Binary Relations (4B)

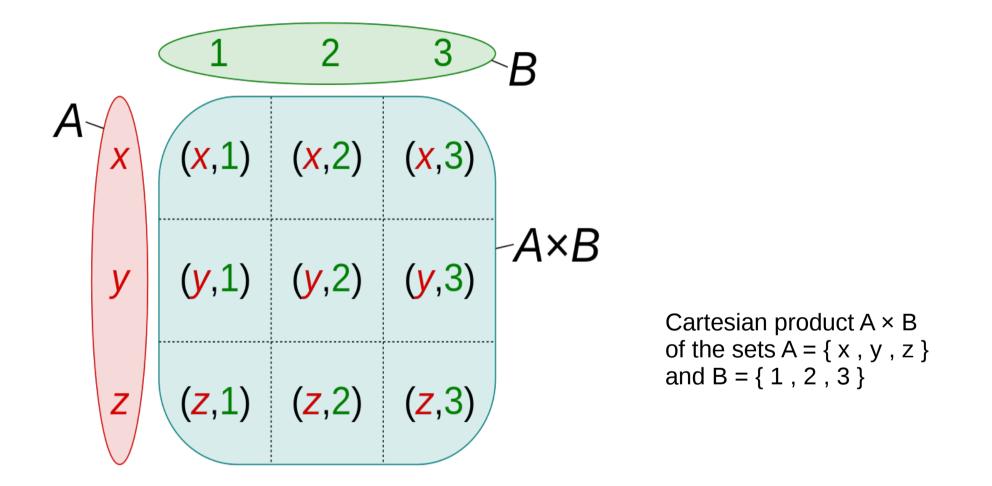
Copyright (c) 2015 – 2017 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

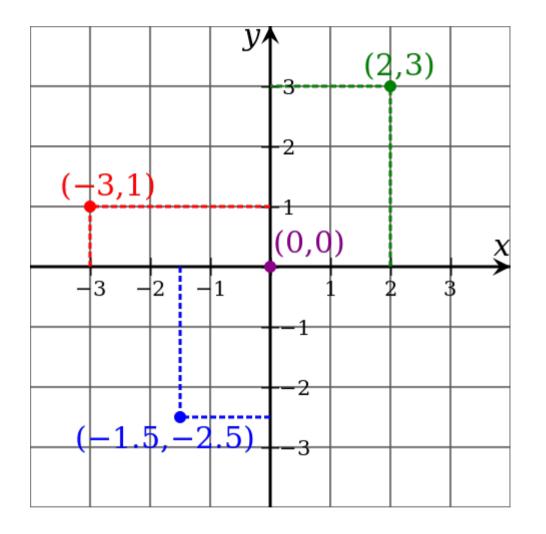
This document was produced by using OpenOffice and Octave.

Cartesian Product



https://en.wikipedia.org/wiki/Cartesian_product

Cartesian Coordinates



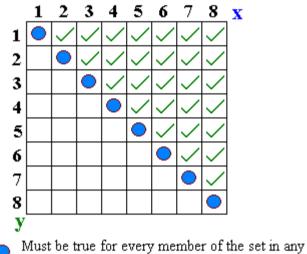
4

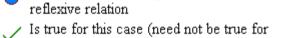
Cartesian coordinates of example points

https://en.wikipedia.org/wiki/Cartesian_product

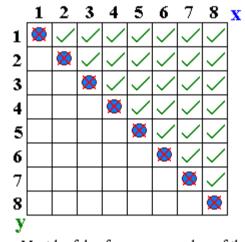
Reflexive Relation Examples

 $\mathbf{x} \ge \mathbf{y}$



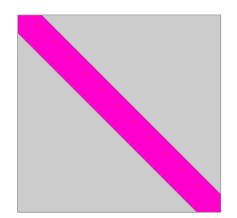


 Is true for this case (need not be true for all cases)



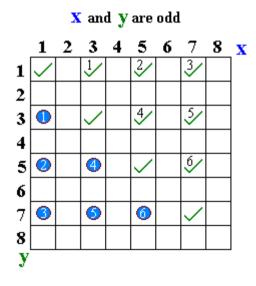
Must be false for every member of the set in any irrefelxive relation

