
Young Won Lim
6/7/18

Applications of Pointers (1A)

Young Won Lim
6/7/18

 Copyright (c) 2010 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Series : 5.
Applications of Pointers

3 Young Won Lim
6/7/18

Variables and their addresses

&a

data

int a; a

address

int * p;

int ** q;

&p p

&q q

Series : 5.
Applications of Pointers

4 Young Won Lim
6/7/18

Initialization of Variables

&a

data

int a = 100; a = 100

address

int * p = &a;

int ** q = &p;

&p p = &a

&q q = &p

Series : 5.
Applications of Pointers

5 Young Won Lim
6/7/18

Traditional arrow notations

&a

data

a = 100

address

&p p = &a

&q q = &p

&a

data

a = 100

address

&p p = &a

&q q = &p

Series : 5.
Applications of Pointers

6 Young Won Lim
6/7/18

Pointed addresses : p, q

p

data

int a; a

address

int * p = &a;

int ** q = &p;

q p

&q q

p = &a
q = &p

Series : 5.
Applications of Pointers

7 Young Won Lim
6/7/18

Dereferenced Variables : *p

p

data

int a; *p

address

int * p = &a;

int ** q = &p;

&p p

*p ≡ a

Series : 5.
Applications of Pointers

8 Young Won Lim
6/7/18

Dereferenced Variables : *p

int a;

int * p = &a;

int ** q = &p;

p = &a *p ≡ a

 p ≡ &a
*(p) ≡ *(&a)
* p ≡ a

Address
assignment

Variable
aliasing

Relations after
address assignment

Series : 5.
Applications of Pointers

9 Young Won Lim
6/7/18

Dereferenced Variables : *q, **q

*q

data

int a; **q

address

int * p = &a;

int ** q = &p;

q *q

&q q

**q ≡ a

*q ≡ p

Series : 5.
Applications of Pointers

10 Young Won Lim
6/7/18

Dereferenced Variables : *q, **q

int a;

int * p = &a;

int ** q = &p; q = &p *q ≡ p

p = &a *p ≡ a

Address
assignment

Variable
aliasing

 q ≡ &p
*(q) ≡ *(&p)
* q ≡ p
**q ≡ *p
**q ≡ a

**q ≡ a

Relations after
address assignment

Series : 5.
Applications of Pointers

11 Young Won Lim
6/7/18

Two more ways to access a : *p, **q

*q **q

q *q

&q q

**q ≡ a

p *p

 &p p

&q q

*p ≡ a

&a a

&p p

&q q

a

Series : 5.
Applications of Pointers

12 Young Won Lim
6/7/18

Two more ways to access a : *p, **q

**q

*p

&a

data

a

address

&p p

&q q

1) Read / Write a
2) Read / Write *p
3) Read / Write **q

Series : 5.
Applications of Pointers

13 Young Won Lim
6/7/18

Variables

&a

data int a;

a can hold an integer
a

address

&a

a = 100;

a holds 100
a 100

dataaddress

Series : 5.
Applications of Pointers

14 Young Won Lim
6/7/18

Pointer Variables

&p

int * p; *p holds
a int type data

pint * p;

pointer to int

int

int * p;

p can hold an address

*p

p holds an address
of a int type data

p

Series : 5.
Applications of Pointers

15 Young Won Lim
6/7/18

Pointer to Pointer Variable

&q

int **q; **q holds a int type data

q

int * *q; *q holds an address of
a int type data

pointer to int

int

int ** q;

q holds an address

int ** q; q holds an address of
a pointer to int type data

pointer to
pointer to int

*qq

*q **q

Series : 5.
Applications of Pointers

16 Young Won Lim
6/7/18

Pointer Variables Examples

int a = 200;

int * p = & a;

