
Laurent Series and z-Transform
- Geometric Series
Double Pole Properties A

20190226 Tue

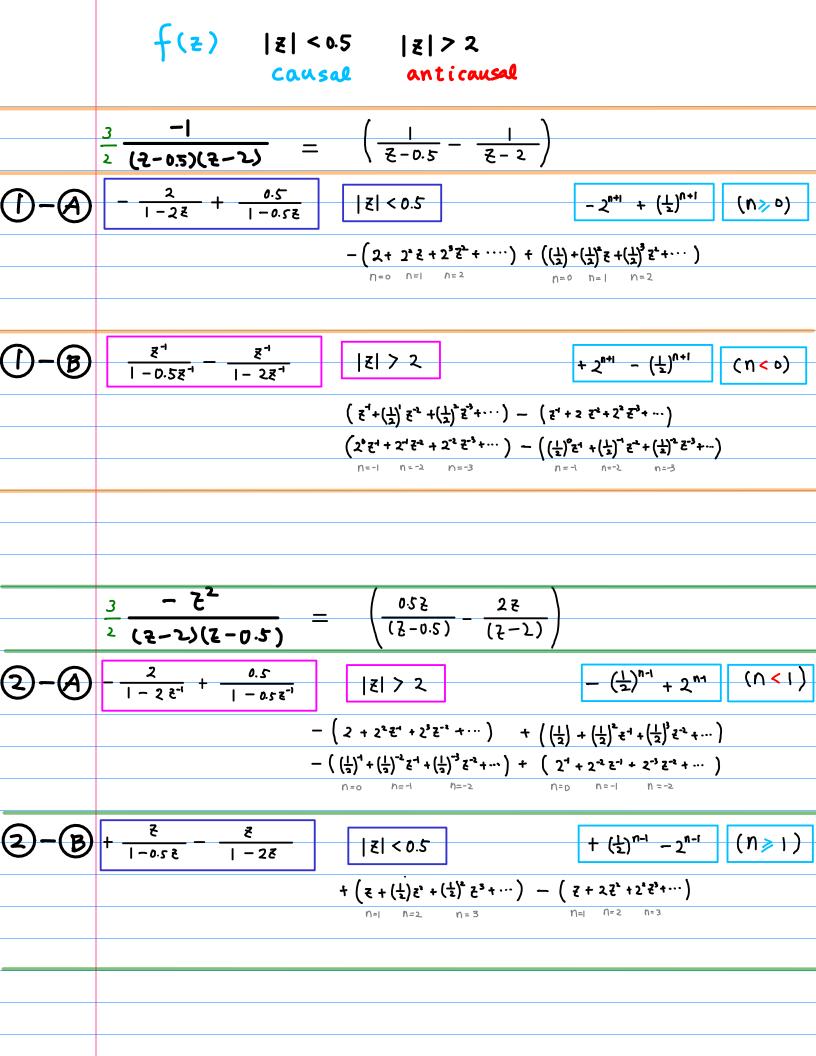
Copyright (c) 2016 - 2019 Young W. Lim.

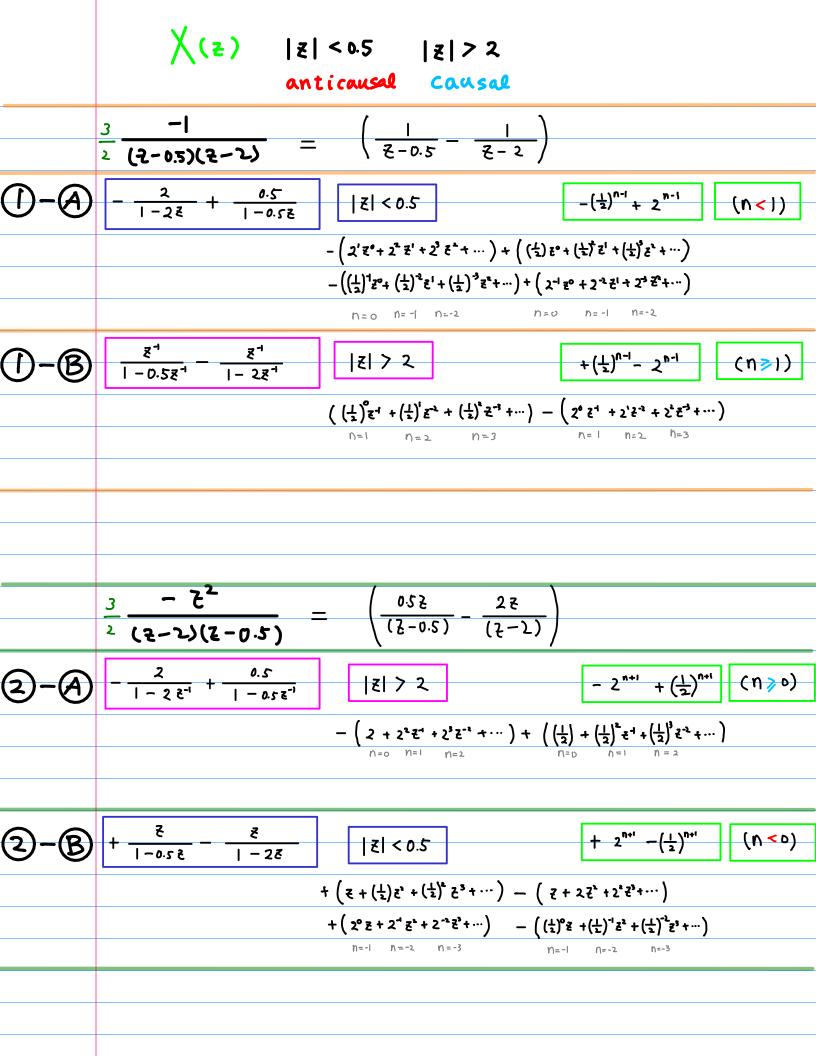
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

$$f(z) = \begin{cases} f_{1}(z) \\ f_{2}(z^{2}) \\ f_{3}(z^{2}) \\ \chi_{1}(z) \\ \chi_{1}(z) \\ \chi_{2}(z^{2}) \\ \chi_{1}(z^{2}) \\ \chi_{2}(z^{2}) \\ \chi_{3}(z^{2}) \\ \chi_{4}(z^{2}) \\ \chi_{4}(z$$

$-\frac{2}{ -2z } + \frac{0.5}{ -0.5z } z < 0.5$	$-\frac{2}{ -(2z^{-1}) ^{+}} \xrightarrow{0.5} z > 2$
• <u> </u> • <u>2</u>	· <u>₹</u> ·28
$+\frac{z^{-1}}{1-0.5 z^{-1}} - \frac{z^{-1}}{1-2 z^{-1}} z > 2$	$+ \frac{z}{1-0.5 z} - \frac{z}{1-2 z} z < 0.5$
$-\frac{2}{ -2\xi } + \frac{0.5}{ -0.5\xi } \xi < 0.5$	$-\frac{2}{ -2\xi^{-1} } + \frac{0.5}{ -0.5\xi^{-1} } \xi > 2$
·28 · 2	$\cdot \frac{2}{z}$ $\cdot \frac{1}{2z}$
$+\frac{z^{-1}}{ -0.5z^{-1} } - \frac{z^{-1}}{ -2z^{-1} } z > 2$	$+\frac{z}{1-0.5z}-\frac{z}{1-2z}$

Causal Seguence an & Xn


$\frac{2}{ -2\xi } + \frac{0.5}{ -0.5\xi }$	Z <0.5	$-\frac{2}{ -2\xi^{-1} } + \frac{0.5}{ -0.5\xi^{-1} } \xi > 2$
-22 ' -0.52		-22-1 -0.52-1
causal f ₁ (2) =		Causal Y, (Z) =
-[2+2 [°] 2 [°] + 2 [°] 2 [°] + ···]	-2 ⁿ⁺ⁱ	-[2'Z°+2`Z ⁻¹ +2 ³ Z ⁻² ···] -2 ¹¹⁺¹
$+\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}\xi'+\left(\frac{1}{2}\right)^{3}\xi^{2}+\cdots\right]$	+(<u>+</u>) ⁿ⁺¹	$+ \left[\left(\frac{1}{2}\right)^{1} \overline{z}^{0} + \left(\frac{1}{2}\right)^{2} \overline{z}^{-1} + \left(\frac{1}{2}\right)^{3} \overline{z}^{-2} + \cdots \right] + \left(\frac{1}{2}\right)^{n+1}$
0 1 2		0 1 2
		7 7
$\frac{z^{-1}}{1-0.5 z^{-1}} - \frac{z^{-1}}{1-2 z^{-1}}$	2 > 2	$\frac{z}{1-0.5z} - \frac{z}{1-2z} z < 0.5$
Causal X2(2)		causal g, (Z)
$+ \left[\left(\frac{1}{2}\right)^{2} \overline{z}^{1} + \left(\frac{1}{2}\right)^{1} \overline{z}^{-3} + \left(\frac{1}{2}\right)^{2} \overline{z}^{-3} + \cdots \right]$	+ (ᡶᢩ) ⁿ⁻ⁱ	$+\left[\left(\frac{1}{2}\right)^{0} \overline{z}^{1} + \left(\frac{1}{2}\right)^{1} \overline{z}^{2} + \left(\frac{1}{2}\right)^{2} \overline{z}^{3} + \cdots\right] + \left(\frac{1}{2}\right)^{n-1}$
$-\left[2^{\circ}\xi^{-1}+2^{1}\xi^{-2}+2^{2}\xi^{-3}+\cdots\right]$		$-\left[2^{0}z'+2^{1}z^{2}+2^{2}z^{3}+\cdots\right] -2^{n}$
1 2 3		2 3


