Z Transform (H.1) Definition

20170118

Copyright (c) 2016 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Based on
Complex Analysis for Mathematics and Engineering
J. Mathews

Z - Transform

$$\chi(z) = \sum_{k=-\infty}^{+\infty} \chi[k] z^{-k}$$

$$\chi[n]$$
 $\chi(z)$

One Sided 2 - transform

$$X(z) = \sum_{k=0}^{+\infty} x[k] z^{-k}$$

Inverse 2- Transform

$$\chi_{\eta} = \chi[\eta] = Z^{+}[\chi(z)] = \frac{1}{2\pi i} \int_{C} \chi(z) z^{n+1} dz$$

Admissible Form of z-transform

$$\chi(z) = \sum_{k=0}^{\infty} \chi(n) z^{-n}$$

admissible z-transform

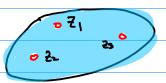
if X(z) is a rational function

$$X(z) = \frac{P(z)}{Q(z)} = \frac{b_0 + b_1 z^1 + b_2 z^2 + \dots + b_{p1} z^{p-1} + b_p z^p}{\alpha_0 + \alpha_1 z^1 + \alpha_2 z^2 + \dots + \alpha_{q-1} z^{q-1} + \alpha_q z^q}$$

P(z): a polynomial of degree p Q(z): a polynomial of degree q D: Simply connected domain

C: Simple closed contour (CCW) in D

if f(z) is analytic inside C and on C


except at the points Z1, Z2, ..., Zk in C

then

en $\frac{1}{2\pi i} \int_{C} f(z) dz = \sum_{j=1}^{k} Res(f(z), z_{j})$

$$\oint_{c} f(z)dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f(z), Z_{k})$$

finite number & of Singular points Zk

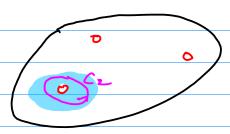
$$\oint f(z)dz = 0 \qquad \text{if } f(z) \text{ is continuous in D and} \\
f(z) = f'(z) : F(z) \text{ is an antiderivative of } f(z) \\
fundamental theorem of calculus$$

$$\oint_{C} f(z)dz = 0 \qquad \text{if } f(z) \text{ is analytic within and on } C$$

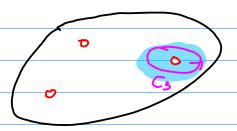
$$\text{No singularity}$$

Thomas J. Cavicchi Digital Signal Processing, Wiley, 2000

$$f(z) = \sum_{n=n_1}^{\infty} a_n^{(m)} (z - z_m)^n$$


$$\alpha_{n}^{[m]} = \frac{1}{2\pi i} \oint_{C} \frac{f(z')}{(z'-z_{n})^{n}} dz'$$

$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_{n})^{n}}, z_{k}\right) z_{k} \text{ within } c$$

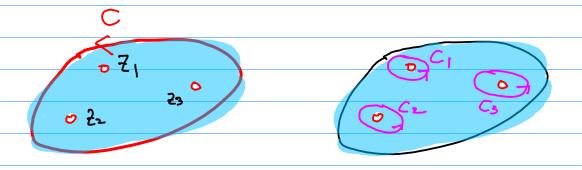

$$= \frac{1}{n!} f^{(n)}(z_{n}) \qquad n > 0$$

 a_n^{10} expansion at z_0

an expansion at Z,

an expansion at 22

$$a_p^{m} = \text{Res}(f(a), z_m)$$


the residue of f(z) at Zm using Cm

assumed that

there are several (m) singularities (poles) of f(z) in a region

but that

C is taken to enclose only the pole 2m : Cm

then

$$f(z) = \sum_{k=0}^{\infty} \alpha_k (z-z_0)^k$$
, valid for $r < |z-z_0| < R$

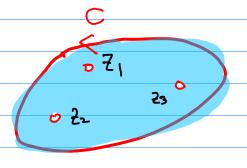
$$A_{k} = \frac{1}{2\pi i} \oint_{C} \frac{f(s)}{(s-z_{0})^{k+1}} ds, \qquad k=0,\pm 1,\pm 2,\cdots$$

