
Young Won Lim
2/13/21

● Loop
●

OpenMP Loop Parallelism (2A)

Young Won Lim
2/13/21

 Copyright (c) 2021 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

mailto:youngwlim@hotmail.com

OpenMP Loop (2A) 3 Young Won Lim
2/13/21

Parallel region

The simplest way to create parallelism in OpenMP
is to use the parallel pragma.

A block preceded by the omp parallel pragma
is called a parallel region ;

it is executed by a newly created team of threads.

This is an instance of the SPMD model:
all threads execute the same segment of code.

#pragma omp parallel
{
 // this is executed by a team of threads
}

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-parallel.html

OpenMP Loop (2A) 4 Young Won Lim
2/13/21

Parallel region

It would be pointless to have
the block be executed identically by all threads.

One way to get a meaningful parallel code is
to use the function omp_get_thread_num ,
to find out which thread you are,
and execute work that is individual to that thread.

There is also a function omp_get_num_threads
to find out the total number of threads.

Both these functions give a number relative to the current team;
recall from figure 15.3 that new teams can be created recursively.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-parallel.html

OpenMP Loop (2A) 5 Young Won Lim
2/13/21

Parallel region

Immediately preceding the parallel block,
one thread will be executing the code.

In the main program this is the initial thread.

At the start of the block, a new team of threads is created,
and the thread that was active before the block becomes
the master thread of that team.

After the block, only the master thread is active.

Inside the block there is team of threads:

each thread in the team executes the body of the block,
and it will have access to all variables of the surrounding environment.

How many threads there are can be determined in a number of ways;

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-parallel.html

OpenMP Loop (2A) 6 Young Won Lim
2/13/21

Parallel region

the threads that are forked are
all copies of the master thread :
they have access to all that was computed so far;
this is their shared data

Of course, if the threads were completely identical
the parallelism would be pointless,
so they also have private data,
and they can identify themselves:
they know their thread number.

this allows you to do meaningful
parallel computations with threads.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-parallel.html

OpenMP Loop (2A) 7 Young Won Lim
2/13/21

Parallel region

work sharing constructs
In a team of threads,
initially there will be replicated execution;
a work sharing construct divides
available parallelism over the threads.

OpenMP uses teams of threads,
and inside a parallel region
the work is distributed over the threads
with a work sharing construct.
threads can access shared data,
and they have some private data.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-parallel.html

OpenMP Loop (2A) 8 Young Won Lim
2/13/21

Parallel region

An important difference between OpenMP and MPI is
that parallelism in OpenMP is dynamically activated
by a thread spawning a team of threads.

Furthermore, the number of threads used
can differ between parallel regions,
and threads can create threads recursively.

This is known as as dynamic mode .

By contrast, in an MPI program
the number of running processes is
(mostly) constant throughout the run,
and determined by factors external to the program.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-parallel.html

OpenMP Loop (2A) 9 Young Won Lim
2/13/21

Loop parallelism

OpenMP parallel loops are an example of
OpenMP `worksharing' constructs

take an amount of work and
distribute it over the available threads
in a parallel region.

The parallel execution of a loop
can be handled a number of different ways.

For instance, you can create
a parallel region around the loop,
and adjust the loop bounds:

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

#pragma omp parallel
{
 int threadnum = omp_get_thread_num(),
 numthreads = omp_get_num_threads();

 int low = N*threadnum/numthreads,
 high = N*(threadnum+1)/numthreads;

 for (i=low; i<high; i++)
 // do something with i
}

OpenMP Loop (2A) 10 Young Won Lim
2/13/21

Loop parallelism

use the parallel for pragma:

#pragma omp parallel
#pragma omp for
for (i=0; i<N; i++) {
 // do something with i
}

you don't have to calculate
the loop bounds for the threads yourself,

but you can also tell OpenMP
to assign the loop iterations
according to different schedules

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

#pragma omp parallel
{
 code1();

#pragma omp for
 for (i=1; i<=4*N; i++) {
 code2();
 }
 code3();
}

The code before and after the loop is
executed identically in each thread; t

he loop iterations are spread
over the four threads.