	Anti-causal seguence	an & In
$\begin{aligned} \mathcal{L} &= \left(\frac{1}{2}\right)^{-1} \\ \left(\frac{1}{2}\right) &= \mathcal{L}^{-1} \end{aligned}$	$-\frac{2}{ -2\xi } + \frac{0.5}{ -0.5\xi } \xi < 0.5$ anti-causal $\chi_1(\xi)$ $-\left[\left(\frac{1}{2}\right)^{-1} + \left(\frac{1}{2}\right)^{-2}\xi^{1} + \left(\frac{1}{2}\right)^{-3}\xi^{2} + \cdots\right] - \left(\frac{1}{2}\right)^{n-1}$ $+\left[2^{-1} + 2^{-2}\xi^{1} + 2^{-3}\xi^{2} + \cdots\right] + 2^{n-1}$ 0 - -2	$ \frac{2}{ -2\xi^{-1} } + \frac{0.5}{ -0.5\xi^{-1} } z > 2 $ $ anti-causal g_{1}(z) $ $ -\left[\left(\frac{1}{2}\right)^{-\frac{1}{2}0} + \left(\frac{1}{2}\right)^{-\frac{3}{2}-1} + \left(\frac{1}{2}\right)^{-\frac{3}{2}-2} + \cdots\right] - \left(\frac{1}{2}\right)^{\frac{3}{2}-1} $ $ +\left[2^{\frac{3}{2}}\xi^{0} + 2^{\frac{3}{2}}\xi^{-1} + 2^{-\frac{3}{2}}\xi^{-\frac{1}{2}} + \cdots\right] + 2^{n-1} $ $ 0 - -2 $
$\mathcal{Z} = \left(\frac{1}{2}\right)^{-1}$	$\frac{z^{-1}}{1-0.5 z^{-1}} - \frac{z^{-1}}{1-2 z^{-1}} z > 2$ anti-causal $f_1(z)$ $+ [2^{\circ} z^{1} + 2^{-1} z^{-2} + 2^{-2} z^{-3} + \cdots] + 2^{n+1}$	$+\frac{z}{1-0.5 z} - \frac{z}{1-2z} z < 0.5$ anti-causal $Y_{2}(z)$ $+ [2^{0}z' + 2^{4}z^{2} + 2^{2}z^{3} + \cdots] + 2^{n+1}$
$\frac{2}{\left(\frac{1}{2}\right)} = 2^{-1}$	$-\left[\left(\frac{1}{2}\right)_{z}^{0} + \left(\frac{1}{2}\right)^{-1} z^{-2} + \left(\frac{1}{2}\right)^{-2} z^{-3} + \cdots\right] - \left(\frac{1}{2}\right)^{n+1}$	$-\left[\left(\frac{1}{2}\right)^{0}z^{1} + \left(\frac{1}{2}\right)^{-1}z^{2} + \left(\frac{1}{2}\right)^{-2}z^{3} + \cdots\right] - \left(\frac{1}{2}\right)^{m+1}$ $-1 -2 -3$

$\frac{2}{ -2z } + \frac{0.5}{ -0.5z } z < 0.5$	$-\frac{2}{ -2\xi^{-1} } + \frac{0.5}{ -0.5\xi^{-1} } \xi > 2$
causal f ₁ (z) =	anti-causal g, (Z)
- [2+2 ² z'+2 ³ z+···] -2 ^M	$-\left[\left(\frac{1}{2}\right)^{2}\overline{\xi}^{0}+\left(\frac{1}{2}\right)^{2}\overline{\xi}^{-1}+\left(\frac{1}{2}\right)^{2}\overline{\xi}^{-2}+\cdots\right]-\left(\frac{1}{2}\right)^{N-1}$
$+\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{n}\xi'+\left(\frac{1}{2}\right)^{3}\xi^{n}+\cdots\right]+\left(\frac{1}{2}\right)^{n+1}$	+ [2 ⁴ z ⁶ + 2 ⁻⁵ z ⁻¹ + 2 ⁻³ z ⁻⁵ + ···] + 2 ⁿ⁻¹
0 1 2	0 - -2
anti-causal X,(Z)	causal Y, (Z) =
$-\left[\left(\frac{1}{2}\right)^{-1}+\left(\frac{1}{2}\right)^{-2}\overline{z}^{1}+\left(\frac{1}{2}\right)^{-3}\overline{z}^{2}+\cdots\right]-\left(\frac{1}{2}\right)^{n-1}$	$-\left[2^{1}\overline{2}^{0}+2^{3}\overline{2}^{-1}+2^{3}\overline{2}^{-2}+\cdots\right] -2^{n+1}$
+ [2 ⁻¹ + 2 ⁻² 2 ¹ + 2 ⁻³ 2 ⁵ + ···] + 2 ⁿ⁻¹	$+\left[\left(\frac{1}{2}\right)^{1}\overline{z}^{\circ}+\left(\frac{1}{2}\right)^{2}\overline{z}^{-1}+\left(\frac{1}{2}\right)^{3}\overline{z}^{-2}+\cdots\right] +\left(\frac{1}{2}\right)^{N+1}$
0 - -2	0 1 2
<u>ξ⁻¹</u> <u>ζ⁻¹</u>	2 Z
$+\frac{z^{-1}}{1-0.5 z^{-1}} - \frac{z^{-1}}{1-2 z^{-1}} z > 2$	$+\frac{z}{ -0.5z}-\frac{z}{ -2z} z <0.5$
	$\frac{z}{1-0.5z} - \frac{z}{1-2z} z < 0.5$ Causal g, (z)
anti-causal filt)	$Causal \mathcal{G}_{\nu} (\mathcal{E}) $ $+ \left[\left(\frac{1}{2}\right)^{0} \mathcal{E}^{1} + \left(\frac{1}{2}\right)^{1} \mathcal{E}^{2} + \left(\frac{1}{2}\right)^{2} \mathcal{E}^{3} + \cdots \right] + \left(\frac{1}{2}\right)^{n-1}$
	causal g, (Z)
anti-causal $f_{1}(z)$ + $[2^{\circ}z^{1}+2^{-1}z^{-2}+2^{-2}z^{-3}+\cdots]+2^{n+1}$	$Causal \mathcal{G}_{\nu} (\mathcal{E}) $ $+ \left[\left(\frac{1}{2}\right)^{0} \mathcal{E}^{1} + \left(\frac{1}{2}\right)^{1} \mathcal{E}^{2} + \left(\frac{1}{2}\right)^{2} \mathcal{E}^{3} + \cdots \right] + \left(\frac{1}{2}\right)^{n-1}$
anti-causal $f_{1}(z)$ + $\left[2^{\circ}z^{1}+2^{-1}z^{-2}+2^{-2}z^{-3}+\cdots\right] + 2^{n+1}$ - $\left[\left(\frac{1}{2}\right)^{\circ}z^{-4}+\left(\frac{1}{2}\right)^{-1}z^{-2}+\left(\frac{1}{2}\right)^{-2}z^{-3}+\cdots\right] - \left(\frac{1}{2}\right)^{n+1}$	$Causal g_{\nu}(\xi) + \left[\left(\frac{1}{2}\right)^{0} \xi^{1} + \left(\frac{1}{2}\right)^{1} \xi^{2} + \left(\frac{1}{2}\right)^{2} \xi^{3} + \cdots \right] + \left(\frac{1}{2}\right)^{n-1} - \left[2^{0} \xi^{1} + 2^{1} \xi^{2} + 2^{2} \xi^{3} + \cdots \right] -2^{n-1}$
anti-causal $f_{1}(z)$ + $\left[2^{\circ}z^{-1}+2^{-1}z^{-2}+2^{-2}z^{-3}+\cdots\right] + 2^{n+1}$ - $\left[\left(\frac{1}{2}\right)^{\circ}z^{-4}+\left(\frac{1}{2}\right)^{-1}z^{-2}+\left(\frac{1}{2}\right)^{-2}z^{-3}+\cdots\right] - \left(\frac{1}{2}\right)^{n+1}$ - $\left[-1, -2, -3\right]$	$\begin{array}{c} causal g_{\nu}(\xi) \\ + \left[\left(\frac{1}{2}\right)^{0} \xi^{1} + \left(\frac{1}{2}\right)^{1} \xi^{2} + \left(\frac{1}{2}\right)^{2} \xi^{3} + \cdots \right] + \left(\frac{1}{2}\right)^{n-1} \\ - \left[2^{0} \xi^{1} + 2^{1} \xi^{2} + 2^{2} \xi^{3} + \cdots \right] -2^{n-1} \\ 1 2 3 \end{array}$
anti-causal $f_{1}(z)$ + $[2^{\circ}z^{1}+2^{-1}z^{-1}+2^{-1}z^{-3}+\cdots] +2^{n+1}$ - $[(\frac{1}{2})^{\circ}z^{-1}+(\frac{1}{2})^{-1}z^{-3}+(\frac{1}{2})^{-2}z^{-3}+\cdots] -(\frac{1}{2})^{n+1}$ -1 -2 -3 Causal $X_{2}(z)$	$\begin{array}{c} causal g_{\nu}(z) \\ +\left[\left(\frac{1}{2}\right)^{0}z^{1} + \left(\frac{1}{2}\right)^{1}z^{2} + \left(\frac{1}{2}\right)^{2}z^{3} + \cdots\right] + \left(\frac{1}{2}\right)^{n-1} \\ -\left[2^{0}z^{1} + 2^{1}z^{2} + 2^{2}z^{3} + \cdots\right] -2^{n-1} \\ 2 3 \\ anti-causal Y_{2}(z) \end{array}$