int ** q = & p; &q 0x3CE q

dataaddress

 0x3A0

*q 0x3A0

0x3AB

q 0x3AB

&q 0x3CE

 = 0x3AB

 2000x3A0

p

**q 200

0x3A0

&p

&a a

Series : 5.
Applications of Pointers

17 Young Won Lim
6/7/18

Pointer Variable p with an arrow notation

dataaddress

p

*p

&p

 p

200

p 0x3A0

&p 0x3AB

*p

dataaddress

 0x3A00x3AB

 2000x3A0

p&p

&a a

using an arrow notation

Series : 5.
Applications of Pointers

18 Young Won Lim
6/7/18

Pointer Variable q with an arrow notation

dataaddress

*q 0x3A0

q 0x3AB

 &q 0x3CE

**q 200

0x3A0

q

*q

**q

&q

 q

*q

&q 0x3CE q

dataaddress

 0x3A00x3AB

= 0x3AB

 2000x3A0

p&p

&a a

using an arrow notation

Series : 5.
Applications of Pointers

19 Young Won Lim
6/7/18

The type view point of pointers

(int)

(int *)

(int **)

Types

address

data

address

Series : 5.
Applications of Pointers

20 Young Won Lim
6/7/18

The different view points of pointers

(int)

(int *)

(int **)

**q

 *q

 q

Types Variables

 q

*q

&q

Addresses

Series : 5.
Applications of Pointers

21 Young Won Lim
6/7/18

Single and Double Pointer Examples (1)

int a ;

int * p ;

int **q ;

 *p

 a

 *q

 **q

 q

 p

p

q

*q

a, *p, and **q:
int variables

Series : 5.
Applications of Pointers

22 Young Won Lim
6/7/18

Single and Double Pointer Examples (2)

int a ;

int * p ;

int ** q ;

 *p

 a

 *q

 **q

 q

 p

p

q

*q

p and *q :
int pointer variables
(singlepointers)

Series : 5.
Applications of Pointers

23 Young Won Lim
6/7/18

Single and Double Pointer Examples (3)

int a ;

int * p ;

int ** q ;

 *p

 a

 *q

 **q

 q

 p

p

q

*q

q :
double int pointer variables

Series : 5.
Applications of Pointers

24 Young Won Lim
6/7/18

Values of double pointer variables

 (int)

(int *)

(int)

 (int **)

X

(float *)

(float)

X

 (int **)

int ** p, **q ;

p = q;

Series : 5.
Applications of Pointers

25 Young Won Lim
6/7/18

Pointed Addresses and Data

a =100&aint a ;

The variable a holds an integer data

p&pint * p ;

The pointer variable p holds an address,
at this address, an integer data is stored

200

q&qint * * q ;

The pointer variable q holds an address,
at the address q, another address *q is stored,
at the address *q, an integer data **q is stored

*q 30

Series : 5.
Applications of Pointers

26 Young Won Lim
6/7/18

Dereferencing Operations

a =100&aint a

int * p

int * * q

p&p *p=200 p

q&q *q **q=30 q *q

*(&a) = a

*(&p) = p *(p) = *p

*(&q) = q *(q) = *q *(*q) = **q

*

*

*

*

* *

Series : 5.
Applications of Pointers

27 Young Won Lim
6/7/18

Direct Access to an integer a

a =100&aint a ;

&a
value

a
address

integerDirect Access

1 memory access

Series : 5.
Applications of Pointers

28 Young Won Lim
6/7/18

Indirect Access *p to an integer a

p&pint * p ; *p=200

&p
value

p
address

p *p

Indirect Access

Dereference Operator *
the content of the pointed
location

 p

2 memory accesses

Series : 5.
Applications of Pointers

29 Young Won Lim
6/7/18

Double Indirect Access **q to an integer a

q&qint * * q ; *q **q=30

&q
value

q
address

q *q

*q **q

Double Indirect Access

Dereference Operator *

the content of the pointed location

Dereference Operator *

the content of the pointed location

 q *q

3 memory accesses

Series : 5.
Applications of Pointers

30 Young Won Lim
6/7/18

Values of Variables

a =100&aint a ;

int * p ;

int * * q ;

