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Variables and their addresses 

&a

data 

int a; a 

address

int   * p;

int  ** q;

&p p

&q q



Series : 5. 
Applications of Pointers 

4 Young Won Lim
6/7/18

Initialization of Variables

&a

data 

int a = 100; a = 100 

address

int   * p = &a;

int  ** q = &p;

&p p = &a

&q q = &p
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Traditional arrow notations

&a

data 

a = 100 

address

&p p = &a

&q q = &p

&a

data 

a = 100 

address

&p p = &a

&q q = &p
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Pointed addresses : p, q

p

data 

int a; a 

address

int   * p = &a;

int  ** q = &p;

q p 

&q q 

p = &a
q = &p
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Dereferenced Variables : *p

p

data 

int a; *p 

address

int   * p = &a;

int  ** q = &p;

&p p 

*p ≡ a
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Dereferenced Variables : *p

int a;

int   * p = &a;

int  ** q = &p;

p = &a *p ≡ a

   p  ≡    &a
*(p) ≡ *(&a)
* p  ≡      a

Address
assignment

Variable
aliasing

Relations after 
address assignment
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Dereferenced Variables : *q, **q

*q

data 

int a; **q

address

int   * p = &a;

int  ** q = &p;

q *q 

&q q 

**q ≡ a

*q ≡ p
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Dereferenced Variables : *q, **q

int a;

int   * p = &a;

int  ** q = &p; q = &p *q ≡ p

p = &a *p ≡ a

Address
assignment

Variable 
aliasing

   q ≡    &p
*(q) ≡ *(&p)
* q ≡      p
**q ≡    *p
**q ≡     a

**q ≡ a

Relations after 
address assignment
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Two more ways to access a : *p, **q

*q **q

q *q 

&q q 

**q ≡ a

p *p 

   &p p 

&q q 

*p ≡ a

&a a 

&p p

&q q

a
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Two more ways to access a : *p, **q

**q 

*p 

&a

data 

a 

address

&p p

&q q

1)  Read / Write    a
2)  Read / Write   *p
3)  Read / Write **q
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Variables 

&a

data int a;

a can hold an integer  
a 

address

&a

a = 100;

a holds 100
a      100

dataaddress
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Pointer Variables

&p   

int    * p; *p holds 
a int type data 

pint    * p;

pointer to int

int

int * p;

p can hold an address  

*p

p holds an address
of a int type data  

p
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Pointer to Pointer Variable

&q

int    **q; **q holds a int type data   

q

int  *    *q; *q holds an address of 
a int type data  

pointer to int

int

int ** q;

q holds an address  

int   ** q; q holds an address of 
a pointer to int type data

pointer to 
pointer to int

*qq

*q **q
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Pointer Variables Examples

int a = 200;

int * p = & a;

int ** q = & p; &q   0x3CE q

dataaddress

         0x3A0

*q 0x3A0

0x3AB

q 0x3AB

&q      0x3CE

 = 0x3AB

        2000x3A0

p

**q 200

0x3A0

&p

&a a
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Pointer Variable p with an arrow notation

dataaddress

p

*p

&p

  p

200

p 0x3A0

&p     0x3AB

*p

dataaddress

        0x3A00x3AB

        2000x3A0

p&p

&a a

using an arrow notation
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Pointer Variable  q  with an arrow notation

dataaddress

*q 0x3A0

q 0x3AB

 &q      0x3CE

**q 200

0x3A0

q

*q

**q

&q   

  q

*q

&q   0x3CE q

dataaddress

        0x3A00x3AB

= 0x3AB

        2000x3A0

p&p

&a a

using an arrow notation
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The type view point of pointers

(int)      

(int *)    

(int **)    

Types

address

data

address
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The different view points of pointers

(int)      

(int *)    

(int **)    

**q     

  *q     

   q     

Types Variables

  q 

*q 

&q 

Addresses
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Single and Double Pointer Examples (1)

int  a  ;

int        * p  ;

int        **q  ;

    *p   

    a

    *q

  **q  

     q

     p

p

q

*q

a, *p, and **q: 
int  variables
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Single and Double Pointer Examples (2)

int  a  ;

int *      p  ;

int ** q  ;

    *p   

    a

    *q

  **q  

     q

     p

p

q

*q

p and *q : 
int pointer variables
(singlepointers)
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Single and Double Pointer Examples (3)

int    a  ;

int *    p  ;

int **   q  ;