$= \frac{2}{ -2z } + \frac{0.5}{ -0.5z } z < 0.5$	$-\frac{2}{ -2z^{-1}}+\frac{0.5}{ -0.5z^{-1}}$
$f(z) = -[2 + 2^{3}z^{2} + 2^{3}z^{2} + \cdots]$	$f(z) = -\left[\left(\frac{1}{2}\right)^{-1} z^{2} + \left(\frac{1}{2}\right)^{-2} z^{-1} + \left(\frac{1}{2}\right)^{-2} z^{-2} + \cdots\right]$
$+\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{3} \not\in +\left(\frac{1}{2}\right)^{3} \not\in +\cdots\right]$	+ [2 ⁻¹ z ⁻¹ z ⁻¹ z ⁻¹ z ⁻¹ z ⁻¹ +]
$(\lambda_n = -2^{n+1} + \left(\frac{1}{2}\right)^{n+1} (n \ge 0)$	$\Omega_n = -\left(\frac{1}{2}\right)^{n-1} + 2^{n-1} (n <))$
$X (Z) = -\left[\left(\frac{1}{2}\right)^{-1} + \left(\frac{1}{2}\right)^{-2} z^{1} + \left(\frac{1}{2}\right)^{-3} z^{2} + \cdots\right]$	$X(z) = -[2^{1}z^{0} + 2^{3}z^{-1} + 2^{3}z^{-2} + \cdots]$
+ $[2^{-1} + 2^{-2} \epsilon' + 2^{-3} \epsilon^{+} + \cdots]$	$+ \left[\left(\frac{1}{2}\right)^{3} \overline{z}^{0} + \left(\frac{1}{2}\right)^{3} \overline{z}^{-1} + \left(\frac{1}{2}\right)^{3} \overline{z}^{-1} + \cdots \right]$
$\chi_n = -\left(\frac{1}{2}\right)^{n-1} + 2^{n-1} (n < [)$	$\chi_n = -2^{n+1} \pm (\frac{1}{2})^{n+1} (n \ge 0)$
$\frac{z^{-1}}{ -0.5 z^{-1}} - \frac{z^{-1}}{ -2 z^{-1}} z > 2$	$+ \frac{z}{1-0.5z} - \frac{z}{1-2z} z < 0.5$
- (そ) = + [2°ぎ+ 2 ⁻¹ ٤ ⁻² + 2 ⁻² ٤ ⁻³ +…]	$f(z) = + \left[\left(\frac{1}{2} \right)^{z'} + \left(\frac{1}{2} \right)^{z'} + \left(\frac{1}{2} \right)^{z'} + \left(\frac{1}{2} \right)^{z'} + \cdots \right]$
$f'(z) = + \left[2^{\circ} z^{i} + 2^{-i} z^{-2} + 2^{-2} z^{-3} + \cdots \right] - \left[\left(\frac{1}{2} \right)^{\circ} z^{i} + \left(\frac{1}{2} \right)^{-1} z^{-2} + \left(\frac{1}{2} \right)^{-2} z^{-3} + \cdots \right]$	$f(z) = + \left[\left(\frac{1}{2} \right)^{0} z^{1} + \left(\frac{1}{2} \right)^{1} z^{2} + \left(\frac{1}{2} \right)^{2} z^{3} + \cdots \right] \\ - \left[2^{0} z^{1} + 2^{1} z^{2} + 2^{2} z^{3} + \cdots \right]$
$-\left[\left(\frac{1}{2}\right)^{0}\overline{z}^{4}+\left(\frac{1}{2}\right)^{-1}\overline{z}^{-2}+\left(\frac{1}{2}\right)^{-2}\overline{z}^{-3}+\cdots\right]$	$f(z) = + \left[\left(\frac{1}{2} \right)^{z^{1}} + \left(\frac{1}{2} \right)^{z^{2}} + \left(\frac{1}{2} \right)^{z^{3}} + \cdots \right] \\ - \left[2^{0} z^{1} + 2^{1} z^{2} + 2^{2} z^{3} + \cdots \right] \\ \Delta_{n} = + \left(\frac{1}{2} \right)^{n-1} - 2^{n-1} (n \ge 1)$
$-\left[\left(\frac{1}{2}\right)^{0}\overline{z}^{-1}+\left(\frac{1}{2}\right)^{-1}\overline{z}^{-2}+\left(\frac{1}{2}\right)^{-2}\overline{z}^{-3}+\cdots\right]$	$-\left[2^{0}\overline{z}'+2^{1}\overline{z}^{2}+2^{2}\overline{z}^{3}+\cdots\right]$
$-\left[\left(\frac{1}{2}\right)^{2} \overline{z}^{4} + \left(\frac{1}{2}\right)^{-1} \overline{z}^{-2} + \left(\frac{1}{2}\right)^{-2} \overline{z}^{-3} + \cdots\right]$ $\mathcal{A}_{n} = \div 2^{n+1} - \left(\frac{1}{2}\right)^{n+1} (n < 0)$	$-\left[2^{0}\overline{z}'+2^{1}\overline{z}^{2}+2^{2}\overline{z}^{3}+\cdots\right]$
$f(z) = + \left[2^{\circ} z^{1} + 2^{-1} z^{-2} + 2^{-2} z^{-3} + \cdots \right]$ $- \left[\left(\frac{1}{2} \right)^{\circ} z^{1} + \left(\frac{1}{2} \right)^{-1} z^{-2} + \left(\frac{1}{2} \right)^{-2} z^{-3} + \cdots \right]$ $a_{n} = + 2^{n+1} - \left(\frac{1}{2} \right)^{n+1} (n < o)$ $X (z) = + \left[\left(\frac{1}{2} \right)^{\circ} z^{1} + \left(\frac{1}{2} \right)^{1} z^{-3} + \left(\frac{1}{2} \right)^{2} z^{-3} + \cdots \right]$ $- \left[2^{\circ} z^{-1} + 2^{1} z^{-2} + 2^{2} z^{-3} + \cdots \right]$	$-\left[2^{0} \overline{z}^{1} + 2^{1} \overline{z}^{2} + 2^{2} \overline{z}^{3} + \cdots\right]$ $\Delta_{n} = + \left(\frac{1}{2}\right)^{n-1} - 2^{n-1} (n \ge 1)$

()-	Q-A	
()-B	2-B	

$$f(z) \longrightarrow \Delta n$$

$$\chi(z) \longrightarrow \chi n$$

$$(D-A) = 2 - A$$

$$-\frac{2}{1-2z} + \frac{\rho s}{1-\rho s z} |z| < 0.5$$

$$-\frac{2}{1-2z} + \frac{\rho s}{1-\rho s z} |z| < 2$$

$$\Delta n = -z^{**} + (\frac{1}{2})^{n+1} \quad (n \ge 0) \qquad \Delta n = -(\frac{1}{2})^{n+1} + 2^{**} \quad (n < 1)$$

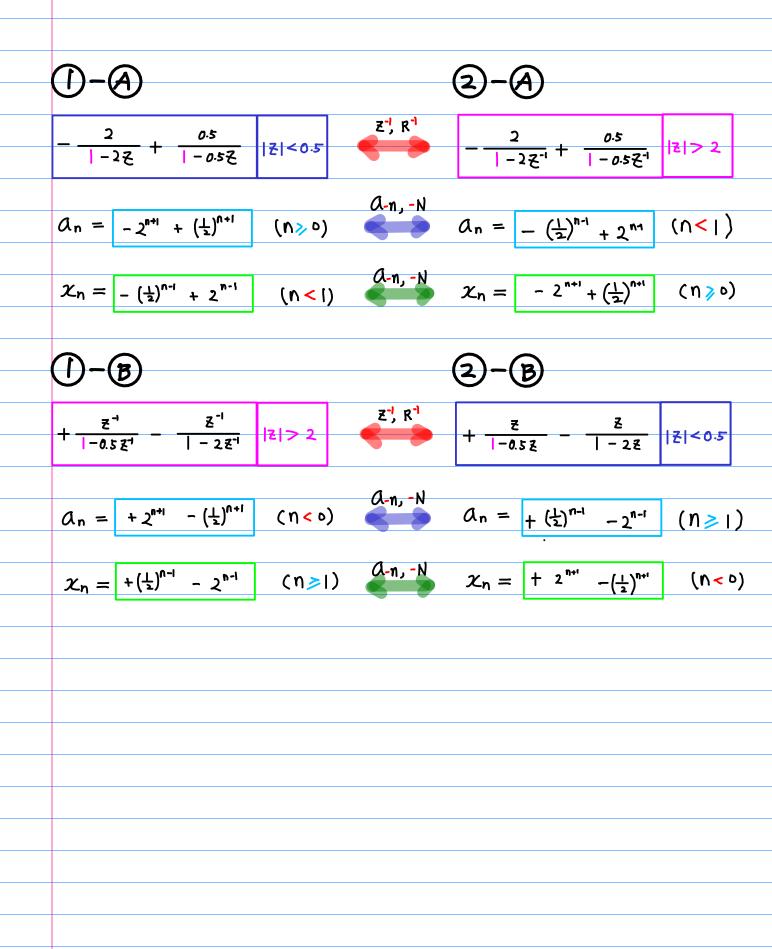
$$\chi_n = -(\frac{1}{2})^{n+1} + 2^{n-1} \quad (n < 1) \qquad \chi_n = -2^{**} + (\frac{1}{2})^{**} \quad (n \ge 0)$$