OpenMP Loop (2A) 11 Young Won Lim
2/13/21

Loop parallelism

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

code1 code1 code1 code1

code2
(1 :N)

code2
(N+1
:2N)

code2
(2N+1
:3N)

code2
(3N+1
:4N)

code3 code3 code3 code3

code1 code1 code1 code1

code3 code3 code3 code3

code2
(1 :N)

code2
(N+1
:2N)

code2
(2N+1
:3N)

code2
(3N+1
:4N)

code2
(1 :N)

code2
(N+1
:2N)

code2
(2N+1
:3N)

code2
(3N+1
:4N)

code2
(1 :N)

code2
(N+1
:2N)

code2
(2N+1
:3N)

code2
(3N+1
:4N)

code2
(1 :N)

code2
(N+1
:2N)

code2
(2N+1
:3N)

code2
(3N+1
:4N)

Without #pragma omp for With #pragma omp for

OpenMP Loop (2A) 12 Young Won Lim
2/13/21

Loop parallelism

 Note that the parallel do and parallel for pragmas
do not create a team of threads:
they take the team of threads that is active,
and divide the loop iterations over them.

This means that the omp for or omp do directive
needs to be inside a parallel region.
It is also possible to have a combined
omp parallel for or omp parallel do directive.

If your parallel region only contains a loop,
you can combine the pragmas for the parallel region
and distribution of the loop iterations:

#pragma omp parallel for
 for (i=0;

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

OpenMP Loop (2A) 13 Young Won Lim
2/13/21

Loop parallelism

 Note that the parallel do and parallel for pragmas
do not create a team of threads:
they take the team of threads that is active,
and divide the loop iterations over them.

This means that the omp for or omp do directive
needs to be inside a parallel region.
It is also possible to have a combined
omp parallel for or omp parallel do directive.

If your parallel region only contains a loop,
you can combine the pragmas for the parallel region
and distribution of the loop iterations:

#pragma omp parallel for
 for (i=0;

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

OpenMP Loop (2A) 14 Young Won Lim
2/13/21

Loop Schedules (1)

more iterations in a loop than threads
several ways to assign loop iterations to the threads
OpenMP lets you specify this with the schedule clause.

#pragma omp for schedule(....)

Static schedules
the iterations are assigned purely
based on the number of iterations
and the number of threads
(and the chunk parameter; see later).

Dynamic schedules
iterations are assigned
to threads that are unoccupied.

when iterations take an unpredictable amount of time,
so load balancing is needed.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

OpenMP Loop (2A) 15 Young Won Lim
2/13/21

Loop Schedules (2)

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

W4

w3

W2

W1

W8

W7

W6

W5

W4

w3

W2

W1 W8

W7

W6

W5

OpenMP Loop (2A) 16 Young Won Lim
2/13/21

Loop Schedules (3)

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

thr0 thr1 thr2 thr3

thr0 thr1 thr2 thr3 thr0 thr1 thr2 thr3 thr0 thr1 thr2

thr0 thr1 thr2 thr3 thr0thr1 thr2 thr1 thr3 thr2 thr1

thr0 thr1 thr2 thr3 thr0 thr1thr0 thr1 thr2 thr3

Static

Static, n

Dynamic

Guided

OpenMP Loop (2A) 17 Young Won Lim
2/13/21

Loop Schedules (4)

assume that each core gets assigned
two (blocks of) iterations and
these blocks take gradually
less and less time.

thread 1 gets two fairly long blocks,
whereas thread 4 gets two short blocks,

Thread 1 finishes much earlier.
Imbalance : unequal amounts of work

load balancing
thread 4 gets block 5,
since it finishes the first set of blocks early.
The effect is a perfect

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

w4

w3

w2

w1

w8

w7

w6

w5

w4

w3

w2

W1 W8

W7

W6

W5

thr1

thr2

thr3

thr4

thr1

thr2

thr3

thr4

OpenMP Loop (2A) 18 Young Won Lim
2/13/21

Loop Schedule – Static (1)

The default static schedule is
to assign one consecutive block
of iterations to each thread.