Is true for this case (need not be true for all cases)



https://en.wikipedia.org/wiki/Reflexive_relation

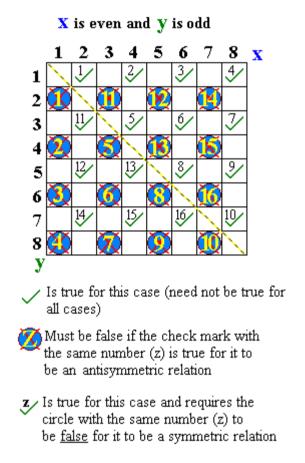
Symmetric Relation Examples



- ✓ Is true for this case (need not be true for all cases)
- Must be true if the check mark with the same number (z) is true for it to be a symmetric relation
- ✗✓ Is true for this case and requires the circle with the same number (z) to also be true for it to be a symmetric relation

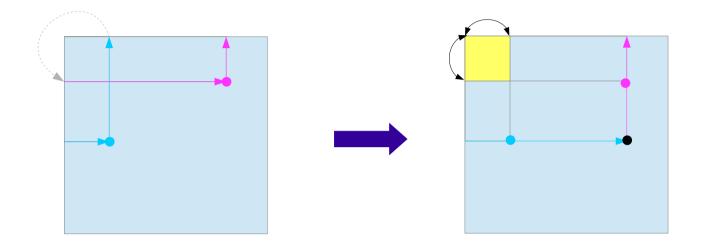
https://en.wikipedia.org/wiki/Cartesian_product

Anti-Symmetric Relation Examples



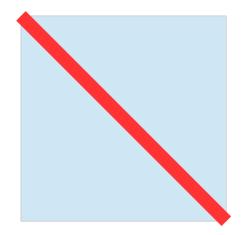
https://en.wikipedia.org/wiki/Cartesian_product

Transitive Relation Examples



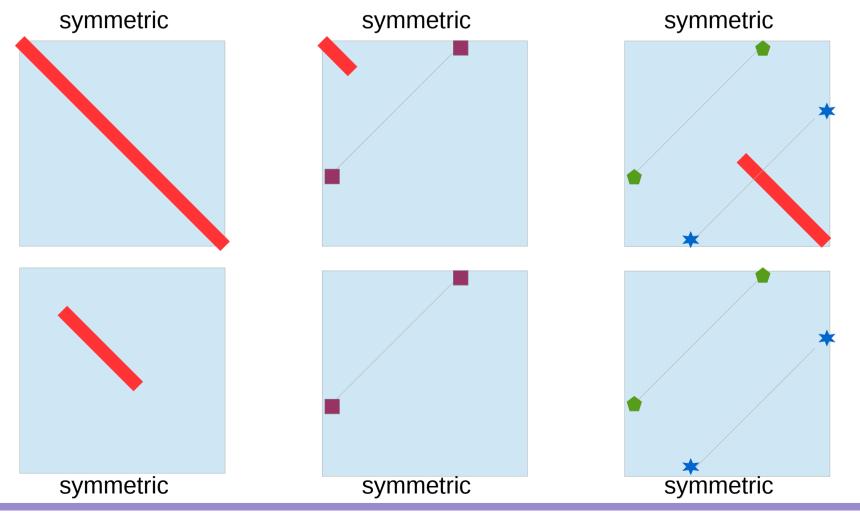
Reflexive Relation

$$\forall x \quad (x, x) \in R$$



Symmetric Relation

$$\forall x, \forall y [(x, y) \in R \rightarrow (y, x) \in R$$



Not Symmetric Relation

$$\neg \{ \forall x, \forall y [(x, y) \in R] \Rightarrow [(y, x) \in R] \}$$

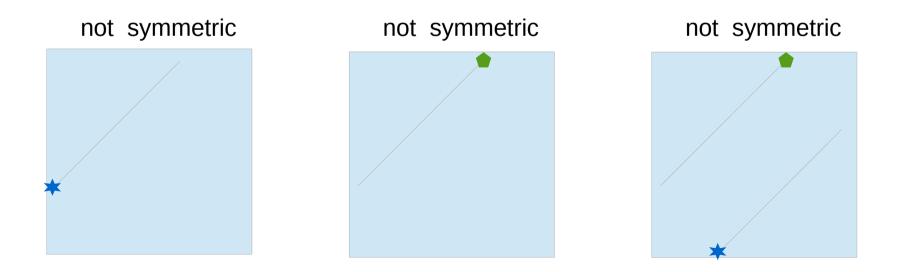
$$\exists x, \exists y \neg \{ [(x, y) \in R] \Rightarrow [(y, x) \in R] \}$$