$$(D-B) = 2 - B$$

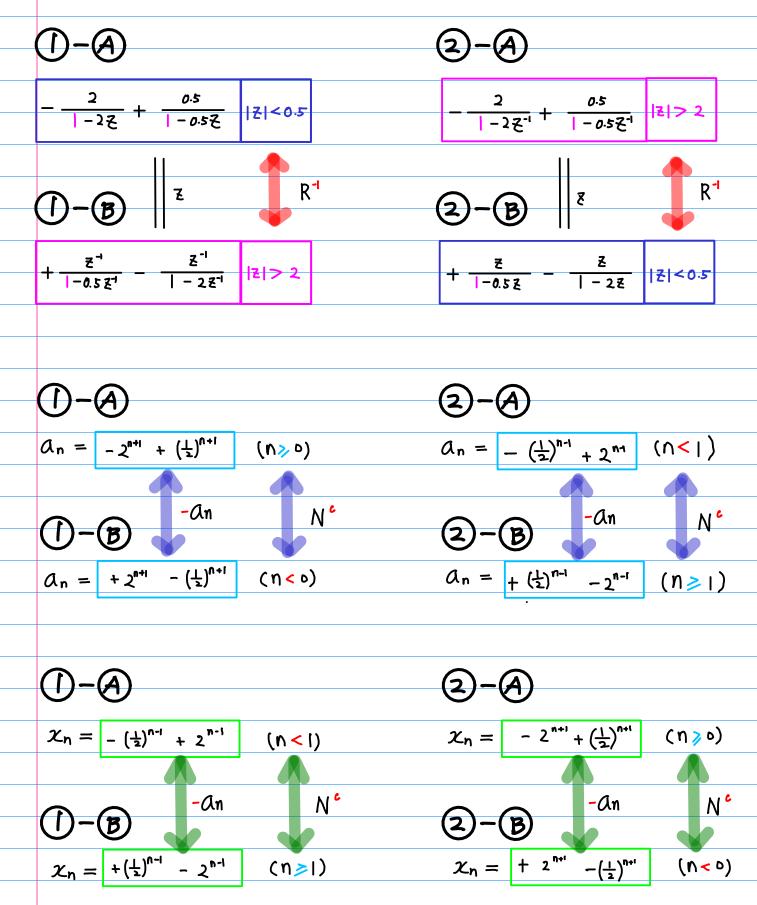
$$+ \frac{z^{**}}{1-\rho s z} - \frac{z^{**}}{1-2z^{**}} \quad |z| > 2$$

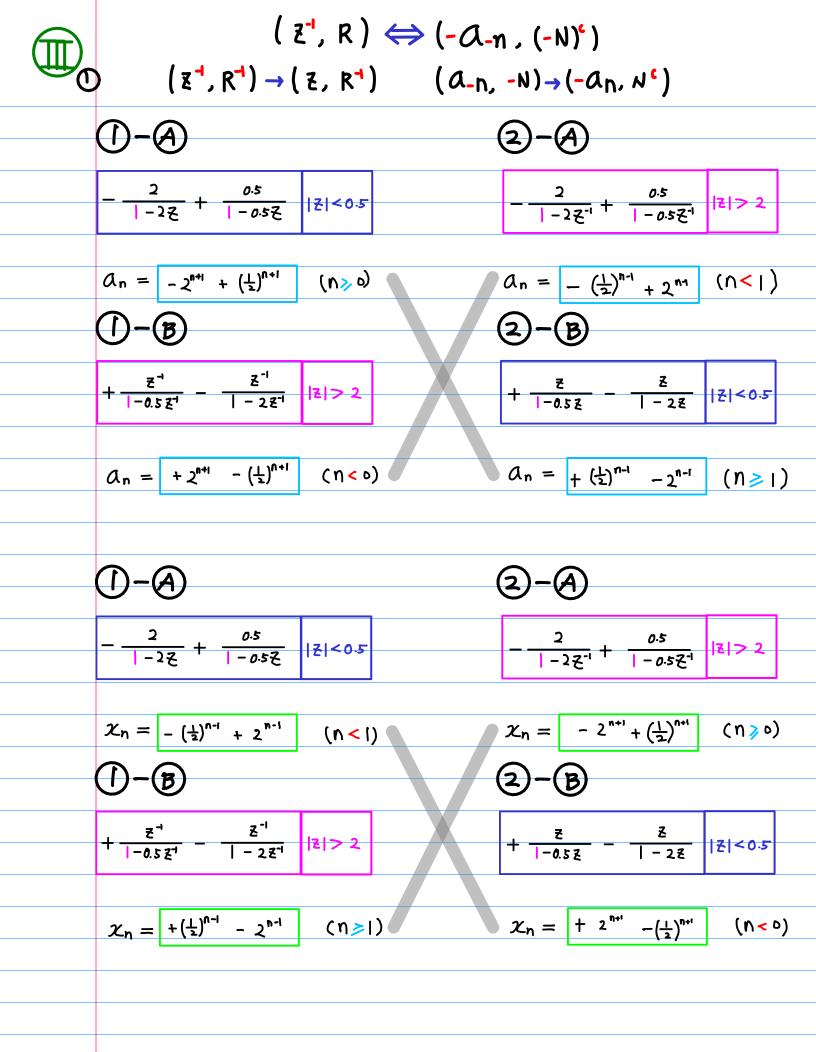
$$+ \frac{z}{1-\rho s z} - \frac{z}{1-2z} \quad |z| < 0.5$$

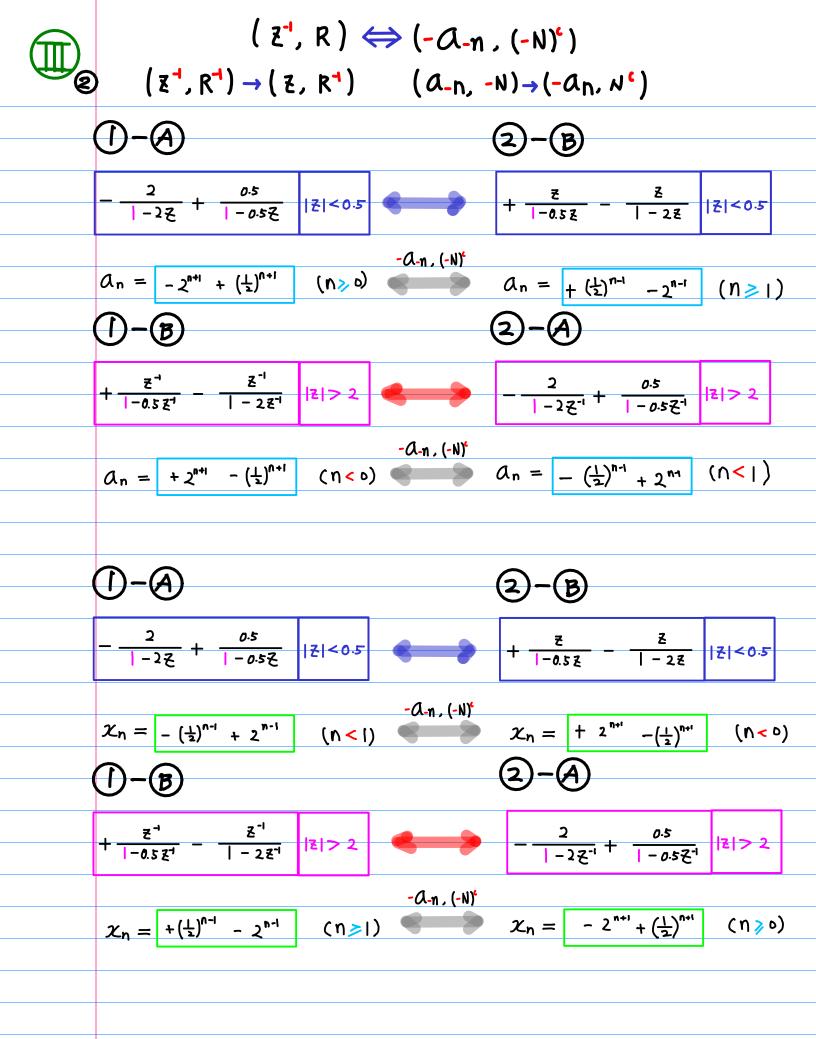
$$\Delta_n = +z^{**} - (\frac{1}{2})^{**} \quad (n < 0) \qquad \Delta_n = +(\frac{1}{2})^{**} - 2^{**} \quad (n \ge 1)$$