&a
value

a
address

&p
value

p
address

p *p

&q
value

q
address

q *q
*q **q

integer

address

integer

address

integer

address

p&p *p=200 p

q&q *q **q=30 q *q

Series : 5.
Applications of Pointers

31 Young Won Lim
6/7/18

Swapping pointers
- pass by reference
- double pointers

Series : 5.
Applications of Pointers

32 Young Won Lim
6/7/18

p = &a

q = &b

p = &b

q = &a

Swapping integer pointers

&p

&q

&p

&q

a = 111

b = 222

a = 111

b = 222

Series : 5.
Applications of Pointers

33 Young Won Lim
6/7/18

Swapping integer pointers

p = &a

q = &b

&p

&q

p = &b

q = &a

&p

&q

swap_pointers(&p, &q);

swap_pointers(int **, int **);

function call

function prototype

int *p, *q;

Series : 5.
Applications of Pointers

34 Young Won Lim
6/7/18

Pass by integer pointer reference

void swap_pointers (int **m, int **n)
{

int* tmp;

 tmp = *m;
 *m = *n;

*n = tmp;
}

int a, b;
int *p, *q; p=&a, q=&b;

…
swap_pointers(&p, &q);

int ** m
int * *m

int * tmp

int ** n
int * *n

Series : 5.
Applications of Pointers

35 Young Won Lim
6/7/18

Array of Pointers

Series : 5.
Applications of Pointers

36 Young Won Lim
6/7/18

Array of Pointers

int a [4];

int
No. of elements = 4

int * b [4];

a [4]

Type of each element

int *
No. of elements = 4

b [4]

Type of each element

Series : 5.
Applications of Pointers

37 Young Won Lim
6/7/18

Array of Pointers – variable view

int a [4]; int * b [4];

a[0]
a[1]

a[2]
a[3]

b[0]
b[1]

b[2]
b[3]

a b

b[0]

b[1]

b[2]

b[3]

*b[0]

*b[1]

*b[2]

*b[3]

= 11

= 22

= 33

= 44

= 11
= 22

= 33
= 44

a[0]
a[1]

a[2]
a[3]

Series : 5.
Applications of Pointers

38 Young Won Lim
6/7/18

Array of Pointers – type view

int a [4]; int * b [4];

(int)
(int)

(int)
(int)

(int *)
(int *)

(int *)
(int *)

(int)

(int)

(int)

(int)

(int *) (int * *)

Series : 5.
Applications of Pointers

39 Young Won Lim
6/7/18

Pointer to Arrays

Series : 5.
Applications of Pointers

40 Young Won Lim
6/7/18

Pointer to an array – variable declarations

int (*p) [4]

int a [4] int func (int a, int b) ;

int (* fp) (int a, int b) ;

int m ;

int *n ;

an integer pointer

an integer array pointer a function pointer

Series : 5.
Applications of Pointers

41 Young Won Lim
6/7/18

Pointer to an array – a type view

an integer pointer

an integer array pointer a function pointer

int

int *

Int [4] ≡ int []

int (*) [4]

int (int, int)

int (*) (int, int)

Series : 5.
Applications of Pointers

42 Young Won Lim
6/7/18

Pointer to an Array : Assignment and Dereference

(*p) &(*p) p

sizeof(p)= 8 bytes : the size of a pointer

sizeof(*p)= 16 bytes : the whole size of the pointed array

int (*p) [4]

int a [4] a &a &a

equivalence assignment

usages initialization

Series : 5.
Applications of Pointers

43 Young Won Lim
6/7/18

Pointer to an array – a variable view

int (*p) [4];

a[0]
a[1]

a[2]
a[3]

a

p

&a

p = &a

an array pointer points to an array –
a aggregated type data

int a [4];a

a+1

a+2

a+3

assignment

*p ≡ a

equivalence

p : int (*) [4] type

Series : 5.
Applications of Pointers

44 Young Won Lim
6/7/18

Pointer to an array – a variable view

int (*q) ;

a[0]
a[1]

a[2]
a[3]

a

q

&a

q = a

an array pointer points to an array –
a aggregated type data

int a[4] ;a

a+1

a+2

a+3

assignment

*q ≡ *a

 q[0] ≡ a[0]

q = a

equivalence

q : int (*) = int * type

Series : 5.
Applications of Pointers

45 Young Won Lim
6/7/18

Pointer to an array – a aggregated type view

a[0]
a[1]

a[2]
a[3]

a

p

p

int (*p) [4];
An aggregated type
 - starting address (&a)
 - size of all the array elements (16 bytes)