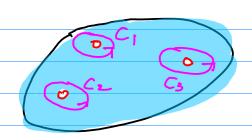
C: a simple closed curve
that lies entirely within D
that encloses Zo

$$\alpha_{j} = \frac{1}{2\pi i} \oint_{C} f(s) ds \qquad \oint_{C} f(s) ds = 2\pi i \cdot \alpha_{j}$$

$$a_{-1} = \frac{1}{2\pi i} \oint_{C} f(s) ds = Res(f(z), z_{\bullet})$$

$$= \begin{cases} \lim_{\xi \to z} (z - z_0) f(\xi) & \text{(simple)} \\ \frac{1}{(n-1)!} \lim_{\xi \to z_0} \frac{d^{h-1}}{d\xi^{n-1}} (z - z_0)^n f(\xi) & \text{(order n)} \end{cases}$$

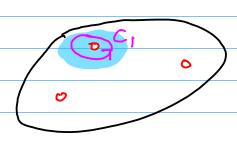

Cauchy's Residue Theorem


then

$$\int_{c} f(2) d2 = 2\pi i \sum_{k=1}^{n} Res(f(2), Z_{k})$$

D: a simply connected domain

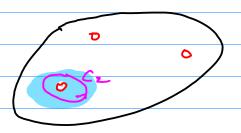
C: a simple closed contour in D


$$f(z) = \sum_{k=-\infty}^{\infty} \alpha_k (z-z_i)^k \qquad \alpha_{-i}^{(1)} = \frac{1}{2\pi i} \oint_{C_i} f(s) ds = \operatorname{Res}(f(v), z_i)$$

$$f(z) = \sum_{k=-\infty}^{+\infty} \alpha_{k} (z-z_{2})^{k} \qquad \alpha_{-1}^{(2)} = \frac{1}{2\pi i} \oint_{C_{2}} f(s) ds = \text{Res}(f(z), z_{2})$$

$$f(z) = \sum_{k=-\infty}^{+\infty} \alpha_{k} (z-z_{s})^{k} \qquad \alpha_{j}^{(3)} = \frac{1}{2\pi i} \oint_{C_{3}} f(s) ds = \text{Res} (f(z), z_{s})$$

Laurent series expansion at Zi

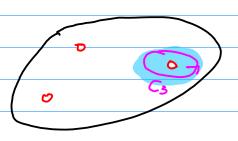


$$f(z) = \sum_{i=1}^{\infty} \alpha_{i}(z-z_{i})^{k}$$

$$A_{-1}^{(1)} = \frac{1}{2\pi i} \oint_{C_1} f(s) ds = \text{Res}(f(v), Z_1)$$

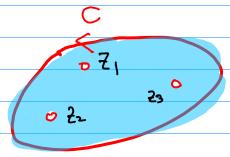
₽<mark>7</mark>

Laurent series expansion at Z

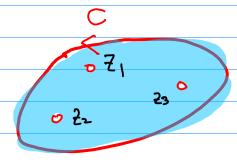


$$f(z) = \sum_{k=0}^{\infty} \alpha_k (z - z_k)^k$$

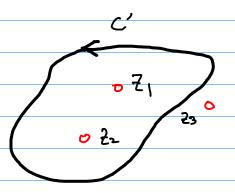
$$A_{-1}^{(2)} = \frac{1}{2\pi i} \oint_{C_2} f(s) ds = \text{Res}(f(2), Z_2)$$


75

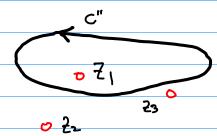
Laurent series expansion at 25



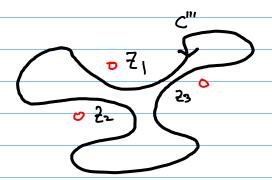
$$f(z) = \sum_{k=0}^{+\infty} \alpha_k (z-z_k)^k$$


$$a_{-1}^{(s)} = \frac{1}{2\pi i} \oint_{C_3} f(s) ds = \text{Res}(f(v), Z_2)$$

$$\int_{C} f(2) d2 = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f(2), 2k)$$