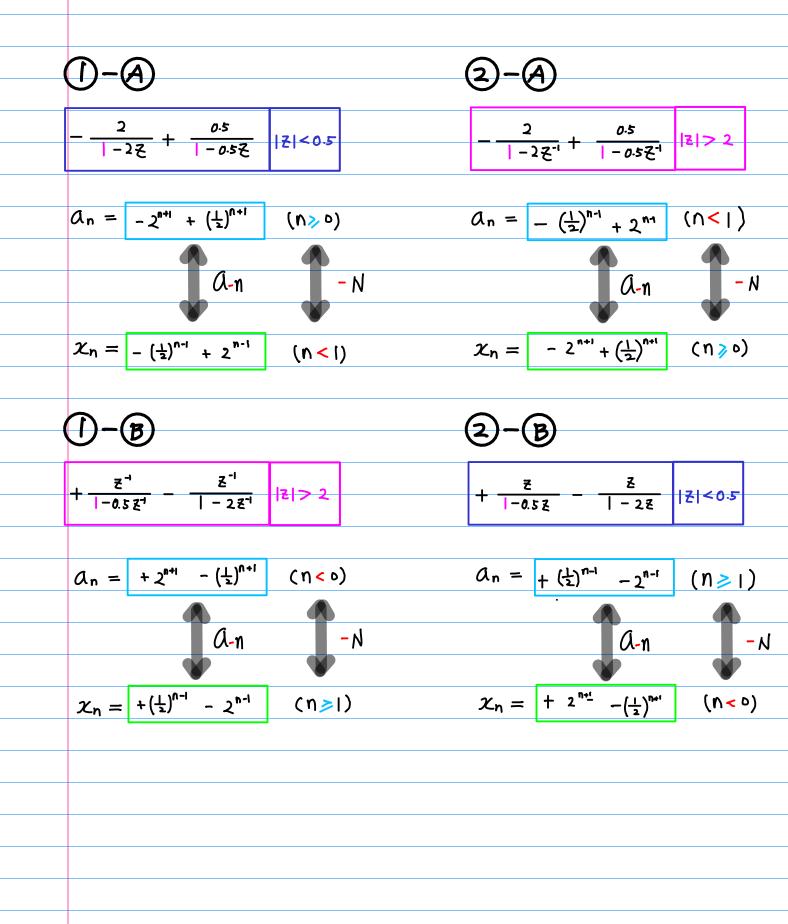

$$\chi_n = +(\frac{1}{2})^{**} - 2^{**} \quad (n \ge 1) \qquad \chi_n = +2^{**} - (\frac{1}{2})^{**} \quad (n < 0)$$

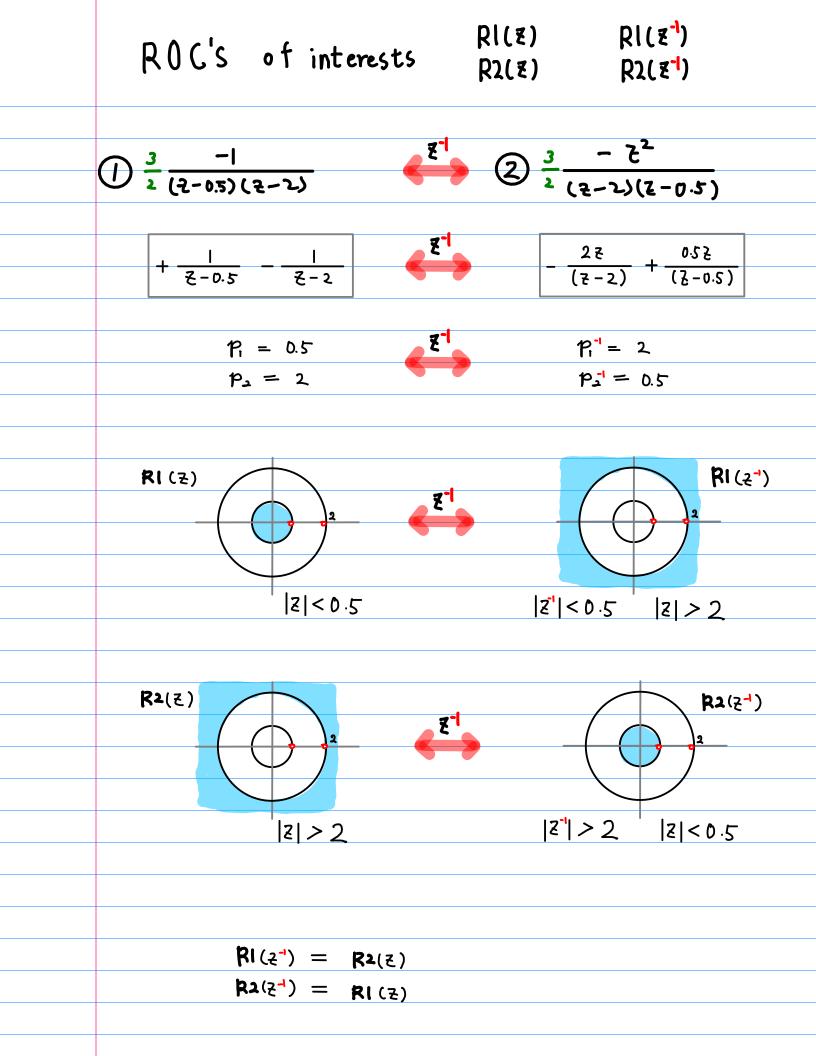
$$(n < 0) \qquad (n < 1) \qquad (n < 0)$$