    *p   

    a

    *q

  **q  

     q

     p

p

q

*q

q : 
double int pointer variables
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Values of double pointer variables

 (int)   

(int *)   

(int)     

 (int **) 

X

(float *)  

(float)   

X

 (int **) 

int  ** p, **q ;

p = q;
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Pointed Addresses and Data 

a =100&aint a ;

The variable a holds an integer data  

p&pint * p ;

The pointer variable p holds an address,
at this address, an integer data is stored

200

q&qint * * q ; 

The pointer variable q holds an address,
at the address q, another address *q is stored, 
at the address *q,  an integer data **q is stored

*q    30
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Dereferencing Operations

a =100&aint a 

int * p 

int * * q 

p&p *p=200   p

q&q *q  **q=30   q  *q

*(&a) = a

*(&p) = p *(p) = *p

*(&q) = q *(q) = *q *(*q) = **q

*

*

*

*

* *



Series : 5. 
Applications of Pointers 

27 Young Won Lim
6/7/18

Direct Access to an integer a 

a =100&aint a ;

&a
value 

a 
address

integerDirect Access

1 memory access
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Indirect Access *p to an integer a 

p&pint * p ; *p=200

&p
value 

p
address

p *p

Indirect Access

Dereference Operator  *
the content of the pointed 
location

   p

2 memory accesses
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Double Indirect Access **q to an integer a 

q&qint * * q ; *q  **q=30

&q
value 

q
address

q *q

*q **q

Double Indirect Access

Dereference Operator *

the content of the pointed location

Dereference Operator *

the content of the pointed location

   q  *q

3 memory accesses
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Values of Variables

a =100&aint a ;

int * p ;

int * * q ;

&a
value 

a 
address

&p
value 

p
address

p *p

&q
value 

q
address

q *q
*q **q

integer

address

integer

address

integer

address

p&p *p=200   p

q&q *q  **q=30   q  *q
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Swapping pointers
- pass by reference
- double pointers
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p = &a

q = &b

p = &b

q = &a

Swapping integer pointers 

&p

&q

&p

&q

a = 111

b = 222

a = 111

b = 222
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Swapping integer pointers

p = &a

q = &b

&p

&q

p = &b

q = &a

&p

&q

swap_pointers( &p, &q );

swap_pointers( int **, int ** );

function call

function prototype

int *p, *q;
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Pass by integer pointer reference 

void swap_pointers (int **m, int **n)
{

int* tmp;

   tmp = *m;
  *m = *n;

*n = tmp;
}

int   a,  b; 
int *p, *q; p=&a, q=&b;

… 
swap_pointers( &p, &q );

int **    m
int *    *m

int *    tmp

int **    n
int *    *n
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Array of Pointers 
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Array of Pointers 

int  a [4];

int  
No. of elements = 4

int * b [4];

a [4] 

Type of each element

int * 
No. of elements = 4

b [4] 

Type of each element
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Array of Pointers – variable view 

int  a [4]; int * b [4];

a[0] 
a[1] 

a[2] 
a[3] 

b[0] 
b[1] 

b[2] 
b[3] 

a b

b[0]

b[1]

b[2]

b[3]

*b[0] 

*b[1] 

*b[2] 

*b[3] 

= 11

= 22

= 33

= 44

= 11
= 22

= 33
= 44

a[0] 
a[1] 

a[2] 
a[3] 
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Array of Pointers – type view 

int  a [4]; int * b [4];

(int) 
(int) 

(int) 
(int) 

(int *) 
(int *) 

(int *) 
(int *) 

(int)

(int)

(int)

(int)

(int  *) (int * *) 



Series : 5. 
Applications of Pointers 

39 Young Won Lim
6/7/18

Pointer to Arrays
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Pointer to an array – variable declarations

int  (*p) [4] 

int  a [4] int  func (int   a,  int   b) ;

int  (* fp)  (int   a,  int   b) ;

int  m ;

int *n ;

an integer pointer

an integer array pointer a function pointer
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Pointer to an array – a type view

an integer pointer

an integer array pointer a function pointer

int

int *

Int [4]   ≡   int [ ] 

int (*) [4]

int (int, int)

int (*) (int, int)
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Pointer to an Array : Assignment and Dereference