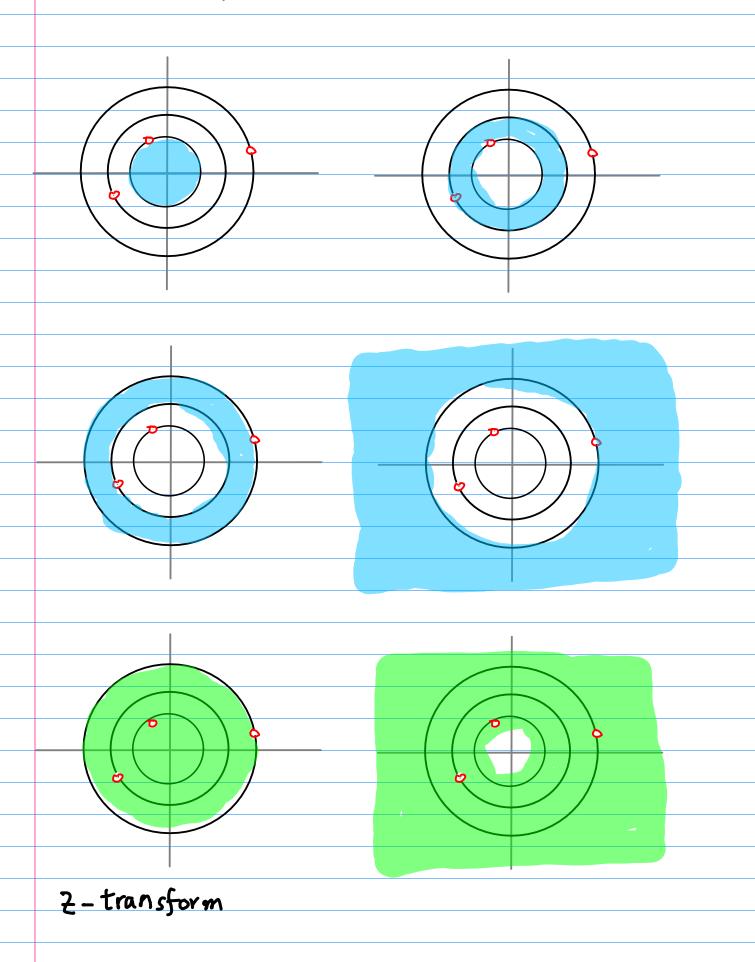


$$\int_{c}^{c} f(2) d2 = 2\pi i \operatorname{Res}(f(2), Z_{1}) + 2\pi i \operatorname{Res}(f(2), Z_{2}) + 2\pi i \operatorname{Res}(f(2), Z_{2})$$



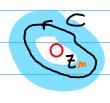
$$\int_{C'} f(z) dz = 2\pi i \operatorname{Res}(f(z), z_1)$$

$$+ 2\pi i \operatorname{Res}(f(z), z_2)$$



$$\int_{C''} f(z) dz = 2\pi i \operatorname{Res}(f(z), Z_i)$$

$$\int_{c''} f(z) dz = 0$$


Different D, Different Laurent Series

$$f(z) = \sum_{n=n_1}^{\infty} Q_n^{\{n\}} (z - z_m)^n$$

$$Q_n^{(m)} = \frac{1}{2\pi i} \oint_C \frac{f(z')}{(z'-z_n)^{n+i}} dz'$$

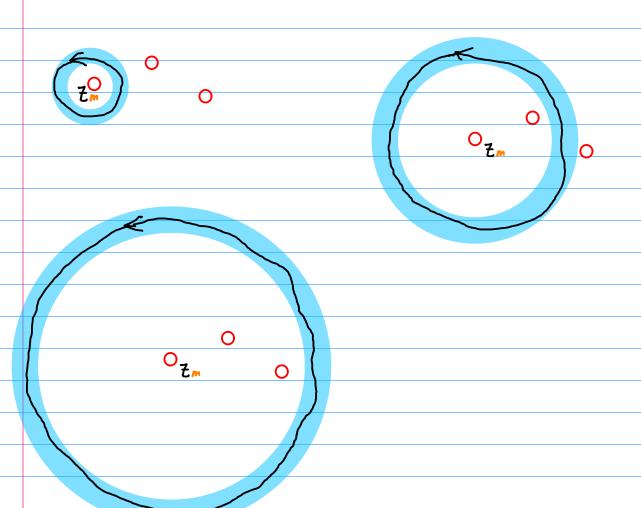
$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_n)^{n+i}}, z_n\right)$$

C is in the same region of analyticity of f(z) typically a circle centered on Zm

$$Z_k$$
 within C : Singularities of $\frac{f(z)}{(z-z_n)^{n+1}}$

 $n = n_{f,m}$ depends on f(z), z_m

 a_n depends on f(z), z_m , region of analyticity


Whether f(z) is singular at z=zm or not or at other points between z and zm We can expand f(z) about any point zm over powers of (z-zm).