$$\exists x, \exists y \neg \{ \neg [(x, y) \in R] \lor [(y, x) \in R] \}$$

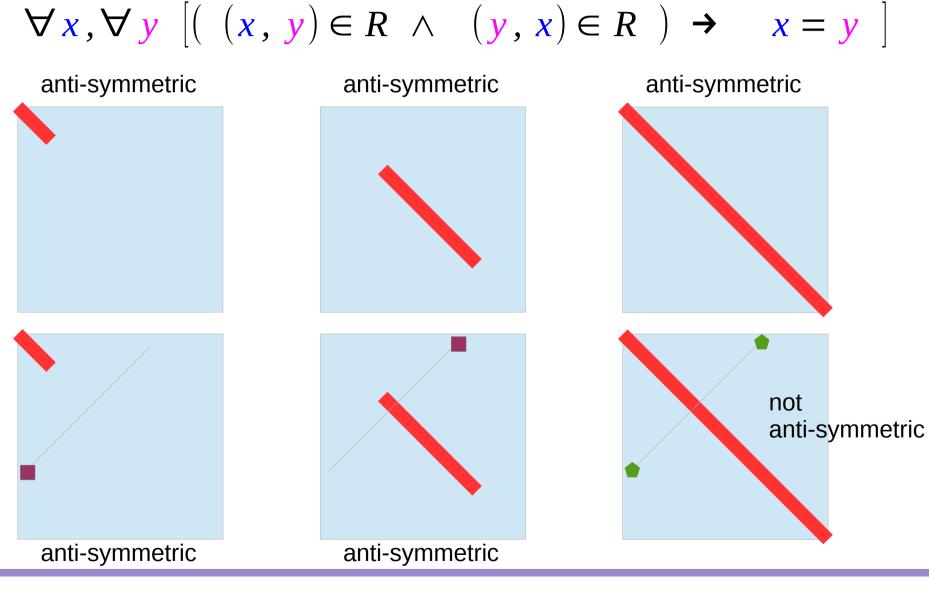
$$\exists x, \exists y [(x, y) \in R] \land \neg [(y, x) \notin R]$$

$$\exists x, \exists y [(x, y) \in R] \land \neg [(y, x) \notin R]$$

counter example



Anti-symmetric Relation



$$\forall x, \forall y \left[(x, y) \in R \land (y, x) \in R \right] \Rightarrow \left[x = y \right]$$

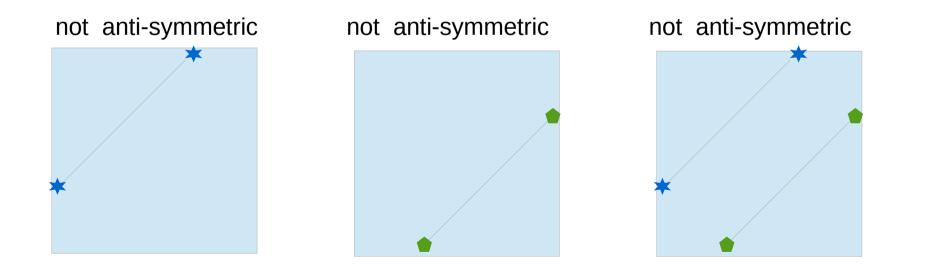
$$\exists x, \exists y \neg \{ [(x, y) \in R \land (y, x) \in R] \Rightarrow [x = y]\}$$

$$\exists x, \exists y \neg \{ \neg [(x, y) \in R \land (y, x) \in R] \lor [x = y]\}$$

$$\exists x, \exists y \{ [(x, y) \in R \land (y, x) \in R] \land \neg [x = y]\}$$

$$\exists x, \exists y \{ [(x, y) \in R \land (y, x) \in R] \land \neg [x = y]\}$$

$$\exists x, \exists y \{ [(x, y) \in R \land (y, x) \in R] \land [x \neq y]\}$$
 counter example



$$\forall x, \forall y [(x, y) \in R \land (y, x) \in R] \Rightarrow [x = y]$$

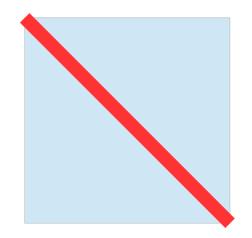
$$\forall x, \forall y [x \neq y] \Rightarrow [(x, y) \notin R \lor (y, x) \notin R]$$