(*p) &(*p) p

sizeof(p)= 8 bytes : the size of a pointer 

sizeof(*p)= 16 bytes : the whole size of the pointed array

int  (*p) [4] 

int  a [4] a &a &a

equivalence assignment

usages initialization
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Pointer to an array – a variable view

int  (*p) [4];

a[0] 
a[1] 

a[2] 
a[3] 

a

p

&a

p  =  &a

an array pointer points to an array – 
a aggregated type data 

int   a  [4];a

a+1

a+2

a+3

assignment

*p      ≡  a

equivalence

p : int (*) [4] type
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Pointer to an array – a variable view

int  (*q) ;

a[0] 
a[1] 

a[2] 
a[3] 

a

q

&a

q  =  a

an array pointer points to an array – 
a aggregated type data 

int   a[4] ;a

a+1

a+2

a+3

assignment

*q      ≡  *a

  q[0] ≡    a[0]

q  =  a

equivalence

q : int (*) = int * type
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Pointer to an array – a aggregated type view

a[0] 
a[1] 

a[2] 
a[3] 

a

p

p

int  (*p) [4];
An aggregated type
  - starting address (&a)
  - size of all the array elements (16 bytes)

4 * sizeof(int)
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Incrementing a pointer to an array

p
p

p+1

Address value (p+1) – Address value  (p) 

= (long) (p+1) - (long) (p) = 4 * sizeof(int)
int  (*p) [4];

4*sizeof(int)

4*sizeof(int)

a[0] 
a[1] 

a[2] 
a[3] 

a

Aggregated Type Size
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Pointer to an array – a variable view 

int  a [4];

a[0] 
a[1] 

a[2] 
a[3] 

a

p

&a

(*p)[0] 
(*p)[1] 

(*p)[2] 
(*p)[3] 

p

p *p

int  (*p) [4]  = &a;

p  =  &a

*p  ≡  a

equivalence

assignment

p[0][0] 
p[0][1] 

p[0][2] 
p[0][3] 
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Pointer to an array – an extended variable view 

p

p *p

p[0][0] 
p[0][1] 
p[0][2] 
p[0][3] 

p+1 *(p+1)

p[1][0] 
p[1][1] 

p[1][2] 
p[1][3] 

p+2 *(p+2)

p[2][0] 
p[2][1] 

p[2][2] 
p[2][3] 

int  a [4]; int  (*p) [4]  = &a;

p  = &a;

can be viewed as a 2-d array name
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Pointer to an array – a type view

(int) 
(int) 

(int) 
(int) 

(int *) 

(int (*)[4]) 

(int) 
(int) 

(int) 
(int) 

(int *) 

(int (*)[4]) 

(int) 
(int) 

(int) 
(int) 

(int *) 

(int (*)[4]) 

(int) 
(int) 

(int) 
(int) 

(int [4]) 

(int (*)[4]) 

int  a [4]; int  (*p) [4]  = &a;

(int [ ]) 
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Double pointer to an array – a type view

(int) 
(int) 

(int) 
(int) 

(int *) 

(int (*)[4]) 

(int) 
(int) 

(int) 
(int) 

(int [4]) 

(int (*)[4]) 

(int (*)[4]) (int (**)[4]) 

≡ (int []) ≡ (int *) 

a pointer to an array

a pointer to a pointer to an array

a pointer to an int
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Series of array pointers – a type view

(int) 
(int) 

(int) 
(int) 

(int *) (int) 
(int) 

(int) 
(int) 

(int *) 

(int *) 

(int (*)[4]) 

(int [4]) (int *) (int [4]) 

(int *) (int [4]) (int *) (int [4]) 

(int *) (int [4]) (int *) (int [4]) 

a pointer to an int

a pointer to an array

an int array name

an int array name

(int (*)[4]) 

(int (*)[4]) 

int [4] ≡ int [ ] ≡ int *   type

4 in [4] is meaningful  
only in the array declaration
– the number of array elements

an int array name
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Series of array pointers – a variable view

(int) 
(int) 

(int) 
(int) 

(int *) a[0]
a[1]

a[2]
a[3]

q 

p1

a

b

c

a pointer to an array

p2

p3

(int) 
(int) 