#pragma omp for schedule(static)
#pragma omp for schedule(static, chunk)

With static scheduling, the compiler
will split up the loop iterations at compile time,

When the iterations take roughly
the same amount of time,
this is the most efficient at runtime.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.htmlhttps://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

thr0 thr1 thr2 thr3

Static

OpenMP Loop (2A) 19 Young Won Lim
2/13/21

Loop Schedule – Static (2)

#pragma omp for schedule(static,chunk)

If you want different sized blocks
you can defined a chunk size chunk

The choice of a chunk size is often
a balance between the low overhead
of having only a few chunks, (big chunks)
versus the load balancing effect
of having smaller chunks. (many chunks)

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

thr0 thr1 thr2 thr3 thr0 thr1 thr2 thr3 thr0 thr1 thr2

Static, n

n n n n

OpenMP Loop (2A) 20 Young Won Lim
2/13/21

Loop Schedule – Static (3)

#pragma omp for schedule(static,chunk)

OpenMP divides the iterations
into chunks of size chunk-size

distributes the chunks to threads
in a circular order.

When no chunk-size is specified,
OpenMP divides iterations into chunks
that are approximately equal in size and
distributes at most one chunk to each thread.

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

thr0 thr1 thr2 thr3 thr0 thr1 thr2 thr3 thr0 thr1 thr2

Static, n

n n n n

OpenMP Loop (2A) 21 Young Won Lim
2/13/21

Loop Schedule – Static (4)

Static scheduling is used
when you know that each thread will do
the approximately same amount of work
at the compile time.

the following code can be parallelized
using OMP. (assume only 4 threads)

float A[100][100];

for(int i = 0; i < 100; i++)
{
 for(int j = 0; j < 100; j++)
 {
 A[i][j] = 1.0f;
 }
}

https://stackoverflow.com/questions/15508128/using-omp-schedule-with-pragma-omp-for-parallel-scheduleruntime

100 * 100 iterations
10000 / 4 iterations / thread

OpenMP Loop (2A) 22 Young Won Lim
2/13/21

Loop Schedule – Static (5)

float A[100][100];

#pragma omp for schedule(static)
for(int i = 0; i < 100; i++)
{
 for(int j = 0; j < 100; j++)
 {
 A[i][j] = 1.0f;
 }
}

https://stackoverflow.com/questions/15508128/using-omp-schedule-with-pragma-omp-for-parallel-scheduleruntime

to use the default static scheduling,
place pragma on the outer for loop,

then each thread will do
25% of the outer loop (i) work
and eqaul amount of inner loop (j) work

Hence, the total amount of work done
by each thread is same.

Hence, we could simply stick
with the default static scheduling
to give optimal load balancing.

i
(0:24)

i
(25:49)

i
(50:74)

i
(75 :99)

j
(0:99)

j
(0:99)

j
(0:99)

j
(0:99)

OpenMP Loop (2A) 23 Young Won Lim
2/13/21

Loop Schedule – Static (6)

a for loop with 64 iterations
4 threads
each row represents a thread.

schedule(static) has 16 iterations in the first row.
64 iterations and 4 threads → 64 / 4 = 16
the first tread executes iterations 1, 2, 3, …, 15 and 16.
the second thread executes iterations 17, 18, 19, …, 31, 32.
Similar applies to the threads three and four.

For schedule(static),
OpenMP divides iterations into four chunks of size 16
and it distributes them to four threads.

For schedule(static, 4) and schedule(static, 8)
OpenMP divides iterations into chunks of size 4 and 8, respectively.

The static scheduling type is appropriate
when all iterations have the same computational cost.

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

OpenMP Loop (2A) 24 Young Won Lim
2/13/21

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Loop Schedule – Static (6)

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

schedule(static, 4)

schedule(static, 8)

schedule(static)

OpenMP Loop (2A) 25 Young Won Lim
2/13/21

Loop Schedule – Dynamic (1)

In dynamic scheduling OpenMP will
put blocks of iterations in a task queue,
(the default chunk size is 1)
and the threads take one of these tasks
whenever they are finished with the previous.