No symmetric relation is allowed
neither
symmetric anti-symmetric

Young Won Lim 5/10/17

Reflexive, Symmetric, Anti-symmetric

$$\begin{array}{l} \forall x \quad (x, x) \in R \\ \forall x, \forall y \quad \left[\begin{array}{c} (x, y) \in R \end{array} \right] \rightarrow \left[\begin{array}{c} (y, x) \in R \end{array} \right] \\ \forall x, \forall y \quad \left[\begin{array}{c} (x, y) \in R \end{array} \wedge \begin{array}{c} (y, x) \in R \end{array} \right] \rightarrow \left[\begin{array}{c} x = y \end{array} \right] \end{array}$$



Reflexive
Also, symmetric
Also, anti-symmetric(no relation for (x, y) where $x \neq y$)(no relation for (x, y) where $x \neq y$)

not symmetric

≠ anti-symmetric

not anti-symmetric \neq symmetric

Matrix of a Relation

$$R_{1} \in \{(1,a), (2,b), (3,a), (3,b)\}$$

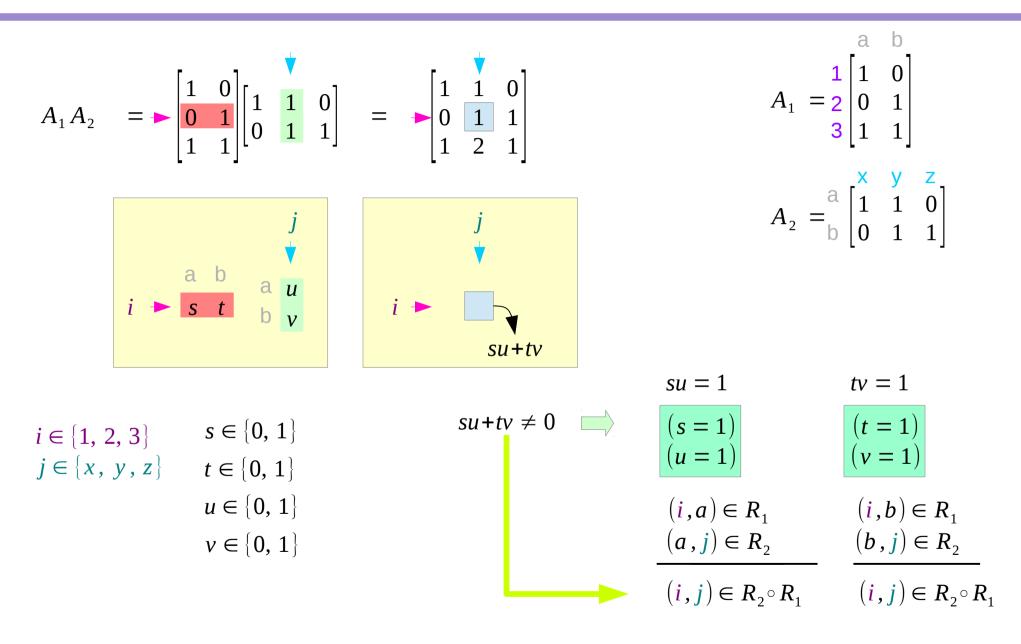
$$A_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$R_{2} \in \{(a,x), (a,y), (b,y), (b,z)\}$$