(int) 
(int) 

b[0]
b[1]

b[2]
b[3]

p1 = &a
p2 = &b
p3 = &c

(*p1) ≡ p1[0] ≡ a
(*p2) ≡ p2[0] ≡ b
(*p3) ≡ p3[0] ≡ c

assignmentequivalence

int (*p1)[4]; int  (*q); 
int (*p2)[4]; 
int (*p3)[4]; 
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Pointer array – a variable view

(int) 
(int) 

(int) 
(int) 

(int *) (int (*)[4]) (int [4]) p (int *) 

(int *) (int [4]) (int *) p[1]

(int *) (int [4]) (int *) p[2]

(int) 
(int) 

(int) 
(int) 
(int) 
(int) 

(int) 
(int) 

p+1

p+2

p[0]

p[0][0]

p[0][1]

p[0][2]

p[0][3]

p[1][0]

p[1][1]

p[1][2]

p[1][3]
p[2][0]

p[2][1]

p[2][2]

p[2][3]

1-d array names

p[0] = a
p[1] = b
p[2] = c

p[0] ≡ *(p+0) ≡ a
p[1] ≡ *(p+1) ≡ b
p[2] ≡ *(p+2) ≡ c

equivalence assignment

int *p[3]; taking actual 
memory locations
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p+1

p+2

p+3

p+0

Pointer to consecutive 1-d arrays

p[0]

p[1]

p[2]

p[3]

p[0][0] 
p[0][1] 
p[0][2] 
p[0][3] 
p[1][0] 
p[1][1] 
p[1][2] 
p[1][3] 
p[2][0] 
p[2][1] 
p[2][2] 
p[2][3] 
p[3][0] 
p[3][1] 
p[3][2] 
p[3][3] 

a pointer to an array

p

*(p+0) ≡ p[0] ≡ a
*(p+1) ≡ p[1] ≡ b
*(p+2) ≡ p[2] ≡ c
*(p+2) ≡ p[2] ≡ d

int (*p)[4]; 

assignmentequivalence

p = &a

if arrays a, b, c, d 
are consecutive
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A 2-d array and its sub-arrays – a variable view 

c[0] 
c[1]
c[2] 
c[3] 

c

c[0][0] 
c[0][1] 
c[0][2] 
c[0][3] 
c[1][0] 
c[1][1] 
c[1][2] 
c[1][3] 
c[2][0] 
c[2][1] 
c[2][2] 
c[2][3] 
c[3][0] 
c[3][1] 
c[3][2] 
c[3][3] 

a 2-d array 
with 4 rows 
and 4 columns 

the array name c of a 2-d array
as an array pointer which points to 
its 1st 1-d sub-array of 4 elements.

c[0] the 1st 1-d sub-array name 
c[1] the 2nd 1-d sub-array name  
c[2] the 3rd 1-d sub-array name  
c[3] the 4th 1-d sub-array name  

c[0], c[1], c[2], c[3] can be 
implemented without taking
actual memory locations

c

c+1

c+2

c+3
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A 2-d array and its sub-arrays – a type view 

(int []) 

(int []) 

(int []) 

(int []) 

(int (*) [4]) 

(int) 

(int) 

(int) 

(int) 

(int) 

(int) 

(int) 

(int) 

(int) 

(int) 

(int) 

(int) 

(int) 

(int) 

(int) 

(int) 

a 2-d array 
with 4 rows 
and 4 columns 

c

c+1

c+2

c+3



Series : 5. 
Applications of Pointers 

57 Young Won Lim
6/7/18

1-d subarray aggregated data type

c[0] 

c[1] 

c[2] 

c[3] 

(int []) 

(int []) 

(int []) 

(int []) 

(int) 

(int) 

(int) 

(int) 

c[0][0] 
c[0][1] 
c[0][2] 
c[0][3] 

(int) 

(int) 

(int) 

(int) 

c[1][0] 
c[1][1] 
c[1][2] 
c[1][3] 

(int) 

(int) 

(int) 

(int) 

c[2][0] 
c[2][1] 
c[2][2] 
c[2][3] 

sizeof(c[0]) = 16 bytes
sizeof(c[1]) = 16 bytes
sizeof(c[2]) = 16 bytes
sizeof(c[3]) = 16 bytes The 1st subarray

The 2nd subarray

The 3rd subarray

The 4th subarray

(int) 

(int) 

(int) 