4 * sizeof(int)

Series : 5.
Applications of Pointers

46 Young Won Lim
6/7/18

Incrementing a pointer to an array

p
p

p+1

Address value (p+1) – Address value (p)

= (long) (p+1) - (long) (p) = 4 * sizeof(int)
int (*p) [4];

4*sizeof(int)

4*sizeof(int)

a[0]
a[1]

a[2]
a[3]

a

Aggregated Type Size

Series : 5.
Applications of Pointers

47 Young Won Lim
6/7/18

Pointer to an array – a variable view

int a [4];

a[0]
a[1]

a[2]
a[3]

a

p

&a

(*p)[0]
(*p)[1]

(*p)[2]
(*p)[3]

p

p *p

int (*p) [4] = &a;

p = &a

*p ≡ a

equivalence

assignment

p[0][0]
p[0][1]

p[0][2]
p[0][3]

Series : 5.
Applications of Pointers

48 Young Won Lim
6/7/18

Pointer to an array – an extended variable view

p

p *p

p[0][0]
p[0][1]
p[0][2]
p[0][3]

p+1 *(p+1)

p[1][0]
p[1][1]

p[1][2]
p[1][3]

p+2 *(p+2)

p[2][0]
p[2][1]

p[2][2]
p[2][3]

int a [4]; int (*p) [4] = &a;

p = &a;

can be viewed as a 2-d array name

Series : 5.
Applications of Pointers

49 Young Won Lim
6/7/18

Pointer to an array – a type view

(int)
(int)

(int)
(int)

(int *)

(int (*)[4])

(int)
(int)

(int)
(int)

(int *)

(int (*)[4])

(int)
(int)

(int)
(int)

(int *)

(int (*)[4])

(int)
(int)

(int)
(int)

(int [4])

(int (*)[4])

int a [4]; int (*p) [4] = &a;

(int [])

Series : 5.
Applications of Pointers

50 Young Won Lim
6/7/18

Double pointer to an array – a type view

(int)
(int)

(int)
(int)

(int *)

(int (*)[4])

(int)
(int)

(int)
(int)

(int [4])

(int (*)[4])

(int (*)[4]) (int (**)[4])

≡ (int []) ≡ (int *)

a pointer to an array

a pointer to a pointer to an array

a pointer to an int

Series : 5.
Applications of Pointers

51 Young Won Lim
6/7/18

Series of array pointers – a type view

(int)
(int)

(int)
(int)

(int *) (int)
(int)

(int)
(int)

(int *)

(int *)

(int (*)[4])

(int [4]) (int *) (int [4])

(int *) (int [4]) (int *) (int [4])

(int *) (int [4]) (int *) (int [4])

a pointer to an int

a pointer to an array

an int array name

an int array name

(int (*)[4])

(int (*)[4])

int [4] ≡ int [] ≡ int * type

4 in [4] is meaningful
only in the array declaration
– the number of array elements

an int array name

Series : 5.
Applications of Pointers

52 Young Won Lim
6/7/18

Series of array pointers – a variable view

(int)
(int)

(int)
(int)

(int *) a[0]
a[1]

a[2]
a[3]

q

p1

a

b

c

a pointer to an array

p2

p3

(int)
(int)

(int)
(int)

b[0]
b[1]

b[2]
b[3]

p1 = &a
p2 = &b
p3 = &c

(*p1) ≡ p1[0] ≡ a
(*p2) ≡ p2[0] ≡ b
(*p3) ≡ p3[0] ≡ c

assignmentequivalence

int (*p1)[4]; int (*q);
int (*p2)[4];
int (*p3)[4];

Series : 5.
Applications of Pointers

53 Young Won Lim
6/7/18

Pointer array – a variable view

(int)
(int)

(int)
(int)

(int *) (int (*)[4]) (int [4]) p (int *)

(int *) (int [4]) (int *) p[1]

(int *) (int [4]) (int *) p[2]

(int)
(int)

(int)
(int)
(int)
(int)

(int)
(int)

p+1

p+2

p[0]

p[0][0]

p[0][1]

p[0][2]

p[0][3]

p[1][0]

p[1][1]

p[1][2]

p[1][3]
p[2][0]

p[2][1]

p[2][2]

p[2][3]