$$f(z) = \sum_{n=n_1}^{\infty} a_n^{\{n\}} (z - z_m)^n$$

$$Q_{n}^{\{m\}} = \frac{1}{2\pi i} \oint_{C} \frac{f(\xi')}{(\xi' - \xi_{m})^{n+1}} d\xi'$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(\xi)}{(\xi - \xi_{m})^{n+1}}, \xi_{m} \right)$$

$$f(z) = \sum_{n=1}^{\infty} a_n^{\{n\}} (z - z_m)^n$$

$$Q_n^{\{m\}} = \frac{1}{2\pi i} \oint_C \frac{f(\xi')}{(\xi' - \xi_m)^{n+1}} d\xi'$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(\xi)}{(\xi - \xi_m)^{n+1}}, \xi_k \right)$$

analytic at Zm

n. >> 0

Taylor Series

general n, 2m = 0

MacLaurin Series

singular at Zm

general n,

Laurent Series

general n_i $\frac{2}{m} = 0$

Z - Transform

$$f(z) = \sum_{m=n_1}^{\infty} Q_n^{\{m\}} (z - z_m)^n$$

$$Q_n^{\{m\}} = \frac{1}{2\pi i} \oint_C \frac{f(z')}{(z' - z_m)^{n+i}} dz'$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z - z_m)^{n+i}}, z_m \right)$$

$$z_m = 0$$
 $a_{-n}^{\{0\}} = \beta(n)$ $n \rightarrow -n$

$$H(z) = \sum_{n=-\infty}^{\infty} R(-n) z^{n}$$

$$H(z) = \sum_{n=-\infty}^{\infty} R(n) z^{-n}$$

$$R(n) = \frac{1}{2\pi i} \oint_{c} \frac{H(z')}{z'^{n+1}} dz'$$

$$= \sum_{n=-\infty}^{\infty} Res\left(\frac{H(z)}{z^{n+1}}, z_{n}\right)$$

$$= \sum_{n=-\infty}^{\infty} Res\left(\frac{H(z)}{z^{n-1}}, z_{n}\right)$$

C is in the same region of analyticity of f(z) typically a circle centered on z_m

 \mathcal{E}_{k} within \mathcal{C} : Singularities of $\frac{f(z)}{(z-z_{m})^{n+1}}$

C is in the same region of analyticity of H(z) typically a circle centered on Zm

generally a circle centered on the origin may enclose any on all singularities of H(2) often the unit circle

Zk within C: singularities of H(z) zn-1

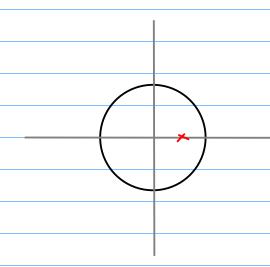
$$H(z) = \sum_{n=-\infty}^{\infty} k(n) z^{-n}$$
 $z \in R.0.0$

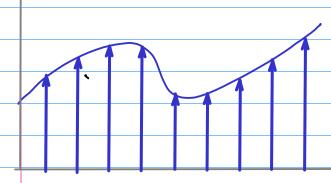
$$\beta(n) = \frac{1}{2\pi i} \oint_{C} H(\xi') \, \xi'^{n-1} \, d\xi' \qquad C \text{ in } R-0.C.$$

$$= \sum_{k} \operatorname{Res} \left(H(\xi) \, \xi^{n-1}, \, \xi_{k} \right)$$

- a power series representation
 of a function f(z) of a complex variable z
- a transform H(2) of a sequence of 1

$$X(z) = \frac{z}{z - \frac{1}{2}} \qquad \text{pole } z_0 = \frac{1}{2}$$


$$X[n] = \text{Res}\left(X(z)z^{n-1}, z_0\right) = \text{Res}\left(\frac{z}{z - \frac{1}{2}}z^{n-1}, \frac{1}{2}\right)$$


$$= \text{Res}\left(\frac{z^n}{z - \frac{1}{2}}, \frac{1}{2}\right) = \lim_{z \to \frac{1}{2}} (z - \frac{1}{2}) \frac{z^n}{z - \frac{1}{2}} = (\frac{1}{2})^n$$

$$\chi[n] = \frac{1}{2^{n}} \qquad N > 0$$

$$\frac{(\frac{1}{2})^{6} \cdot 2^{6} + (\frac{1}{2})^{7} \cdot 2^{-1} + (\frac{1}{2})^{3} \cdot 2^{-2} + (\frac{1}{2})^{3} \cdot 2^{-3} + \cdots}{1 - (\frac{1}{2} \cdot 2^{-1})}$$