(int) 

c[3][0] 
c[3][1] 
c[3][2] 
c[3][3] 
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2-d subarray aggregated data type

c[0] 

c[1] 

c[2] 

c[3] 

(int []) 

(int []) 

(int []) 

(int []) 

(int) 

(int) 

(int) 

(int) 

c[0][0] 
c[0][1] 
c[0][2] 
c[0][3] 

(int) 

(int) 

(int) 

(int) 

c[1][0] 
c[1][1] 
c[1][2] 
c[1][3] 

(int) 

(int) 

(int) 

(int) 

c[2][0] 
c[2][1] 
c[2][2] 
c[2][3] 

c(int (*) [4]) 2-d array : 
sizeof(c) = 64 bytes

1-d sub-arrays :
sizeof(*c) = 16 bytes

(int) 

(int) 

(int) 

(int) 

c[3][0] 
c[3][1] 
c[3][2] 
c[3][3] 
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2-d array name as a pointer to a 1-d subarray

c[0] 

c[1] 

c[2] 

c[3] 

(int []) 

(int []) 

(int []) 

(int []) 

(int) 

(int) 

(int) 

(int) 

c[0][0] 
c[0][1] 
c[0][2] 
c[0][3] 

(int) 

(int) 

(int) 

(int) 

c[1][0] 
c[1][1] 
c[1][2] 
c[1][3] 

(int) 

(int) 

(int) 

(int) 

c[2][0] 
c[2][1] 
c[2][2] 
c[2][3] 

c(int (*) [4]) 

c+1

c+2

c+3 (int) 

(int) 

(int) 

(int) 

c[3][0] 
c[3][1] 
c[3][2] 
c[3][3] 

(int (*) [4]) 

(int (*) [4]) 

(int (*) [4]) 

The 1st subarray

The 2nd subarray

The 3rd subarray

The 4th subarray
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Assignment of array pointer variables

p = &c[0]; 

int  c[4] [4]  ;

int  (*p) [4]  ;

p = c; 

q = &c; 

int    c

int  (*q) [4][4] ;

[4][4] ;

(*q)[0] ≡ c[0]
(*q)[1] ≡ c[1]
(*q)[2] ≡ c[2]
(*q)[3] ≡ c[3]

p[0] ≡ c[0]
p[1] ≡ c[1]
p[2] ≡ c[2]
p[3] ≡ c[3]

(int (*) [4]) (int(*)[4][4]) 
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Assignment of array pointer variables

m = &c[0]; 

int  c[4]   ;

int  (*m)   ;

m = c; 

n = &c; 

int    c

int  (*n) [4] ;

[4] ;

(*n)[0] ≡ c[0]
(*n)[1] ≡ c[1]
(*n)[2] ≡ c[2]
(*n)[3] ≡ c[3]

m[0] ≡ c[0]
m[1] ≡ c[1]
m[2] ≡ c[2]
m[3] ≡ c[3]

(int (*)) (int(*)[4]) 
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Pointer variable to a 1-d array

c[0] 

c[1] 

c[2] 

c[3] 

(int []) 

(int []) 

(int []) 

(int []) 

(int) 

(int) 

(int) 

(int) 

c[0][0] 
c[0][1] 
c[0][2] 
c[0][3] 

(int) 

(int) 

(int) 

(int) 

c[1][0] 
c[1][1] 
c[1][2] 
c[1][3] 

(int) 

(int) 

(int) 

(int) 

c[2][0] 
c[2][1] 
c[2][2] 
c[2][3] 

c(int (*) [4]) 

p&p (int (*) [4]) 

p = c; 

An array pointer: 
sizeof(p) = 8 bytes

1-d sub-arrays :
sizeof(*p) = 16 bytes

(int) 

(int) 

(int) 

(int) 

c[3][0] 
c[3][1] 
c[3][2] 
c[3][3] 

c+1

c+2

c+3

p = &c[0]; 
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Pointer variable to a 2-d array

c[0] 

c[1] 

c[2] 

c[3] 

(int []) 

(int []) 

(int []) 

(int []) 

(int) 

(int) 

(int) 

(int) 

c[0][0] 
c[0][1] 
c[0][2] 
c[0][3] 

(int) 

(int) 

(int) 

(int) 

c[1][0] 
c[1][1] 
c[1][2] 
c[1][3] 

(int) 

(int) 

(int) 