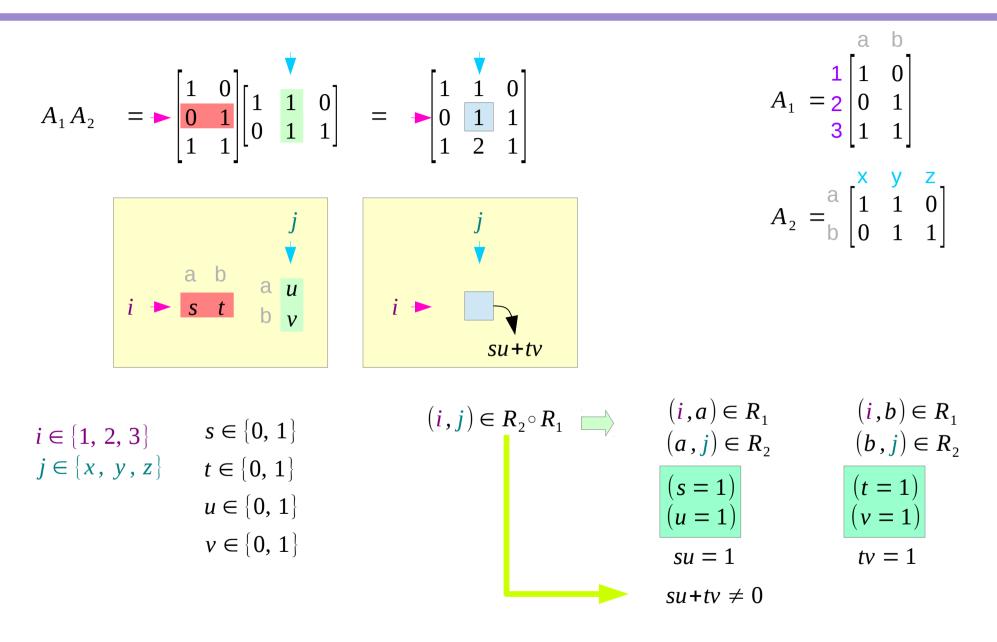
$$A_{2} = \begin{bmatrix} x & y & z \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$A_{1}A_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 3 \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

Sufficient Part

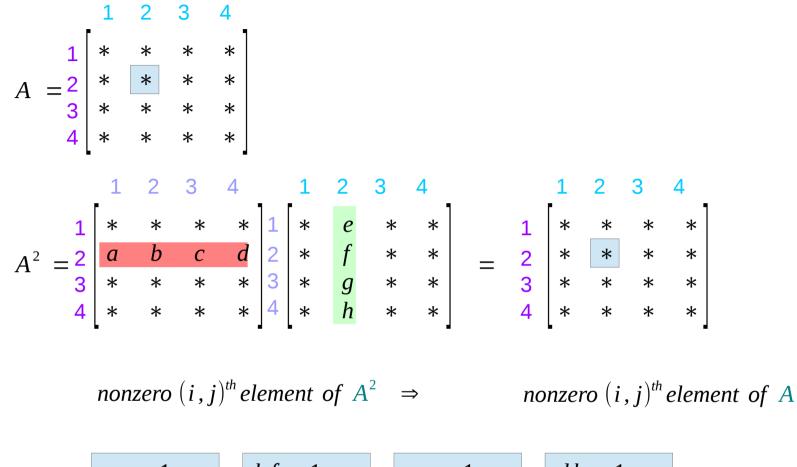


Necessary Part



Necessary Part

Transitivity Test



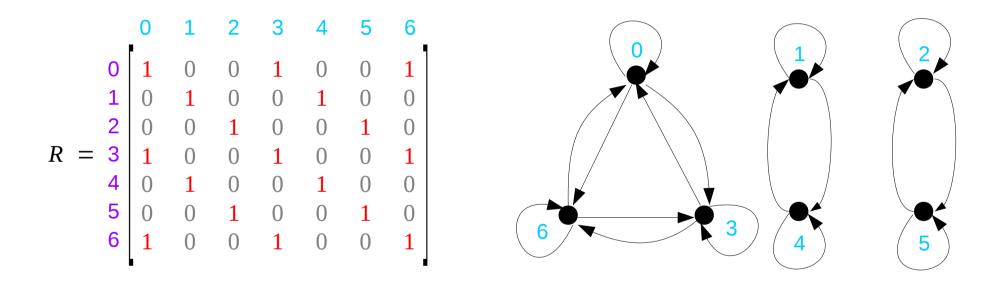
a e = 1	bf = 1	c g = 1	dh = 1	
$(2,1) \in R$ $(1,2) \in R$	$(2,2) \in R$ $(2,2) \in R$	$(2,3) \in R$ $(3,2) \in R$	$(2,4) \in R$ $(4,2) \in R$	$(2,2) \in R$