$$= \frac{2}{2 - \frac{1}{2}}$$

X((t) continuous

Xs,c(t) sampled, continuous

$$\mathcal{I}_{s,c}(t) = \sum_{n=-\infty}^{+\infty} \chi(n) \, \delta_c(t-n\Delta t)$$

$$X_{s,\iota}(s) = X(i)$$
 $\xi = e^{sat}$

$$X_{s,c}(s) = \mathcal{L}\{T_{s,c}(t)\} = X(t)\Big|_{t=0}^{t=0}$$

$$T_{s,c}(t) \quad \text{an impulse train}$$

$$\text{whose (sefficients one given by } x[n] = x_{c}(n \text{ at})$$

Z-transform: a special Laurent series

$$\xi_{m} = 0 \qquad \begin{cases} 0 \\ \alpha_{-n} = \beta(n) \end{cases} \qquad n \to -\eta$$

$$f(z) = \sum_{n=n}^{\infty} Q_n (z - z_m)^n$$

$$Q_{n} = \frac{1}{2\pi i} \oint_{C} \frac{f(\xi')}{(\xi' - \xi_{m})^{n+1}} d\xi'$$

$$= \sum_{k} Res \left(\frac{f(\xi)}{(\xi - \xi_{m})^{n+1}}, \xi_{k} \right)$$

Time Reversal - Laplace Transform

the transform functions

$$X(s) = \int over negative powers e^{-st}$$
 for to O

$$X(z) = \int over negative powers z^{-n}$$
 for O

the time expansion functions

$$x(t) = \int oven negative powers e^{-st}$$
 for $t>0$
 $x(t) = \int oven negative powers e^{-n}$ for $n>0$

Time Reversal - Z-1: unit dulay, char eq (modes in Z*)

Stable System: him] must be asbsolutely summable

$$|\mathcal{Z}^n| = |\mathcal{Z}^n|$$

A Stable system,

H(Z) must converge on the unit circle |Z|=1

ROC (Region of Convergence) must include the unit circle

regardless of causality of R[m]

	$H(z)\Big _{z=1} = H(e^{j\widehat{\omega}})$ DTFT of R[r]
1. 4	Oll Stalle cogners a must be a consumer ATTT
discrete continuous	all stable sequence must have convergent DTFTs all stable signal must have convergent CTFTs
CON (111/08 M Z	om stable signar muse have convergent ciris
	C← unit circle ₹= ejû
	ZT DTFT identical formulas

hen] causal

$$H(z) = \sum_{n=-\infty}^{+\infty} h(n) z^{-n} = \sum_{n=0}^{+\infty} h(n) z^{-n} \quad n \in [0, \infty)$$

for finite values of n,

each term must be finite as long as 2+0

For the sum to convenge,

h[7] Z-1 must vanish as n > 00

| 2/ > ra Zh = ra e jo

Zh is the largest magnitude

geometrically increasing component

geometric components - as poles

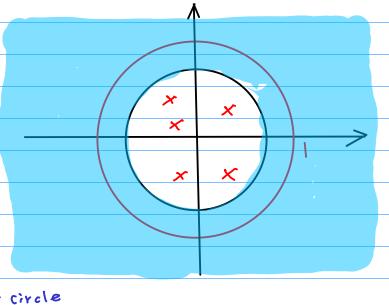
$$Z\left\{z_{i}^{n}u(n)\right\} = \frac{1}{1-\left(\frac{2\epsilon}{E}\right)} = \frac{2}{2-2\epsilon}$$

ROC of a causal sequence h[n]
outside the radius of the langest magnitude pole of H(2)

ROC of a causal signal h(t)

to the right of the rightmost pole of Hc(s)

if h[n] is a Stable, causal sequence, the unit circle must be included in the ROC o Causal fi[n]