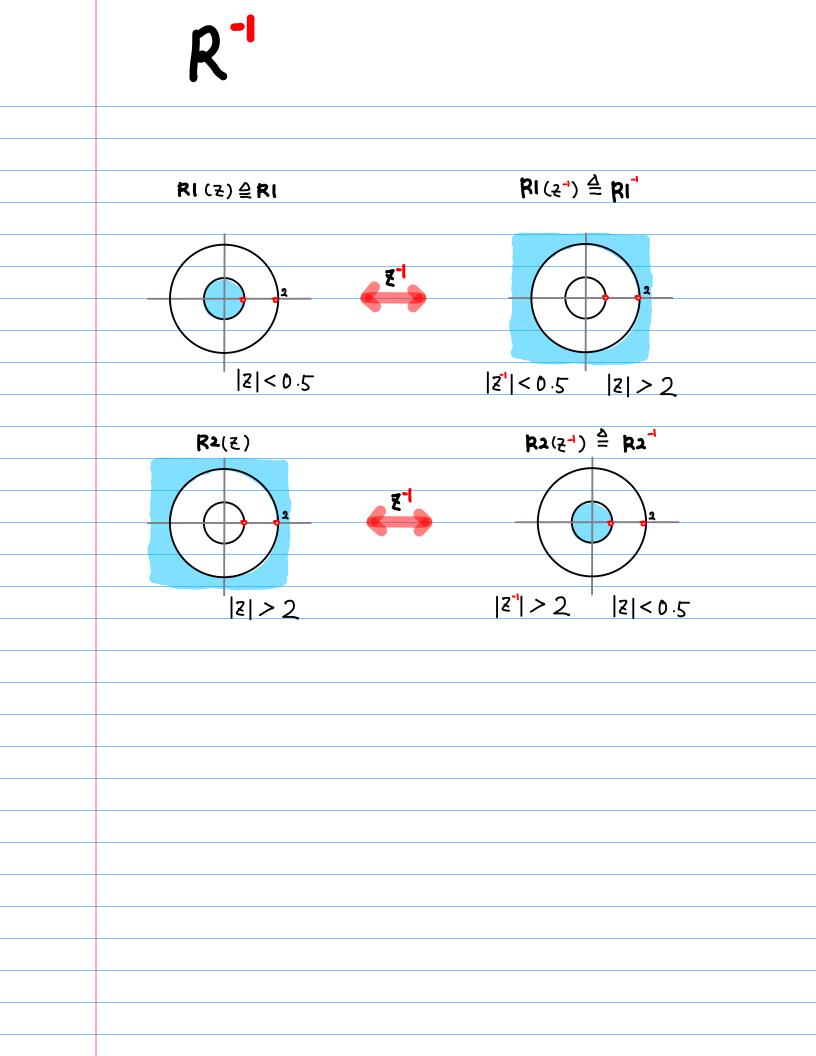

$$(n < 0) \qquad (n < 1) \qquad (n < 0)$$

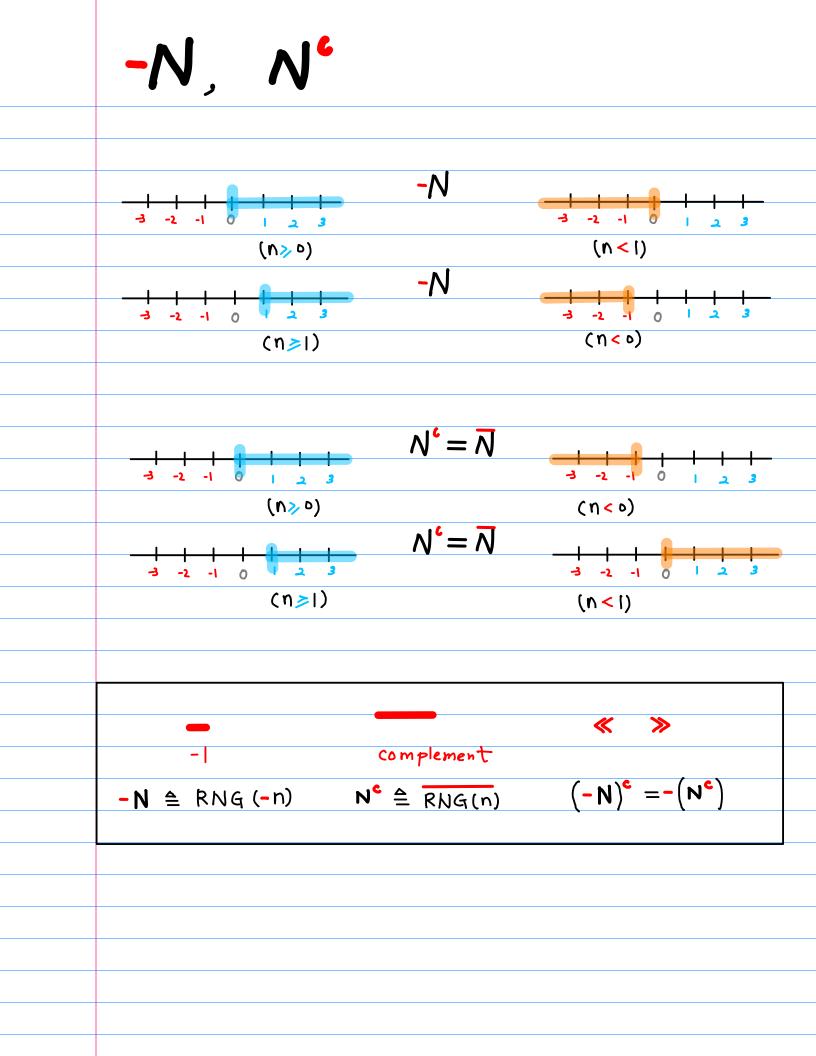

 $(z^{-1}, R^{-1}) \Leftrightarrow (a_{-n}, -N)$ $\boxed{I} \quad (\texttt{Z}, \texttt{R}^{-1}) \Leftrightarrow (-\texttt{An}, \texttt{N}^{e})$ $(z^{-1}, R) \Leftrightarrow (-\alpha_{-n}, (-N)^{c}) = (-\alpha_{-n}, -(N^{c}))$ **(I)** Î ſ $(a_n, N) \iff (X_{-n}, -N)$


$$(z^{-1}, R^{-1}) \Leftrightarrow (A - n, -N)$$


 $(\mathbb{Z}, \mathbb{R}^{-1}) \Leftrightarrow (-\mathbb{A}n, \mathbb{N}^{c})$






$(a_n, N) \Leftrightarrow (X_{-n}, -N)$

Some r	notations	5	
 RI(E)	RI(E ⁻¹)		
R2(E)	R2(E ⁻¹)		
R -			
	. 16		
 -N			
, ,			

$$(\xi, R) \Leftrightarrow (\Omega n, N)$$

$$f(\xi) ROC(\xi) \bigoplus \Omega n RNG(n)$$

$$|\xi| 0$$

$$(\xi^{-1}, R^{-1}) \Leftrightarrow (\Omega - n, -N)$$

$$f(\xi') ROC(\xi') \bigoplus \Omega - n RNG(-n)$$

$$|\xi| > \frac{1}{p} \qquad n < 1$$

$$(\xi, R^{-1}) \Leftrightarrow (-\Omega n, N^{0})$$

$$f(\xi) ROC(\xi') \bigoplus - \Omega n RNG(n)$$

$$|\xi| > \frac{1}{p} \qquad n < 0$$

$$(\xi', R) \Leftrightarrow (-\Omega - n, (-N)^{0}) = (-\Omega - n, -(N^{0}))$$

$$f(\xi') ROC(\xi) \bigoplus - \Omega - n \ll RNG(n) \gg (\xi + n)$$

$$f(\xi') ROC(\xi) \bigoplus - \Omega - n \ll RNG(n) \gg (\xi + n)$$

$$f(\xi') ROC(\xi) \bigoplus - \Omega - n \ll RNG(n) \gg (\xi + n)$$

$$f(\xi') ROC(\xi) \bigoplus - \Omega - n \ll RNG(n) \gg (\xi + n)$$

$$f(\xi') ROC(\xi) \bigoplus - \Omega - n \ll RNG(n) \gg (\xi + n)$$

$$f(\xi') ROC(\xi) \bigoplus - \Omega - n \iff RNG(n) \gg (\xi + n)$$

$$f(\xi) ROC(\xi) \bigoplus \Omega - n \approx RNG(n) = (-\Omega - n - N)$$

$$f(\xi) ROC(\xi) \bigoplus \Omega - n \approx RNG(n) = (-\Omega - n - N)$$

Ш (I)+(I)f(z') \longleftrightarrow - A-n «RNG(n)» (\mathbb{I}) RO((z))n>1 121 < p An f(Z) RNG(n) RO((z))n≥ 0 |z| < p $RO((\vec{z}))$ f(z')a-n RNG(-n) I 171 > + n < 1 R0((2) - A n f(Z) RNG(n) (\mathbb{I}) 17 7 1 n < 0 f(z')RO((z))RNG(-n) りそし |z| < p $(Z^{-1}, R^{-1}) \Leftrightarrow (A - n, -N)$ $(\mathbb{Z}, \mathbb{R}^{-1}) \Leftrightarrow (-\operatorname{An}, \mathbb{N}^{c})$ $(z^{-1}, R) \Leftrightarrow (-\alpha_{-n}, (-N)^{c}) = (-\alpha_{-n}, -(N^{c}))$

Compare I with I $RO((z) f(z) \iff An$ RNG(n) n≥ 0 121 < p $(Z^{1}, R^{-1}) \Leftrightarrow (A-n, -N)$ Ð $RO((\vec{z}))$ C A-n f(z')RNG(-n) |Z| > + n < 1 $(a_n, N) \iff (X_{-n}, -N)$ $(\chi_n, N) \iff (A_{-n}, -N)$ RO((Z) 🔶 A-n RNG(-n) X(Z) n < 1 |z| < pSymmetrical

 $(\underline{Z}^{-1}, R^{-1}) \Leftrightarrow (A-n, -N)$

$-\frac{2}{ -2z }+\frac{0.5}{ -0.5z } z <0.5$	$-\frac{2}{ -2z^{-1}}+\frac{0.5}{ -0.5z^{-1}}$
$f(\mathcal{E}) = - \left[2 + 2^{3} \mathcal{E} + 2^{3} \mathcal{E}^{*} + \cdots \right] \\ + \left[\left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} \right)^{3} \mathcal{E}^{*} + \cdots \right]$	$f(z) = -\left[\left(\frac{1}{2}\right)^{-1}z^{\circ} + \left(\frac{1}{2}\right)^{-2}z^{-1} + \left(\frac{1}{2}\right)^{-2}z^{-2} + \cdots\right] + \left(\frac{1}{2}z^{\circ}z^{\circ} + 2^{-2}z^{-1} + 2^{-3}z^{-2} + \cdots\right]$
$(\lambda_{n} = -2^{n+1} + (\frac{1}{2})^{n+1} (n \ge 0)$	$\Delta_n = -\left(\frac{1}{2}\right)^{n-1} \pm 2^{n-1} (n < 1)$

$+\frac{z^{-1}}{1-0.5 z^{-1}}-\frac{z^{-1}}{1-2 z^{-1}} z > 2$	$+ \frac{z}{ -0.5z} - \frac{z}{ -2z} z < 0.5$
$f(z) = + [2^{\circ}z' + 2^{-1}z^{-1} + 2^{-1}z^{-3} + \cdots]$	$f(z) = + \left[\left(\frac{1}{2} \right)^{0} z^{1} + \left(\frac{1}{2} \right)^{1} z^{2} + \left(\frac{1}{2} \right)^{2} z^{3} + \cdots \right] \\ - \left[2^{0} z^{1} + 2^{1} z^{2} + 2^{2} z^{3} + \cdots \right]$
$-\left[\left(\frac{1}{2}\right)^{0}\overline{z}^{-1}+\left(\frac{1}{2}\right)^{-1}\overline{z}^{-2}+\left(\frac{1}{2}\right)^{-2}\overline{z}^{-3}+\cdots\right]$	$-\left[2^{0}\overline{c}' + 2^{1}\overline{c}^{2} + 2^{2}\overline{c}^{3} + \cdots\right]$
$a_n = 2^{n+1} - \left(\frac{1}{2}\right)^{n+1} (n < 0)$	$\Delta_n = \pm \left(\frac{1}{2}\right)^{n-1} - 2^{n-1} (n \ge 1)$

$$f(z) = \frac{a}{1 - az} = \sum_{n=0}^{\infty} a^{n+1} z^n \qquad f(z^1) = \frac{a}{1 - az^{-1}} = \sum_{n=0}^{\infty} a^{n+1} z^{-n}$$

$$\sum_{n=0}^{\infty} a^{n+1} z^n \qquad |z| < 0, \qquad \sum_{n=0}^{\infty} a^{n+1} z^n \qquad |z| > 0^{-1}$$

$$(\frac{1}{a})^{n-1} \qquad n < 1$$

$f(z^{-1}) = \frac{-z^{-1}}{1-\alpha^{-1}z^{-1}} = -\sum_{n=0}^{\infty} \alpha^{-n} z^{-n-1}$	$f(z) = \frac{-z}{1-a^{1}z} = -\sum_{n=0}^{\infty} a^{-n} z^{n+1}$
$-\sum_{n=1}^{\infty} \alpha^{n+1} Z^n Z > \alpha^{-1}$	$-\sum_{n=1}^{\infty} \alpha^{-n+1} Z^n \qquad Z < 0$
$-a^{n+i}$ $n < 0$	-(ā) ⁽⁺ n≥