Binary Relations and Digraphs

 $A = \{0, 1, 2, 3, 4, 5, 6\}$

 $R \subset A \times A$

 $R = \{ (a,b) \mid a \equiv b \pmod{3} \}$



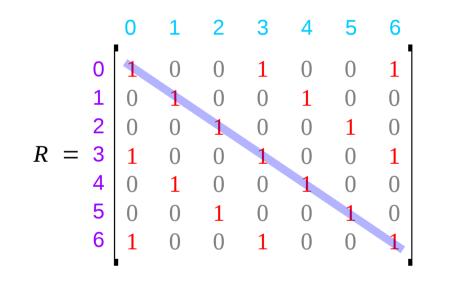
http://www.math.fsu.edu/~pkirby/mad2104/SlideShow/s7_1.pdf

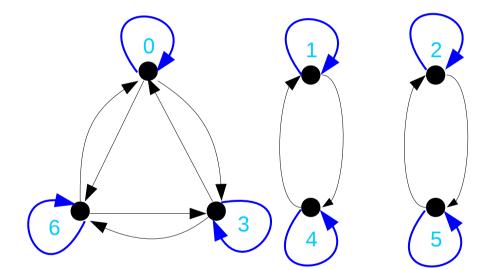
Reflexive Relation

 $A = \{0, 1, 2, 3, 4, 5, 6\}$

 $R \subset A \times A$

 $R = \{ (a,b) \mid a \equiv b \pmod{3} \}$



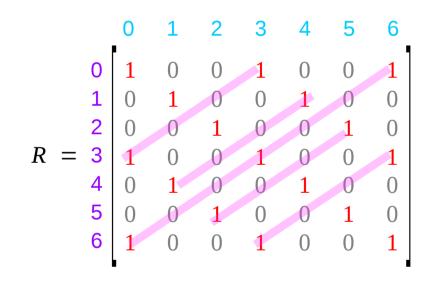


Symmetric Relation

 $A = \{0, 1, 2, 3, 4, 5, 6\}$

 $R \subset A \times A$

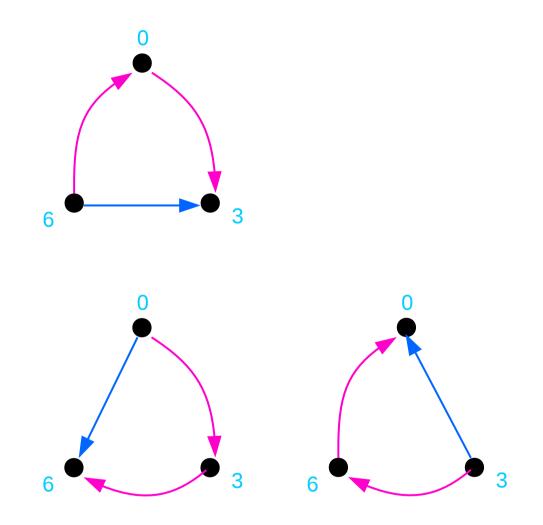
 $R = \{ (a,b) \mid a \equiv b \pmod{3} \}$





Transitive Relation

 $A = \{0, 1, 2, 3, 4, 5, 6\}$ $R \subset A \times A$ $R = \{ (a,b) \mid a \equiv b \pmod{3} \}$ 0 2 2 0 RR =



Equivalence Relation

- $A = \{0, 1, 2, 3, 4, 5, 6\}$
- $R \subset A \times A$
- $R = \{ (a,b) \mid a \equiv b \pmod{3} \}$

Equivalence Relation

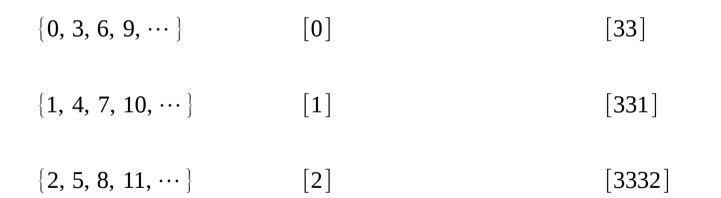
Reflexive Relation & Symmetric Relation & Transitive Relation

Equivalence Class

$$A = \mathbf{Z}^{+} = \{0, 1, 2, 3, 4, 5, 6, \cdots\}$$

 $R \subset A \times A$

 $R = \{ (a,b) \mid a \equiv b \pmod{3} \}$



https://www.cse.iitb.ac.in/~nutan/courses/cs207-12/notes/lec7.pdf

References