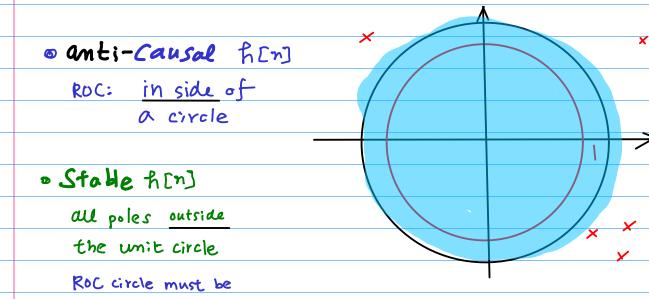

Roc: outside of a circle

· Stable h[n]

the unit circle

ROC circle must be

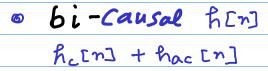
Smaller than the unit circle



> all the geometric components of R[n]: modes

must decay with increasing n

all the poles of H(Z) must be within the unit circle


all the poles of He(s) must be in the left half plane

> all the geometric components of R[n]: modes

must decay with decreasing n

larger than the unit circle

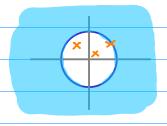
outside inside

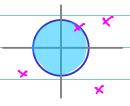
max mag < min mag Overlapped ROC

· Stable h[n]

all poles outside

the unit circle

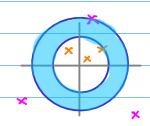

ROC circle must include the unit circle


o bi-causal fi[n]

+ hac [n]

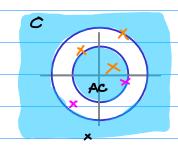
causal comp.

anti-causal comp



outside a circle

inside a circle


max mag < min mag

overlapped ROC

max mag > min mag

non-overlapping ROC

· Stable h[n]

all poles outside the large circle

inside the Small circle

ROC circle must include the unit circle

only one annulus include the unit circle

only one stable sequence

Existence of the z-Transform

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n} = \sum_{n=0}^{\infty} \frac{x[n]}{z^n}$$

the existence of the z-transform is guaranteed if

$$|\chi(\xi)| \leq \sum_{n=0}^{\infty} \frac{|\chi(n)|}{|\xi^n|} < \infty$$
 for some $|\xi|$

any signal X[n] that grows no faster than an exponential signal ron, for some rosatisfies the above condition

if |xcn3| ≤ ron for some ro

then
$$|X(z)| \leq \sum_{n=0}^{\infty} \left(\frac{r_0}{|z|}\right)^n = \frac{1}{1 - \frac{r_0}{|z|}}$$
 [21> r_0

therefore X(2) exists for 1217 %

Almost all practical signal satisfy this condition $|x[n]| \leq r_0^n$ for some r_0

and z-transformable

Some signal models (e.g. $r^{n^{2}}$) grows faster than the exponential signal r^{n} (for any r^{n}) and do not satisfy this condition and are not z-transformable

Such signals are of little practical on theoretical interest Even such signals over a finite interval are z-transformable

Region of Convergence

$$X(z) = A \sum_{n=-\infty}^{\infty} \propto^n u[n] z^{-n} = A \sum_{n=-\infty}^{\infty} \propto^n z^{-n} = A \sum_{n=-\infty}^{\infty} \left(\frac{\alpha}{z}\right)^n$$

Converge $\left|\frac{\alpha}{2}\right| < 1$ $\left|z\right| > |\alpha|$

open exterior of a circle of radius | \alpha|

the sum of a geometric series

$$\chi(z) = A \frac{1}{1 - \frac{c^2}{2}} = \frac{A}{1 - \alpha z^{-1}} = A \frac{z}{z - \alpha}$$
 $|z| > |\alpha|$

$$X(j\hat{u}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\hat{u}n}$$

DTFT

DTFT of the unit sequence u[n]

$$X(e^{-j\widehat{w}n}) = \sum_{n=-\infty}^{+\infty} U[n]e^{-j\widehat{w}n} = \sum_{n=0}^{\infty} e^{-j\widehat{w}n}$$