1-d array names

p[0] = a
p[1] = b
p[2] = c

p[0] ≡ *(p+0) ≡ a
p[1] ≡ *(p+1) ≡ b
p[2] ≡ *(p+2) ≡ c

equivalence assignment

int *p[3]; taking actual
memory locations

Series : 5.
Applications of Pointers

54 Young Won Lim
6/7/18

p+1

p+2

p+3

p+0

Pointer to consecutive 1-d arrays

p[0]

p[1]

p[2]

p[3]

p[0][0]
p[0][1]
p[0][2]
p[0][3]
p[1][0]
p[1][1]
p[1][2]
p[1][3]
p[2][0]
p[2][1]
p[2][2]
p[2][3]
p[3][0]
p[3][1]
p[3][2]
p[3][3]

a pointer to an array

p

*(p+0) ≡ p[0] ≡ a
*(p+1) ≡ p[1] ≡ b
*(p+2) ≡ p[2] ≡ c
*(p+2) ≡ p[2] ≡ d

int (*p)[4];

assignmentequivalence

p = &a

if arrays a, b, c, d
are consecutive

Series : 5.
Applications of Pointers

55 Young Won Lim
6/7/18

A 2-d array and its sub-arrays – a variable view

c[0]
c[1]
c[2]
c[3]

c

c[0][0]
c[0][1]
c[0][2]
c[0][3]
c[1][0]
c[1][1]
c[1][2]
c[1][3]
c[2][0]
c[2][1]
c[2][2]
c[2][3]
c[3][0]
c[3][1]
c[3][2]
c[3][3]

a 2-d array
with 4 rows
and 4 columns

the array name c of a 2-d array
as an array pointer which points to
its 1st 1-d sub-array of 4 elements.

c[0] the 1st 1-d sub-array name
c[1] the 2nd 1-d sub-array name
c[2] the 3rd 1-d sub-array name
c[3] the 4th 1-d sub-array name

c[0], c[1], c[2], c[3] can be
implemented without taking
actual memory locations

c

c+1

c+2

c+3

Series : 5.
Applications of Pointers

56 Young Won Lim
6/7/18

A 2-d array and its sub-arrays – a type view

(int [])

(int [])

(int [])

(int [])

(int (*) [4])

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

(int)

a 2-d array
with 4 rows
and 4 columns

c

c+1

c+2

c+3

Series : 5.
Applications of Pointers

57 Young Won Lim
6/7/18

1-d subarray aggregated data type

c[0]

c[1]

c[2]

c[3]

(int [])

(int [])

(int [])

(int [])

(int)

(int)

(int)

(int)

c[0][0]
c[0][1]
c[0][2]
c[0][3]

(int)

(int)

(int)

(int)

c[1][0]
c[1][1]
c[1][2]
c[1][3]

(int)

(int)

(int)

(int)

c[2][0]
c[2][1]
c[2][2]
c[2][3]

sizeof(c[0]) = 16 bytes
sizeof(c[1]) = 16 bytes
sizeof(c[2]) = 16 bytes
sizeof(c[3]) = 16 bytes The 1st subarray

The 2nd subarray

The 3rd subarray

The 4th subarray

(int)

(int)

(int)

(int)

c[3][0]
c[3][1]
c[3][2]
c[3][3]

Series : 5.
Applications of Pointers

58 Young Won Lim
6/7/18

2-d subarray aggregated data type

c[0]

c[1]

c[2]

c[3]

(int [])

(int [])

(int [])

(int [])

(int)

(int)

(int)

(int)

c[0][0]
c[0][1]
c[0][2]
c[0][3]

(int)

(int)

(int)

(int)

c[1][0]
c[1][1]
c[1][2]
c[1][3]

(int)

(int)

(int)

(int)

c[2][0]
c[2][1]
c[2][2]
c[2][3]

c(int (*) [4]) 2-d array :
sizeof(c) = 64 bytes

1-d sub-arrays :
sizeof(*c) = 16 bytes

(int)

(int)

(int)

(int)

c[3][0]
c[3][1]
c[3][2]
c[3][3]

