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Cartesian Product

https://en.wikipedia.org/wiki/Cartesian_product

Cartesian product A × B  
of the sets A = { x , y , z } 
and B = { 1 , 2 , 3 } 
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Cartesian Coordinates

https://en.wikipedia.org/wiki/Cartesian_product

Cartesian coordinates of 
example points
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Reflexive Relation Examples

https://en.wikipedia.org/wiki/Reflexive_relation



Relations (4B) 6 Young Won Lim
5/10/17

Symmetric Relation Examples

https://en.wikipedia.org/wiki/Cartesian_product
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Anti-Symmetric Relation Examples

https://en.wikipedia.org/wiki/Cartesian_product
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Transitive Relation Examples
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Reflexive Relation

∀ x (x , x) ∈ R
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Symmetric Relation

∀ x ,∀ y [ (x , y) ∈ R → ( y , x) ∈ R ]

  symmetric  symmetric  symmetric

  symmetric  symmetric  symmetric
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Not Symmetric Relation

¬{ ∀ x ,∀ y [ (x , y ) ∈ R ] → [ ( y , x ) ∈ R ] }

∃ x ,∃ y ¬{ [ (x , y ) ∈ R ] → [ ( y , x) ∈ R ] }

∃ x ,∃ y ¬{ ¬[ (x , y) ∈ R ] ∨ [ ( y , x) ∈ R ] }

∃ x ,∃ y [ (x , y) ∈ R ] ∧ ¬[ ( y , x ) ∈ R ]

∃ x ,∃ y [ (x , y) ∈ R ] ∧ [ ( y , x) ∉ R ]

not  symmetric

counter example

not  symmetricnot  symmetric
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Anti-symmetric Relation

∀ x ,∀ y [( (x , y) ∈ R ∧ ( y , x) ∈ R ) → x = y ]

not  
anti-symmetric

anti-symmetric anti-symmetric anti-symmetric

anti-symmetric anti-symmetric
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Not Anti-symmetric Relation

∀ x ,∀ y [ (x , y) ∈ R ∧ ( y , x) ∈ R ] → [ x = y ]

∃ x ,∃ y¬{ [ (x , y) ∈ R ∧ ( y , x) ∈ R ] → [ x = y ]}

∃x ,∃ y¬{¬ [ (x , y) ∈ R ∧ ( y , x) ∈ R ] ∨ [ x = y ]}

∃ x ,∃ y { [ (x , y) ∈ R ∧ ( y , x) ∈ R ] ∧ ¬[ x = y ]}

∃ x ,∃ y { [ (x , y) ∈ R ∧ ( y , x) ∈ R ] ∧ [ x ≠ y ]} counter example

not  anti-symmetric not  anti-symmetric not  anti-symmetric
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Equivalent Anti-symmetric Relation

∀ x ,∀ y [ (x , y) ∈ R ∧ ( y , x) ∈ R ] → [ x = y ]

∀ x ,∀ y [ x ≠ y ] → [ (x , y) ∉ R ∨ ( y , x) ∉ R ]

nor  
anti-symmetric

neither  
symmetric

No symmetric relation is allowed
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Reflexive, Symmetric, Anti-symmetric

∀ x (x , x) ∈ R

∀ x ,∀ y [ (x , y) ∈ R ] → [ ( y , x) ∈ R ]
∀ x ,∀ y [ (x , y) ∈ R ∧ ( y , x) ∈ R ] → [ x = y ]

Reflexive
Also, symmetric (no relation for (x, y) where x≠y)
Also, anti-symmetric (no relation for (x, y) where x≠y)

not symmetric anti-symmetric

not anti-symmetric symmetric
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Matrix of a Relation

R1 ∈ {(1,a) , (2,b) , (3,a) , (3,b)}

R2 ∈ {(a , x) , (a , y) , (b , y), (b , z)}

A1 = [
1 0
0 1
1 1]

A 2 = [1 1 0
0 1 1]

1

2
3

a b

a

b

x y z

A1 A2 = [
1 0
0 1
1 1][1 1 0

0 1 1] = [
1 1 0
0 1 1
1 2 1]

1

2
3

x y z
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Sufficient Part

A1 A2 = [
1 0
0 1
1 1] [1 1 0

0 1 1] = [
1 1 0
0 1 1
1 2 1]

i

j

i

j

s t
u
v

su+tv

s ∈ {0, 1}

t ∈ {0, 1}

u ∈ {0, 1}

v ∈ {0, 1}

su+tv ≠ 0

su = 1

(s = 1)
(u = 1)

(t = 1)
(v = 1)

tv = 1

A1 = [
1 0
0 1
1 1]

A 2 = [1 1 0
0 1 1]

1

2
3

a b

a

b

x y z

i ∈ {1, 2, 3}

j ∈ {x , y , z }

a b a

b

(i , a) ∈ R1

(a , j) ∈ R2

(i , b) ∈ R1

(b , j) ∈ R2

(i , j) ∈ R2∘R1 (i , j) ∈ R2∘R1
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Necessary Part