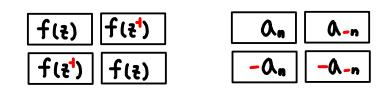
 $(\mathbb{I}, \mathbb{R}^{-1}) \Leftrightarrow (-\operatorname{An}, \mathbb{N}^{c})$

$$\begin{aligned} -\frac{2}{|-2\xi|} + \frac{\delta^{5}}{|-\delta^{5}\xi|} |\xi| < 0.5 \\ f(\xi) &= -\left[2 + 2^{5}\xi + 2^{2}\xi^{4} + \cdots\right] \\ + \left[\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{1}\xi^{2} + \left(\frac{1}{2}\right)^{1}\xi^{2} + \left(\frac{1}{2}\right)^{1}\xi^{2} + \left(\frac{1}{2}\right)^{1}\xi^{2} + \left(\frac{1}{2}\right)^{1}\xi^{2} + \cdots\right] \\ + \left[\left(\frac{1}{2}\right)^{1}\left(\frac{1}{2}\right)^{1}\xi^{2} + \left(\frac{1}{2}\right)^{1}\xi^{2} + \left(\frac{1}{2}\right)^{1}\xi^{2} + \frac{1}{2}\right) \\ \delta_{n} &= -2^{mi} + \left(\frac{1}{2}\right)^{ni} \quad (n \ge 0) \end{aligned} \qquad \delta_{n} &= -\left(\frac{1}{2}\right)^{ni} + 2^{ni} \quad (n < 1) \end{aligned}$$

$$\begin{aligned} + \frac{z^{4}}{1-\delta 5\xi^{2}} - \frac{z^{-1}}{1-2\xi^{-1}} \\ + \frac{z}{1-\delta 5\xi^{2}} - \frac{z}{1-2\xi} \\ f(\xi) &= -\left[\frac{1}{2}x^{2}t^{2} + x^{2}t^{2} + x^{2}t^{2} + \cdots\right] \\ - \left[\left(\frac{1}{2}\right)^{1}\xi^{2} + \left(\frac{1}{2}\right)^{1}\xi^{2} + \left(\frac{1}{2}$$

 $(z^{-1}, R) \Leftrightarrow (-A_{-n}, (-N)^{c}) = (-A_{-n}, -(N^{c}))$

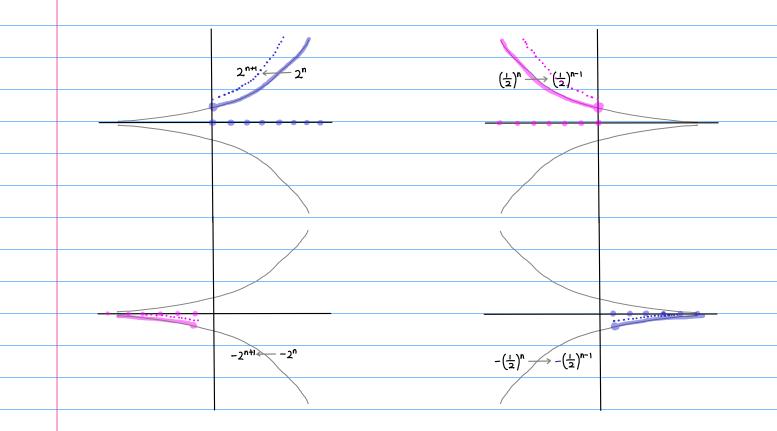
$$\begin{array}{c} -\frac{2}{1-2\xi} + \frac{\partial S}{1-\partial S\xi^{2}} |\xi| < 0.5 \\ f(\xi) = -\left[2 + 2^{k}\xi + 2^{2}\xi^{k} + \cdots\right] \\ + \left[\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{k}\xi + 2^{k}\xi^{k} + \cdots\right] \\ + \left[\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{k}\xi + 2^{k}\xi^{k} + \cdots\right] \\ \frac{\partial n}{\partial n} = -2^{m}\left(\frac{1}{2}\right)^{m}\left(n \ge 0\right) \\ \end{array} \right] \\ \begin{array}{c} \Delta_{n} = -2^{m}\left(\frac{1}{2}\right)^{m}\left(n \ge 0\right) \\ A_{n} = -2^{m}\left(\frac{1}{2}\right)^{m}\left(n \ge 0\right) \\ \end{array} \\ \begin{array}{c} \Delta_{n} = -\left(\frac{1}{2}\right)^{m} + 2^{m}\left(n < 1\right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} + \frac{z^{n}}{1-\partial S\xi^{n}} - \frac{z^{n}}{1-2\xi^{n}} \\ - \frac{z^{n}}{1-\partial \xi^{n}} + 2^{n}\xi^{n} + 2^{n}\xi^{n} + \cdots\right] \\ - \left[\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{k}g^{n} + 2^{k}\xi^{n} + \frac{1}{2}\right)^{k}g^{n} + \frac{z^{n}}{2} \\ \end{array} \\ \begin{array}{c} f(z) = \frac{a}{1-\partial \xi} = \frac{z^{n}}{m \partial 0} \\ \frac{a}{m \partial 0} \\ \end{array} \\ \end{array} \\ \begin{array}{c} f(z^{1}) = \frac{a}{1-\partial \xi} = \frac{z^{n}}{m \partial 0} \\ \frac{z^{n}}{m \partial 0} \\ \end{array} \\ \begin{array}{c} f(z^{1}) = \frac{a}{1-\partial \xi} = \frac{z^{n}}{m \partial 0} \\ \frac{z^{n}}{m \partial 0} \\ \end{array} \\ \begin{array}{c} f(z^{1}) = \frac{-z^{n}}{1-\partial \xi} = -\frac{z^{n}}{2} \\ \frac{z^{n}}{m \partial 0} \\ \frac{z^{n}}{m \partial 0} \\ \end{array} \\ \begin{array}{c} f(z^{1}) = \frac{-z^{n}}{1-\partial \xi} = -\frac{z^{n}}{2} \\ \frac{z^{n}}}{m \partial 0} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \begin{array}{c} f(z^{1}) = \frac{-z^{n}}{1-\partial \xi} = -\frac{z^{n}}{2} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \begin{array}{c} f(z^{1}) = \frac{-z^{n}}{1-\partial \xi} = -\frac{z^{n}}{2} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \begin{array}{c} f(z^{1}) = \frac{-z^{n}}{1-\partial \xi} = -\frac{z^{n}}{2} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \begin{array}{c} f(z) = -\frac{z^{n}}{1-\partial \xi} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \begin{array}{c} f(z) = -\frac{z^{n}}{1-\partial \xi} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \begin{array}{c} f(z) = -\frac{z^{n}}{1-\partial \xi} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \end{array} \\ \begin{array}{c} f(z) = -\frac{z^{n}}{1-\partial \xi} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \begin{array}{c} f(z) = -\frac{z^{n}}{1-\partial \xi} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \end{array} \\ \begin{array}{c} f(z) = -\frac{z^{n}}{1-\partial \xi} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \end{array} \\ \begin{array}{c} f(z) = -\frac{z^{n}}{1-\partial \xi} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \begin{array}{c} f(z) = -\frac{z^{n}}{1-\partial \xi} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \end{array} \\ \begin{array}{c} f(z) = -\frac{z^{n}}{1-\partial \xi} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \end{array} \\ \begin{array}{c} f(z) = -\frac{z^{n}}{1-\partial \xi} \\ \frac{z^{n}}}{m \partial 0} \\ \end{array} \\ \end{array} \\ \begin{array}{c} f(z) = -\frac{z^{n$$