Series : 5.
Applications of Pointers

59 Young Won Lim
6/7/18

2-d array name as a pointer to a 1-d subarray

c[0]

c[1]

c[2]

c[3]

(int [])

(int [])

(int [])

(int [])

(int)

(int)

(int)

(int)

c[0][0]
c[0][1]
c[0][2]
c[0][3]

(int)

(int)

(int)

(int)

c[1][0]
c[1][1]
c[1][2]
c[1][3]

(int)

(int)

(int)

(int)

c[2][0]
c[2][1]
c[2][2]
c[2][3]

c(int (*) [4])

c+1

c+2

c+3 (int)

(int)

(int)

(int)

c[3][0]
c[3][1]
c[3][2]
c[3][3]

(int (*) [4])

(int (*) [4])

(int (*) [4])

The 1st subarray

The 2nd subarray

The 3rd subarray

The 4th subarray

Series : 5.
Applications of Pointers

60 Young Won Lim
6/7/18

Assignment of array pointer variables

p = &c[0];

int c[4] [4] ;

int (*p) [4] ;

p = c;

q = &c;

int c

int (*q) [4][4] ;

[4][4] ;

(*q)[0] ≡ c[0]
(*q)[1] ≡ c[1]
(*q)[2] ≡ c[2]
(*q)[3] ≡ c[3]

p[0] ≡ c[0]
p[1] ≡ c[1]
p[2] ≡ c[2]
p[3] ≡ c[3]

(int (*) [4]) (int(*)[4][4])

Series : 5.
Applications of Pointers

61 Young Won Lim
6/7/18

Assignment of array pointer variables

m = &c[0];

int c[4] ;

int (*m) ;

m = c;

n = &c;

int c

int (*n) [4] ;

[4] ;

(*n)[0] ≡ c[0]
(*n)[1] ≡ c[1]
(*n)[2] ≡ c[2]
(*n)[3] ≡ c[3]

m[0] ≡ c[0]
m[1] ≡ c[1]
m[2] ≡ c[2]
m[3] ≡ c[3]

(int (*)) (int(*)[4])

Series : 5.
Applications of Pointers

62 Young Won Lim
6/7/18

Pointer variable to a 1-d array

c[0]

c[1]

c[2]

c[3]

(int [])

(int [])

(int [])

(int [])

(int)

(int)

(int)

(int)

c[0][0]
c[0][1]
c[0][2]
c[0][3]

(int)

(int)

(int)

(int)

c[1][0]
c[1][1]
c[1][2]
c[1][3]

(int)

(int)

(int)

(int)

c[2][0]
c[2][1]
c[2][2]
c[2][3]

c(int (*) [4])

p&p (int (*) [4])

p = c;

An array pointer:
sizeof(p) = 8 bytes

1-d sub-arrays :
sizeof(*p) = 16 bytes

(int)

(int)

(int)

(int)

c[3][0]
c[3][1]
c[3][2]
c[3][3]

c+1

c+2

c+3

p = &c[0];

Series : 5.
Applications of Pointers

63 Young Won Lim
6/7/18

Pointer variable to a 2-d array

c[0]

c[1]

c[2]

c[3]

(int [])

(int [])

(int [])

(int [])

(int)

(int)

(int)

(int)

c[0][0]
c[0][1]
c[0][2]
c[0][3]

(int)

(int)

(int)

(int)

c[1][0]
c[1][1]
c[1][2]
c[1][3]

(int)

(int)

(int)

(int)

c[2][0]
c[2][1]
c[2][2]
c[2][3]

c(int (*) [4])

c+1

c+2

c+3

q&q (int(*)[4][4])

q+1

q = &c;

An array pointer:
sizeof(q) = 8 bytes

1-d sub-arrays :
sizeof(*q) = 64 bytes

(int)

(int)

(int)

(int)

c[3][0]
c[3][1]
c[3][2]
c[3][3]