#pragma omp for schedule(dynamic[,chunk])

While this schedule may give good load balancing
if the iterations take very differing amounts of time to execute,
it does carry runtime overhead
for managing the queue of iteration tasks.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

thr0 thr1 thr2 thr3 thr0thr1 thr2 thr1 thr3 thr2 thr1

Dynamic

OpenMP Loop (2A) 26 Young Won Lim
2/13/21

Loop Schedule – Dynamic (2)

large chunks carry the least overhead,
but smaller chunks are better for load balancing.

If you don't want to decide on a schedule in your code,
you can specify the schedule will then at runtime
be read from the OMP_SCHEDULE environment variable.

You can even just leave it to the runtime library by specifying
omp_set_schedule.

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

thr0 thr1 thr2 thr3 thr0thr1 thr2 thr1 thr3 thr2 thr1

Dynamic

OpenMP Loop (2A) 27 Young Won Lim
2/13/21

Loop Schedule – Dynamic (3)

for schedule(dynamic, chunk-size)
the dynamic scheduling type

OpenMP divides the iterations
into chunks of size chunk-size.

Each thread executes
a chunk of iterations and
then requests another chunk
until there are no more chunks available.

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

There is no particular order
in which the chunks are distributed
to the threads.

The order changes each time
when we execute the for loop.

If we do not specify chunk-size,
it defaults to one.

thr0 thr1 thr2 thr3 thr0thr1 thr2 thr1 thr3 thr2 thr1

Dynamic

OpenMP Loop (2A) 28 Young Won Lim
2/13/21

Loop Schedule – Dynamic (4)

Dynamic scheduling is used
when you know that each thread
will not do same amount of work
by using static scheduling.

float A[100][100];

for(int i = 0; i < 100; i++)
{
 for(int j = 0; j < i; j++)
 {
 A[i][j] = 1.0f;
 }
}

https://stackoverflow.com/questions/15508128/using-omp-schedule-with-pragma-omp-for-parallel-scheduleruntime

OpenMP Loop (2A) 29 Young Won Lim
2/13/21

Loop Schedule – Dynamic (5)

float A[100][100];

for(int i = 0; i < 100; i++)
{
 for(int j = 0; j < i; j++)
 {
 A[i][j] = 1.0f;
 }
}

https://stackoverflow.com/questions/15508128/using-omp-schedule-with-pragma-omp-for-parallel-scheduleruntime

The inner loop variable j
is dependent on the i.

the default static scheduling,
● the outer loop (i) work might be

divided equally between the 4 threads,
● but the inner loop (j) work will be

large for some threads.

● not equal amount of work
● not optimal load balancing

OpenMP Loop (2A) 30 Young Won Lim
2/13/21

Loop Schedule – Dynamic (6)

the dynamic scheduling

this scheduling is done at the run time
can make sure optimal load balance.

Note:
you can also specify the chunk_size for
scheduling. It depends on the loop size.

https://stackoverflow.com/questions/15508128/using-omp-schedule-with-pragma-omp-for-parallel-scheduleruntime

OpenMP Loop (2A) 31 Young Won Lim
2/13/21

Loop Schedule – Dynamic (7)

for schedule(dynamic) and schedule(dynamic, 1)
OpenMP determines similar scheduling.
the size of chunks is equal to 1 in both instances.
the distribution of chunks between the threads is arbitrary.

For schedule(dynamic, 4) and schedule(dynamic, 8)
OpenMP divides iterations into chunks of size 4 and 8, respectively.
the distribution of chunks to the threads has no pattern (abitrary)

The dynamic scheduling type is appropriate
when the iterations require different computational costs.
I.e, when the iterations are poorly balanced between each other.

the dynamic scheduling type has higher overhead
than the static scheduling type
because it dynamically distributes the iterations during the runtime.