A1 A2 = [
1 0
0 1
1 1] [1 1 0

0 1 1] = [
1 1 0
0 1 1
1 2 1]

i

j

i

j

s t
u
v

su+tv

s ∈ {0, 1}

t ∈ {0, 1}

u ∈ {0, 1}

v ∈ {0, 1}

su+tv ≠ 0

su = 1

(s = 1)
(u = 1)

(t = 1)
(v = 1)

tv = 1

A1 = [
1 0
0 1
1 1]

A 2 = [1 1 0
0 1 1]

1

2
3

a b

a

b

x y z

i ∈ {1, 2, 3}

j ∈ {x , y , z }

a b a

b

(i , a) ∈ R1

(a , j) ∈ R2

(i , b) ∈ R1

(b , j) ∈ R2

(i , j) ∈ R2∘R1
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Necessary Part

A1 A2 = [
1 0
0 1
1 1] [1 1 0

0 1 1] = [
1 1 0
0 1 1
1 2 1]

i

j

i

j

s t
u
v

su+tv

s ∈ {0, 1}

t ∈ {0, 1}

u ∈ {0, 1}

v ∈ {0, 1}

A1 = [
1 0
0 1
1 1]

A 2 = [1 1 0
0 1 1]

1

2
3

a b

a

b

x y z

i ∈ {1, 2, 3}

j ∈ {x , y , z }

a b a

b

(i , j) ∈ R2∘R1

su+tv ≠ 0 nonzero (i , j)th element of A1 A 2
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Transitivity Test

a e = 1

A = [
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]
1

2
3

1 2 3

4

4

A 2 = [
∗ ∗ ∗ ∗
a b c d
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]
1

2
3

1 2 3

4

4

[
∗ e ∗ ∗
∗ f ∗ ∗
∗ g ∗ ∗
∗ h ∗ ∗

]
1

2
3

1 2 3

4

4

= [
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]
1

2
3

1 2 3

4

4

(2,1) ∈ R
(1,2) ∈ R

b f = 1 c g = 1 d h = 1

(2,2) ∈ R
(2,2) ∈ R

(2,3) ∈ R
(3,2) ∈ R

(2,4) ∈ R
(4,2) ∈ R

(2,2) ∈ R

nonzero (i , j)th element of Anonzero (i , j)th element of A2
⇒
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Binary Relations and Digraphs

A = {0,1,2, 3,4, 5,6}

0 1 2 3

R = [
1 0 0 1 0 0 1
0 1 0 0 1 0 0
0 0 1 0 0 1 0
1 0 0 1 0 0 1
0 1 0 0 1 0 0
0 0 1 0 0 1 0
1 0 0 1 0 0 1

]
4 5 6

0
1
2
3
4
5
6

R ⊂ A×A

0

36 4

1 2

5

R = {(a ,b) ∣a ≡ b (mod 3)}

http://www.math.fsu.edu/~pkirby/mad2104/SlideShow/s7_1.pdf
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Reflexive Relation

0 1 2 3

R = [
1 0 0 1 0 0 1
0 1 0 0 1 0 0
0 0 1 0 0 1 0
1 0 0 1 0 0 1
0 1 0 0 1 0 0
0 0 1 0 0 1 0
1 0 0 1 0 0 1

]
4 5 6

0
1
2
3
4
5
6

0

36 4

1 2

5

A = {0,1,2, 3,4, 5,6}

R ⊂ A×A

R = {(a ,b) ∣a ≡ b (mod 3)}
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Symmetric Relation

0 1 2 3

R = [
1 0 0 1 0 0 1
0 1 0 0 1 0 0
0 0 1 0 0 1 0
1 0 0 1 0 0 1
0 1 0 0 1 0 0
0 0 1 0 0 1 0
1 0 0 1 0 0 1

]
4 5 6

0
1
2
3
4
5
6

0

36 4

1 2

5

A = {0,1,2, 3,4, 5,6}

R ⊂ A×A

R = {(a ,b) ∣a ≡ b (mod 3)}
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Transitive Relation

0 1 2 3

RR = [
3 0 0 3 0 0 3
0 2 0 0 2 0 0
0 0 2 0 0 2 0
3 0 0 3 0 0 3
0 2 0 0 2 0 0
0 0 2 0 0 2 0
3 0 0 3 0 0 3

]
4 5 6

0
1
2
3
4
5
6

0

36

0

36

0

36

A = {0,1,2, 3,4, 5,6}

R ⊂ A×A

R = {(a ,b) ∣a ≡ b (mod 3)}
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Equivalence Relation

A = {0,1,2, 3,4, 5,6}

R ⊂ A×A

R = {(a ,b) ∣a ≡ b (mod 3)}

Reflexive Relation  &
Symmetric Relation &
Transitive Relation

Equivalence Relation
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Equivalence Class

A = Z+
= {0,1,2,3, 4,5, 6,⋯}

R ⊂ A×A

R = {(a ,b) ∣a ≡ b (mod 3)}

{0, 3, 6, 9, ⋯ }

{1, 4, 7, 10, ⋯}

{2, 5, 8, 11, ⋯}

[0 ]

[1 ]

[2 ]

[33]

[331]

[3332]

https://www.cse.iitb.ac.in/~nutan/courses/cs207-12/notes/lec7.pdf
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