Series : 5.
Applications of Pointers

64 Young Won Lim
6/7/18

Using a a pointer to a 1-d array

p[0]
p[1]
p[2]
p[3]

c(int (*) [4])

p[0][0]
p[0][1]
p[0][2]
p[0][3]
p[1][0]
p[1][1]
p[1][2]
p[1][3]
p[2][0]
p[2][1]
p[2][2]
p[2][3]
p[3][0]
p[3][1]
p[3][2]
p[3][3]

p&p

a 2-d array
with 4 rows
and 4 columns

p
(int (*) [4])

int c[4] [4]

int (*p) [4] ;

p = c;

p[0]

p[1]

p[2]

p[3]
p[0] ≡ c[0]
p[1] ≡ c[1]
p[2] ≡ c[2]
p[3] ≡ c[3]

Series : 5.
Applications of Pointers

65 Young Won Lim
6/7/18

(*q)[0]
(*q)[1]
(*q)[2]
(*q)[3]

c(int (*) [4])

(*q)[0][0]
(*q)[0][1]
(*q)[0][2]
(*q)[0][3]
(*q)[1][0]
(*q)[1][1]
(*q)[1][2]
(*q)[1][3]
(*q)[2][0]
(*q)[2][1]
(*q)[2][2]
(*q)[2][3]
(*q)[3][0]
(*q)[3][1]
(*q)[3][2]
(*q)[3][3]

a 2-d array
with 4 rows
and 4 columns

*q

Using a pointer to a 2-d array

q&p

q = &c;

(int(*)[4][4])

int c

int (*q) [4][4] ;

[4][4] ;

(*q)[0]

(*q)[1]

(*q)[2]

(*q)[3]
(*q)[0] ≡ c[0]
(*q)[1] ≡ c[1]
(*q)[2] ≡ c[2]
(*q)[3] ≡ c[3]

Series : 5.
Applications of Pointers

66 Young Won Lim
6/7/18

Pointer to multi-dimensional arrays (1)

int a[4] [2];
int (*p) [2];

int b[4] [2][3];
int (*q) [2][3];

int c[4] [2][3][4];
int (*r) [2][3][4];

A pointer to a 1-d array

can be viewed as a 2-d array name

A pointer to a 2-d array

can be viewed as a 3-d array name

A pointer to a 3-d array

can be viewed as a 4-d array name

Series : 5.
Applications of Pointers

67 Young Won Lim
6/7/18

Pointer to multi-dimensional arrays (2)

a[0]

c[0]

b[0]

p

q

r

a

c

b

int a[4] [2]; p = &a[0];
int (*p) [2]; p = a;

int b[4] [2][3]; q = &b[0];
int (*q) [2][3]; q = b;

int c[4] [2][3][4]; r = &c[0];
int (*r) [2][3][4]; r = c;

Series : 5.
Applications of Pointers

68 Young Won Lim
6/7/18

c[0]

Pointer to multi-dimensional arrays (3)

[0]
[1]

a[0]

[0]

[0]
[1]
[2]

[1]

b[0]

[0]
[1]
[2]

[0]
[1]
[2]

[3]

[0]

[0]
[1]
[2]
[3]

[1]

[0]
[1]
[2]
[3]

[2]

[0]

[0]
[1]
[2]
[3]

[0]

[0]
[1]
[2]
[3]

[1]

[0]
[1]
[2]
[3]

[2]

[1]

int b[4] [2][3];
int (*q) [2][3];

int c[4] [2][3][4];
int (*r) [2][3][4];

int a[4] [2];
int (*p) [2];

p

q

r

p = a; (=&a[0]);
q = b; (=&b[0]);
r = c; (=&c[0]);

Series : 5.
Applications of Pointers

69 Young Won Lim
6/7/18

To pass array name

int a[4] [2];
int (*p) [2];

int b[4] [2][3];
int (*q) [2][3];

int c[4] [2][3][4];
int (*r) [2][3][4];

void func(int (*p)[2], …);
func(a, …);

void func(int (*q)[2][3], …);
func(b, …);

void func(int (*r)[2][3][4], …);
func(c, …);

prototype

call

prototype

call

prototype

call

Young Won Lim
6/7/18

References

[1] Essential C, Nick Parlante
[2] Efficient C Programming, Mark A. Weiss
[3] C A Reference Manual, Samuel P. Harbison & Guy L. Steele Jr.
[4] C Language Express, I. K. Chun

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