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

OpenMP Loop (2A) 32 Young Won Lim
2/13/21

0 49 2 19 20 21 6 23 8 9 58 11 28 13 30 63

32 17 18 3 4 53 54 39 24 25 26 43 12 45 62 31

16 1 50 35 36 5 22 7 56 41 10 27 60 61 14 15

48 33 34 51 52 37 38 55 40 57 42 59 44 29 46 47

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 630 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 6332 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

16 17 18 19

20 21 22 23

24 25 26 27

Loop Schedule – Dynamic (6)

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

schedule(dynamic, 4)

schedule(dynamic, 8)

schedule(dynamic)

28 29 30 31

OpenMP Loop (2A) 33 Young Won Lim
2/13/21

Loop Schedule – Guided (1)

The guided scheduling type is
similar to the dynamic scheduling type.

OpenMP again divides
the iterations into chunks.

Each thread executes a chunk of iterations
and then requests another chunk
until there are no more chunks available.

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

The difference is in the size of chunks.

The size of a chunk is proportional
to the number of unassigned iterations
divided by the number of the threads.

Therefore the size of the chunks
decreases as the execution goes on

thr0 thr1 thr2 thr3 thr0 thr1thr0 thr1 thr2 thr3

Guided

OpenMP Loop (2A) 34 Young Won Lim
2/13/21

Loop Schedule – Guided (2)

The minimum size of a chunk
is set by ‘chunk-size’
in the scheduling clause:

for schedule(guided, chunk-size).

the chunk which contains the last iterations
may have smaller size than chunk-size.

If we do not specify chunk-size,
it defaults to one.

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

thr0 thr1 thr2 thr3 thr0 thr1thr0 thr1 thr2 thr3

Guided

OpenMP Loop (2A) 35 Young Won Lim
2/13/21

Loop Schedule – Guided (3)

the size of the chunks is decreasing.
first chunk has always 16 iterations.
64 iterations and 4 threads → 64 / 4 = 16

the minimum chunk size is determined in the schedule clause.
The only exception is the last chunk.
Its size might be lower then the prescribed minimum size.

The guided scheduling type is appropriate
when the iterations are poorly balanced between each other.

The initial chunks are larger, because they reduce overhead.
The smaller chunks fills the schedule towards the end of the computation
and improve load balancing.
This scheduling type is especially appropriate
when poor load balancing occurs toward the end of the computation.

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

OpenMP Loop (2A) 36 Young Won Lim
2/13/21

Loop Schedule – Guided (3)

schedule(guided)

64 64 / 4 = 16
(64-16) 48 / 4 = 12
(48-12) 36 / 4 = 9
(36-9) 27 / 4 = 7
(27-7) 20 / 4 = 5
(20-5) 15 / 4 = 4
(15-4) 11 / 4 = 3
(11-3) 8 / 4 = 2
(8-2) 6 / 4 = 2
(6-2) 4 / 4 = 1
(4-1) 3 / 4 = 1
(3-1) 2 / 4 = 1
(2-1) 1 / 4 = 1

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

schedule(guided, 4)

64 64 / 4 = 16
(64-16) 48 / 4 = 12
(48-12) 36 / 4 = 9
(36-9) 27 / 4 = 7
(27-7) 20 / 4 = 5
(20-5) 15 / 4 = 4
(15-4) 11 / 4 = 3 < 4
(11-4) 7 4
(7-4) 3 3
(3-3) 0

schedule(guided, 8)

64 64 / 4 = 16
(64-16) 48 / 4 = 12
(48-12) 36 / 4 = 9
(36-9) 27 / 4 = 7 < 8
(27-8) 19 8
(19-8) 11 8
(11-8) 3 3
(3-3) 0

OpenMP Loop (2A) 37 Young Won Lim
2/13/21

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Loop Schedule – Static (6)

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

schedule(static)

28 29 30 31 32 33 34 35 36

16 17 18 19 20 21 22 23 24 25 26 27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

37 38 39 40 41 42 43

44 45 46 47 48

49 50 51 52

53 54 55

56 57

58 59

60

61

62

63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

28 29 30 31 32 33 34 35 36

16 17 18 19 20 21 22 23 24 25 26 27

37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52

53 54 55

56 57

58 59

60

61

62

63

schedule(guided)