not converge

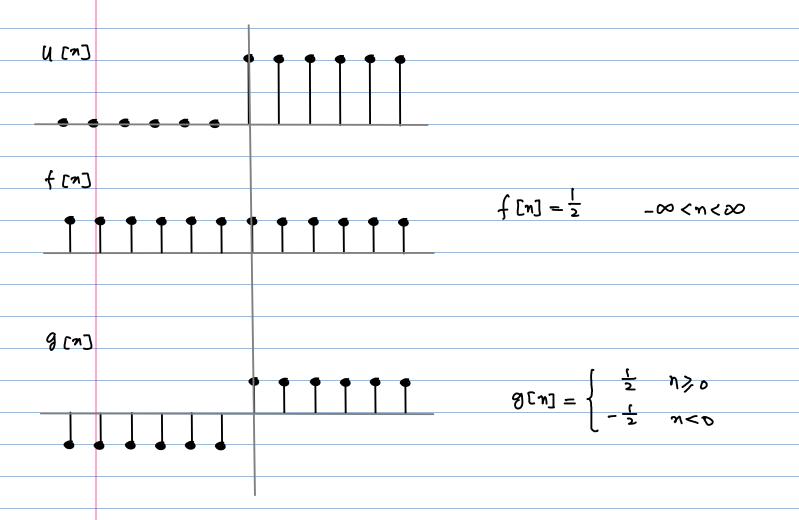
$$\hat{\omega} = 0 \qquad \sum_{n=0}^{\infty} 1^{n} \qquad d_{i} \text{verge}$$

$$\hat{\omega} = \pi \qquad \sum_{n=0}^{\infty} (-1)^{n} \qquad \text{oscillates}$$

$$\hat{\omega} = \frac{\pi}{2} \qquad \sum_{n=0}^{\infty} (j)^{n}$$

The DTFTs of some commonly used functions do not exist in the strict sense.

But even though the DTFT does not exist,
the z-transform does exist.


$$\chi(s) = \sum_{n=-\infty}^{+\infty} \mu(n) \, s^{-n} = \sum_{n=0}^{\infty} \, z^{-n}$$

$$|2|7|$$
 $X(4) = \frac{2}{2-1} = \frac{1}{|-2|^4}$

$$X(z) = \frac{z}{z-1}$$
 pole $z=0$, zero $z=0$

$$X(z) = \frac{1}{1-z^{-1}}$$
 Useful when a system is synthesized

From a z-domain transfer function

$$N[n] = f(n) + g(n)$$

$$S[n] = g(n) - g(n-1)$$

$$G(e^{j\hat{u}}) = \frac{1}{1 - e^{-j\hat{u}}}$$

$$F(e^{j\hat{\omega}}) = \pi \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k) \qquad (jmpulse train)$$

$$U(e^{j\hat{\omega}}) = \frac{1}{1 - e^{-j\hat{\omega}}} + \pi \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$$

Discrete Time Exponential rn

Continuous time exponential ext

$$e^{\lambda t} = \mathcal{V}^{t}$$
 $(e^{\lambda})^{t} = \mathcal{V}^{t}$

$$e^{\lambda} = \mathcal{V}$$

$$\lambda = \ln \mathcal{V}$$

$$e^{-0.3t} = (0.9408)^t$$

$$4^t = e^{1.38lt}$$

Continuous time analysis $e^{\lambda t}$ discrete time analysis χ^n

$$e^{\lambda h} = \mathcal{V}^{n} \qquad (e^{\lambda})^{n} = \mathcal{V}^{n}$$

$$e^{\lambda} = \mathcal{V}$$

$$\lambda = \ln \mathcal{V}$$

exn

exponentially grows if Re $\lambda > 0$ (λ in RHP) exponentially decays if Re $\lambda < 0$ (λ in LHP) oscillates on constant if Re $\lambda = 0$ (λ in imag axis)

the location of > in the complex plain indicates whether

Dext Will grow exponentially

@ exe will decay exponentially

3 ext will oscillates with constant amplitude

constant signal: oscillation with zero frequency

 e^{jS2n} $\lambda = jS2$ imaginary axis

(onstant complitude oscillating signal $e^{j\Re n} = (e^{j\Re n})^n = y^n$ $y = e^{j\Re n}$ | y = 1

if I lies on the unit circle,

the imaginary axis in the 2 plane the unit circle in the 2 plane

$$exponentially decaying$$

$$r = e^{\lambda} = e^{\alpha+jb} = e^{\alpha}e^{jb}$$

$$|x| - |e^{\lambda}| = |e^{\alpha}| \cdot |e^{jb}| - |e^{\alpha}| = e^{\alpha}$$

$$|x| = e^{\alpha} < 1 \quad \text{inside the Unit circle}$$

$$r^n : exponentally decaying$$

$$|x| = e^{\alpha} > 1 \quad \text{outside the Unit circle}$$

$$r^n : exponentally growing$$

入一	plane		r-plane	
	nary axis	→	the unit circle	
the L)		\longrightarrow	insiae of the	
the P	HP.	\rightarrow	outside of the	

•