+]{R(s)} \xrightarrow{E(s)} \mathrm{G}(\mathrm{~s}) \longrightarrow \\
& G(s)=\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{1}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)} \\
& u(t) \quad k=0 \text { unit step } \frac{1}{s^{1}} \longrightarrow e_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{\left\{1+\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{1}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}\right\}} \frac{1}{s^{0}}=0 \\
& t \cdot u(t) \quad k=1 \quad \text { unit ramp } \frac{1}{s^{2}} \longmapsto e_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{\left\{1+\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{1}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}\right)} \frac{1}{s^{1}}=\frac{1}{K_{v}} \\
& \frac{t^{2}}{2} \cdot u(t) k=2 \text { unit parabola } \frac{1}{s^{3}} \square e_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{\left\{1+\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{1}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}\right\}} \frac{1}{s^{2}}=\infty
\end{aligned}
$$

Type 2 System Responses

$$
\begin{aligned}
& \xrightarrow[+]{R(s)} \xrightarrow{E(s)} \square \mathrm{G}(\mathrm{~s}) \longrightarrow \\
& G(s)=\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{2}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)} \\
& u(t) \quad k=0 \text { unit step } \frac{1}{s^{1}} \square e_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{\left\{1+\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{2}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}\right\}} \frac{1}{s^{0}}=0 \\
& t \cdot u(t) \quad k=1 \text { unit ramp } \frac{1}{s^{2}} \square e_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{\left\{1+\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{2}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}\right\}} \frac{1}{s^{1}}=0 \\
& \frac{t^{2}}{2} \cdot u(t) \quad k=2 \text { unit parabola } \frac{1}{s^{3}} \square e_{s s}(t)=\lim _{s \rightarrow 0} \frac{1}{\left\{1+\frac{\left(s+z_{1}\right) \cdots\left(s+z_{m}\right)}{s^{2}\left(s+p_{1}\right) \cdots\left(s+p_{n}\right)}\right\}} \frac{1}{s^{2}}=\frac{1}{K_{a}}
\end{aligned}
$$

Magnitude \& Phase Response : G(s) = 1 / (s + 3)

References

[1] http://en.wikipedia.org/
[2] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[3] E. Kreyszig, "Advanced Engineering Mathematics"
[4] D. G. Zill, W. S. Wright, "Advanced Engineering Mathematics"