64 64 / 4 = 16
(64-16) 48 / 4 = 12
(48-12) 36 / 4 = 9
(36-9) 27 / 4 = 7
(27-7) 20 / 4 = 5
(20-5) 15 / 4 = 4
(15-4) 11 / 4 = 3
(11-3) 8 / 4 = 2
(8-2) 6 / 4 = 2
(6-2) 4 / 4 = 1
(4-1) 3 / 4 = 1
(3-1) 2 / 4 = 1
(2-1) 1 / 4 = 1

OpenMP Loop (2A) 38 Young Won Lim
2/13/21

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Loop Schedule – Static (6)

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

schedule(static)

28 29 30 31 32 33 34 35 36

16 17 18 19 20 21 22 23 24 25 26 27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

37 38 39 40 41 42 43

44 45 46 47 48

49 50 51 52

schedule(guided, 4)

64 64 / 4 = 16
(64-16) 48 / 4 = 12
(48-12) 36 / 4 = 9
(36-9) 27 / 4 = 7
(27-7) 20 / 4 = 5
(20-5) 15 / 4 = 4
(15-4) 11 / 4 = 3 < 4
(11-4) 7 4
(7-4) 3 3
(3-3) 0

53 54 55 56

57 58 59 60

61

62

63

OpenMP Loop (2A) 39 Young Won Lim
2/13/21

Loop Schedule – Auto

The auto scheduling type delegates
the decision of the scheduling
to the compiler and/or runtime system.

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

OpenMP Loop (2A) 40 Young Won Lim
2/13/21

Loop Schedule – Runtime

The schedule(runtime) clause tells it
to set the schedule using the environment variable.

The environment variable can be set
to any other scheduling type.

It can be set by

setenv OMP_SCHEDULE “dynamic,5”

https://stackoverflow.com/questions/15508128/using-omp-schedule-with-pragma-omp-for-parallel-scheduleruntime

OpenMP Loop (2A) 41 Young Won Lim
2/13/21

Loop Schedules – Runtime

The runtime scheduling type defers
the decision about the scheduling
until the runtime.

different ways of specifying
the scheduling type in this case.

One option is with the environment variable
OMP_SCHEDULE

and the other option is
with the function
omp_set_schedule.

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

OpenMP Loop (2A) 42 Young Won Lim
2/13/21

Loop Schedules – Runtime

If the scheduling-type (in the schedule clause of the loop construct) is equal to
runtime then OpenMP determines the scheduling by the internal control variable
run-sched-var. We can set this variable by setting the environment variable
OMP_SCHEDULE to the desired scheduling type. For example, in bash-like
terminals, we can do

$ export OMP_SCHEDULE=sheduling-type

Another way to specify run-sched-var is to set it with omp_set_schedule function.

...
omp_set_schedule(sheduling-type);
...

http://jakascorner.com/blog/2016/06/omp-for-scheduling.html

OpenMP Loop (2A) 43 Young Won Lim
2/13/21

Nested Parallelism (1)

void fun1()
{
 for (int i=0; i<80; i++)
 ...
}

main()
{
 #pragma omp parallel
 {
 #pragma omp for
 for (int i=0; i<100; i++)
 ...

 #pragma omp for
 for (int i=0; i<10; i++)
 fun1();
 }
}

https://software.intel.com/content/www/us/en/develop/articles/exploit-nested-parallelism-with-openmp-tasking-model.html

the 2nd loop in main
can only be distributed to 10 threads

80 loop iterations in fun1
which will be called 10 times in main loop.

total 800 iterations in fun1 and the main loop

This gives much more parallelism potential
if parallelism can be added in both levels.

OpenMP Loop (2A) 44 Young Won Lim
2/13/21

Nested Parallelism (2)

void fun1()
{
 #pragma omp parallel for
 for (int i=0; i<80; i++)
 ...
}

main
{
 #Pragma omp parallel
 {
 #pragma omp for
 for (int i=0; i<100; i++)
 …

 #pragma omp for
 for (int i=0; i<10; i++)
 fun1();
 }
}

https://software.intel.com/content/www/us/en/develop/articles/exploit-nested-parallelism-with-openmp-tasking-model.html

may either have insufficient threads for the 1st main loop
as it has larger loop count, or

create exploded number of threads for the 2nd main loop
when OMP_NESTED=TRUE.