(int) 

c[2][0] 
c[2][1] 
c[2][2] 
c[2][3] 

c(int (*) [4]) 

c+1

c+2

c+3

q&q (int(*)[4][4]) 

q+1

q = &c; 

An array pointer: 
sizeof(q) = 8 bytes

1-d sub-arrays :
sizeof(*q) = 64 bytes

(int) 

(int) 

(int) 

(int) 

c[3][0] 
c[3][1] 
c[3][2] 
c[3][3] 
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Using a a pointer to a 1-d array

p[0] 
p[1] 
p[2] 
p[3] 

c(int (*) [4]) 

p[0][0] 
p[0][1] 
p[0][2] 
p[0][3] 
p[1][0] 
p[1][1] 
p[1][2] 
p[1][3] 
p[2][0] 
p[2][1] 
p[2][2] 
p[2][3] 
p[3][0] 
p[3][1] 
p[3][2] 
p[3][3] 

p&p

a 2-d array 
with 4 rows 
and 4 columns 

p
(int (*) [4]) 

int  c[4] [4] 

int  (*p) [4]   ;

p = c; 

p[0]

p[1]

p[2]

p[3]
p[0] ≡ c[0]
p[1] ≡ c[1]
p[2] ≡ c[2]
p[3] ≡ c[3]
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(*q)[0] 
(*q)[1] 
(*q)[2] 
(*q)[3] 

c(int (*) [4]) 

(*q)[0][0] 
(*q)[0][1] 
(*q)[0][2] 
(*q)[0][3] 
(*q)[1][0] 
(*q)[1][1] 
(*q)[1][2] 
(*q)[1][3] 
(*q)[2][0] 
(*q)[2][1] 
(*q)[2][2] 
(*q)[2][3] 
(*q)[3][0] 
(*q)[3][1] 
(*q)[3][2] 
(*q)[3][3] 

a 2-d array 
with 4 rows 
and 4 columns 

*q

Using a pointer to a 2-d array

q&p

q = &c; 

(int(*)[4][4]) 

int    c

int  (*q) [4][4] ;

[4][4] ;

(*q)[0]

(*q)[1]

(*q)[2]

(*q)[3]
(*q)[0] ≡ c[0]
(*q)[1] ≡ c[1]
(*q)[2] ≡ c[2]
(*q)[3] ≡ c[3]
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Pointer to multi-dimensional arrays (1)

int a[4] [2];
int (*p) [2];

int b[4] [2][3];
int (*q) [2][3];

int c[4] [2][3][4];
int (*r)  [2][3][4];

A pointer to a 1-d array

can be viewed as a 2-d array name

A pointer to a 2-d array

can be viewed as a 3-d array name

A pointer to a 3-d array

can be viewed as a 4-d array name
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Pointer to multi-dimensional arrays (2)

a[0]

c[0]

b[0]

p

q

r

a

c

b

int a[4] [2]; p = &a[0];
int (*p) [2]; p = a;

int b[4] [2][3]; q = &b[0];
int (*q) [2][3]; q = b; 

int c[4] [2][3][4]; r = &c[0];
int (*r)  [2][3][4]; r = c;
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c[0]

Pointer to multi-dimensional arrays (3)

[0]
[1]

a[0]

[0]

[0]
[1]
[2]

[1]

b[0]

[0]
[1]
[2]

[0]
[1]
[2]

[3]

[0]

[0]
[1]
[2]
[3]

[1]

[0]
[1]
[2]
[3]

[2]

[0]

[0]
[1]
[2]
[3]

[0]

[0]
[1]
[2]
[3]

[1]

[0]
[1]
[2]
[3]

[2]

[1]

int b[4] [2][3];
int (*q) [2][3];

int c[4] [2][3][4];
int (*r)  [2][3][4];

int a[4] [2];
int (*p) [2];

p

q

r

p = a; (=&a[0]);
q = b; (=&b[0]);
r  = c; (=&c[0]);
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To pass array name

int a[4] [2];
int (*p) [2];

int b[4] [2][3];
int (*q) [2][3];

int c[4] [2][3][4];
int (*r)  [2][3][4];

void func(int (*p)[2], …);
func(a, …);

void func(int (*q)[2][3], …);
func(b, …);

void func(int (*r)[2][3][4], …);
func(c, …);

prototype

call

prototype

call

prototype

call
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