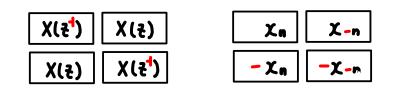

 $\boxed{\mathbb{W}} (a_n, N) \Leftrightarrow (X_{-n}, -N)$

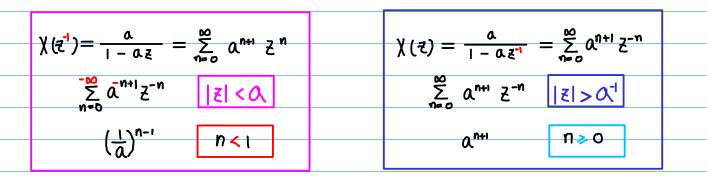
$-\frac{2}{ -2z }+\frac{0.5}{ -0.5z } z <0.5$	$-\frac{2}{ -2\xi^{-1} } + \frac{0.5}{ -0.5\xi^{-1} } \xi > 2$
$f(z) = -[2+2^{3}z^{2}+2^{3}z^{2}+\cdots]$	$f(z) = -\left[\left(\frac{1}{2}\right)^{-1}z^{0} + \left(\frac{1}{2}\right)^{-2}z^{-1} + \left(\frac{1}{2}\right)^{-2}z^{-2} + \cdots\right]$
$+ \left[\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^{5} \xi + \left(\frac{1}{2}\right)^{3} \xi^{2} + \cdots \right]$	+[2 ¹ ² ² ² ¹ + 2 ⁻³ ² ⁺ ····]
$(\lambda_n = -2^{n+1} + \left(\frac{1}{2}\right)^{n+1} (n \ge 0)$	$\mathcal{O}_{n} = -\left(\frac{1}{2}\right)^{n-1} \div 2^{n-1} (n <))$
$\chi(z) = -\left[\left(\frac{1}{2}\right)^{1} + \left(\frac{1}{2}\right)^{2} z + \left(\frac{1}{2}\right)^{3} z^{2} + \cdots\right]$	$X(z) = -\left[2z^{*}+2^{+}z^{+}+2^{3}z^{+}+\cdots\right]$
+ [2]+ 2] = + 2] = +]	$+\left[\left(\frac{1}{2}\right)^{l} \overline{z}^{\circ} + \left(\frac{1}{2}\right)^{\frac{1}{2}-1} + \left(\frac{1}{2}\right)^{\frac{3}{2}-1} + \cdots\right]$
$X_n = -(\frac{1}{2})^{n-1} + 2^{n-1} (n < 1)$	$\chi_n = -2^{n+1} + \left(\frac{1}{2}\right)^{n+1} (n \ge 0)$
$+\frac{z^{-1}}{ -0.5 z^{-1}} - \frac{z^{-1}}{ -2 z^{-1}} z > 2$	$\frac{z}{1-0.5z} - \frac{z}{1-2z} z < 0.5$
$f(z) = + [2^{\circ}z' + 2^{-1}z^{-1} + 2^{-1}z^{-3} + \cdots]$	$f(z) = +\left[\left(\frac{1}{2}\right)^{0} z^{1} + \left(\frac{1}{2}\right)^{1} z^{2} + \left(\frac{1}{2}\right)^{2} z^{3} + \cdots\right]$
$-\left[\left(\frac{1}{2}\right)^{\circ}\overline{z}^{-1}+\left(\frac{1}{2}\right)^{-1}\overline{z}^{-2}+\left(\frac{1}{2}\right)^{-2}\overline{z}^{-3}+\cdots\right]$	$f(z) = \frac{+\left[\left(\frac{1}{2}\right)^{9} z^{1} + \left(\frac{1}{2}\right)^{1} z^{2} + \left(\frac{1}{2}\right)^{2} z^{3} + \cdots\right]}{-\left[2^{9} z^{1} + 2^{1} z^{2} + 2^{2} z^{3} + \cdots\right]}$
$a_n = +2^{n+1} - \left(\frac{1}{2}\right)^{n+1} (n < 0)$	$\Delta_n = \pm \left(\frac{1}{2}\right)^{n-1} - 2^{n-1} (n \ge 1)$
$\lambda(\mathcal{Z}) = + \left[\left(\frac{1}{2} \right)^{\circ} \mathcal{Z}^{\prime} + \left(\frac{1}{2} \right)^{1} \mathcal{Z}^{-2} + \left(\frac{1}{2} \right)^{2} \mathcal{Z}^{-3} + \cdots \right]$	$X(z) = + \left[2^{0} \overline{z}' + \overline{2}' \overline{z}^{2} + \overline{2}^{2} \overline{z}^{3} + \cdots \right]$
$- \left[2^{\circ} \bar{z}^{1} + 2^{1} \bar{z}^{-1} + 2^{2} \bar{z}^{-3} + \cdots \right]$	$-\left[\left(\frac{1}{2}\right)^{0} \overline{z}^{1} + \left(\frac{1}{2}\right)^{1} \overline{z}^{2} + \left(\frac{1}{2}\right)^{2} \overline{z}^{3} + \cdots\right]$
$\chi_n = + (\frac{1}{2})^{n-1} - 2^{n-1} (\eta \ge 1)$	$\mathcal{L}_{n} = \pm 2^{n+i} - \left(\frac{1}{2}\right)^{n+i} (n < b)$

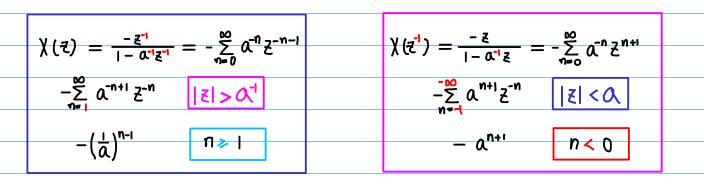
 $\boxed{\mathbb{I}} (a_{n,N}) \Leftrightarrow (x_{-n},-N)$

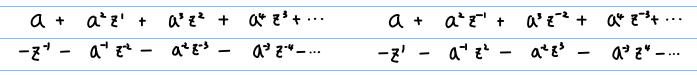
 $f(z^{1}) = \frac{a}{1 - a z^{-1}} = \sum_{n=0}^{\infty} a^{n+1} z^{-n}$ $f(z) = \frac{\alpha}{1 - \alpha z} = \sum_{n=0}^{\infty} \alpha^{n+1} z^n$ ∑ Qⁿ⁺¹ Zⁿ [ξ|<Q $\sum_{n=0}^{\infty} \bar{\alpha}^{n+1} Z^n \qquad |Z| > \bar{\alpha}^{-1}$ $\left(\frac{1}{a}\right)^{n-1}$ n < 1 $\chi(z) = \frac{a}{1 - az^{-1}} = \sum_{n=0}^{\infty} a^{n+1} z^{-n}$ $\chi(z^{1}) = \frac{\alpha}{1 - \alpha z} = \sum_{n=0}^{\infty} \alpha^{n+1} z^{n}$ ^{-∞} aⁿ⁺¹z⁻ⁿ |z| < A $\sum_{n=0}^{\infty} \alpha^{n+1} Z^{-n} |z| > \alpha^{-1}$ ______Ωⁿ⁺¹ ____ ∩ ≥ 0 $\left(\frac{1}{a}\right)^{n-i}$ n < i


$$\begin{aligned} f(z^{-1}) &= \frac{-z^{-1}}{1-\alpha^{-1}z^{-1}} = -\frac{1}{2} \sum_{n=0}^{\infty} \alpha^{-n} z^{-n-1} & f(z) &= \frac{-z}{1-\alpha^{-1}z} = -\frac{1}{2} \sum_{n=0}^{\infty} \alpha^{-n} z^{n+1} \\ -\sum_{n=1}^{-\infty} \alpha^{n+1} z^{n} & |z| > \alpha^{-1} & -\sum_{n=1}^{\infty} \alpha^{-n+1} z^{n} & |z| < \alpha \\ -\alpha^{n+1} & n < 0 & -\left(\frac{1}{\alpha}\right)^{n-1} & n \ge 1 \\ \chi(z^{-1}) &= \frac{-z^{-1}}{1-\alpha^{-1}z^{-1}} = -\sum_{n=0}^{\infty} \alpha^{-n} z^{-n-1} & \chi(z^{-1}) &= \frac{-z}{1-\alpha^{-1}z} = -\sum_{n=0}^{\infty} \alpha^{-n} z^{n+1} \\ -\sum_{n=1}^{\infty} \alpha^{-n+1} z^{-n} & |z| > \alpha^{-1} & -\frac{1}{2} & -\frac{1}{2} \alpha^{-n+1} & |z| < \alpha \\ -\left(\frac{1}{\alpha}\right)^{n-1} & n \ge 1 & -\alpha^{n+1} & -\alpha^{n+1} & |z| < \alpha \end{aligned}$$




$\sum_{n=0}^{\infty} a^{n+1} Z^n \qquad Z < 0, \qquad $	$f(z) = \frac{\alpha}{1 - \alpha z} = \sum_{n=0}^{\infty} \alpha^{n+1} z^n$	$f(z^{-1}) = \frac{a}{1 - a z^{-1}} = \sum_{n=0}^{\infty} a^{n+1} z^{-n}$
	$\sum_{n=0}^{\infty} \alpha^{n+1} \mathcal{Z}^n \qquad \mathcal{Z} < \alpha$	$\sum_{n=0}^{\infty} \bar{a}^{n+1} Z^n \qquad \mathcal{Z} > \bar{a}^{-1}$


_	- 20 Q=11 Z-n-1		- 20 a-n z n+1
-∑a ⁿ⁺¹ Z ⁿ	રા > ¢ા	- <u></u> $\sum_{n=1}^{\infty} Q^{-n+1} Z^{n}$	z < 0,
- a ⁿ⁺¹	n < 0	$-\left(\frac{1}{\alpha}\right)^{n-1}$	 N≫


a + a ² z' + a ³	ξ² + Q4 ξ³ +···	a + a z - +	Δ³ ξ⁻² + Δ⁴ ξ⁻³ + ···
$-\xi^{-1} - \alpha^{-1}\xi^{-1} - \alpha^{-1}$	· ٤ ⁻³ — 0, ⁻³	-z' - a' e' -	۵*٤* - ۵*٤*