The simple solution is to split the parallel region in main and
create separate ones for each loop
with a distinct thread number specified.

OpenMP Loop (2A) 45 Young Won Lim
2/13/21

Nested Parallelism (3)

void fun1()
{
 #pragma omp taskloop
 for (int I = 0; i<80; i++)
 ...
}

main
{
 #pragma omp parallel
 {
 #pragma omp for
 for (int i=0; i<100; i++)
 ...

 #pragma omp for
 for (int i=0; i<10; i++)
 fun1();
 }
}

https://software.intel.com/content/www/us/en/develop/articles/exploit-nested-parallelism-with-openmp-tasking-model.html

don't have to worry about the thread number changes
in 1st and 2nd main loops.

Even though you still have a small amount of (10) threads
allocated for 2nd main loop,
the rest available threads will be able
to be distributed through omp taskloop in fun1.

OpenMP Loop (2A) 46 Young Won Lim
2/13/21

Nested Parallelism (4)

https://software.intel.com/content/www/us/en/develop/articles/exploit-nested-parallelism-with-openmp-tasking-model.html

nested parallel regions is
a way to distribute tasks by creating / forking more threads.

parallel region is the only construct
determines execution thread number
and controls thread affinity

Using nested parallel regions means
each thread in parent region
will yield multiple threads in enclosed regions,
which in turn create a product of thread number.

OpenMP Loop (2A) 47 Young Won Lim
2/13/21

Nested Parallelism (5)

https://software.intel.com/content/www/us/en/develop/articles/exploit-nested-parallelism-with-openmp-tasking-model.html

omp tasking shows another way
to explore parallelism by adding
more tasks, instead of threads.

though the thread number is unchanged
as specified at the entry of the parallel region,
the increased tasks from the nested tasking constructs
can be distributed and executed by any available/idle threads
in the current team of the same parallel region.

This gives opportunities to fully use all threads’ capability,
and improve balance of workloads automatically.

OpenMP Loop (2A) 48 Young Won Lim
2/13/21

Implicit task (1)

In addition to explicit tasks specified using the task directive,
the OpenMP specification version 3.0 introduces
the notion of implicit tasks.

An implicit task is a task generated
● by the implicit parallel region,
● when a parallel construct is encountered during execution.

The code for each implicit task is
the code inside the parallel construct.

Each implicit task is
● assigned to a different thread in the team and is tied;
● always executed from beginning to end

by the thread to which it is initially assigned.

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Loop (2A) 49 Young Won Lim
2/13/21

Implicit task (2)

All implicit tasks generated
when a parallel construct is encountered

are guaranteed to be complete
when the master thread exits the implicit barrier
at the end of the parallel region.

all explicit tasks generated within a parallel region
are guaranteed to be complete
on exit from the next implicit or explicit barrier
within the parallel region.

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Loop (2A) 50 Young Won Lim
2/13/21

Implicit task (3)

When an if clause is present on a task construct
and the value of the scalar-expression evaluates to false,
the thread that encounters the task must immediately execute the task.

The if clause can be used to avoid the overhead of
generating many finely grained tasks and
placing them in the conceptual pool.

https://docs.oracle.com/cd/E19205-01/820-7883/6nj43o69j/index.html

OpenMP Loop (2A) 51 Young Won Lim
2/13/21

Implicit barrier

Implicit BarriersSeveral OpenMP* constructs have implicit barriers
• parallel
• for
• single

Unnecessary barriers hurt performance
• Waiting threads accomplish no work!

Waiting threads accomplish no work!
Suppress implicit barriers, when safe, with the nowait

https://www.intel.com/content/dam/www/public/apac/xa/en/pdfs/ssg/Programming_with_OpenMP-Linux.pdf

OpenMP Loop (2A) 52 Young Won Lim
2/13/21

References

[1] en.wikipedia.org
[2] M Harris, http://beowulf.lcs.mit.edu/18.337-2008/lectslides/scan.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

