ISA Assembler Format (4C)

Coprocessor Instructions

Young Won Lim
12/14/19

Copyright (c) 2014 - 2019 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to

This document was produced by using LibreOffice.

Young Won Lim
12/14/19

mailto:youngwlim@hotmail.com

Based on

ARM System-on-Chip Architecture, 2" ed, Steve Furber

ISA (4C) Assembler 3 Young \{\224%3
Format - Coprocessor

Coprocessor Instruction

Coprocessor Data Transfers
LDC | STC {<cond>}{L} <CP#>, CRd, [Rn, <offset>] {!}
LDC | STC {<cond>}{L} <CP#>, CRd, [Rn], <offset>
Coprocessor Data Operations
CDP {<cond>} <CP#>, <Cop1l>, CRd, CRn, CRm {, <Cop2>}
Coprocessor Register Transfers
MRC {<cond>} <CP#>, <Copl>, Rd, CRn, CRm {, <Cop2>}
MCR {<cond>} <CP#>, <Copl>, Rd, CRn, CRm {, <Cop2>}

ISA (4C) Assembler 4 Young Won Lim
Format — Coprocessor 12/14/19

Coprocessor Instruction Mnemonics

L D C

L o ad coprocessor

S T C

Store coprocessor

C D P

Load data from the memory
into a coprocessor register

CRd, [Rn, <offset>] {!}
CRd, [Rn], <offset>

Store data from a coprocessor
reqgister to the memory

Perform an operation over
CRd and CRm and place
the result in CRd

CRd, CRn, CRm

coprocessor Data Processing
M R - C command to get some data
from a coprocessor
Move coprocessor
, CRn, CRm
command to pass some data
M C - R to a coprocessor
Move coprocessor Reg
ISA (4C) Assembler 5 Young Won Lim
12/14/19

Format — Coprocessor

Coprocessor Instruction Encodings

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond 110 PI/UNW|L Rn CRd CP# Offset (12)
cond 1111 0| CPOpc CRn CRd CP# CcP 0 CRm (13)
cond 1/1/1/0/CPOpc |L CRn Rd CP# CP 1 CRm (14)

Coprocessor Data Transfers
LDC | STC {<cond>}{L} <CP#>, CRd, [Rn, <offset>] {!}
LDC | STC {<cond>}{L} <CP#>, CRd, [Rn], <offset>
Coprocessor Data Operations
CDP {<cond>} <CP#>, <Cop1>, CRd, CRn, CRm {, <Cop2>}
Coprocessor Register Transfers
MRC {<cond>} <CP#>, <Copl>, Rd, CRn, CRm {, <Cop2>}
MCR {<cond>} <CP#>, <Copl>, Rd, CRn, CRm {, <Cop2>}

ISA (4C) Assembler 6 Young Won Lim
Format — Coprocessor 12/14/19

ARM Coprocessor Instruction Fields

<CP#> Coprocessor number

<Copl> Coprocessor operation 1 <CP Opc>
<Cop2> Coprocessor operation 2 <CP>
CRd Coprocessor Rd

CRn Coprocessor Rn

CRm Coprocessor Rm

CP# : identifes a coprocessor (a number in [0, 15])
a coprocessor will ignore any instruction
that has an incorrect CP#

CP Opc (Copl) and possible the CP (Cop2).
specified what operation the coprocessor should perform

on the contents of CRn and CRm, and place the result in CRd.

ISA (4C) Assembler 7
Format — Coprocessor

Young Won Lim
12/14/19

Coprocessor Access Fields

31 30 290 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

Cem troeluNwLl R o o ot o

Coprocessor Data Transfer CRd :=: [Rn,Offset]; CRd :=: [Rn], Offset
[cond o] cPopc | CRn cRd [IERATN| cp O] crRm (3
Coprocessor Data Operation CRd :=: CRn <CP Opc, CP> CRm
ISR crore || crn NEGMMINGEENN > M crm | (9
Coprocessor Register Transfer Rd :=: CRn <CP Opc, CP> CRm
P Pre/Post Index CP# 4-bit Coprocessor number
U Up/Down COpc 4/3-bit Coprocessor OP Code
N Transfer Length CP 3-bit Coprocessor Information
W Write-back (auto-index) CRd 4-bit Coprocessor Rd
L Load/Store CRn 4-bit Coprocessor Rn
CRm 4-bit Coprocessor Rm
Rn 4-bit Base Reg
N (= L flag in assembler) Rd 4-bit Destination Reg
ISA (5A) 8 Young Won Lim
12/14/19

Binary Encoding

ARM Access Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

cond |1/1]/o|P|ulnN|w|L Rn CRd | CP# Offset (12)

Coprocessor Data Transfer CRd :=: [Rn,Offset]; CRd :=: [Rn], Offset

cond | 1] 11| 0 ICECTEMICRAICRNCEAEEN o MCRR (o

Coprocessor Data Operation CRd :=: CRn <CP Opc, CP> CRm

cond | 1|11 o [EORE] - NNCRANN <o (CPAMMNGENN : WNCRAEN (o

Coprocessor Register Transfer Rd :=: CRn <CP Opc, CP> CRm
L=0 Store to memory STC MCR
L=1 Load from memory LDC MRC
N=0 Short Transfer
N=1 Long Transfer with L flag in assembler
ISA (5A) 9 Young Won Lim

Binary Encoding 12/14/19

Coprocessor Data Transfers

Preindex Coprocessor Data Transfer

LDC | STC {<cond>}{L} <CP#>, CRd, [Rn, <offset>] {!}
Postindex Coprocessor Data Transfer

LDC | STC {<cond>}{L} <CP#>, CRd, [Rn], <offset>

CP# : identifes a coprocessor (a number in [0, 15])
a coprocessor will ignore any instruction
that has an incorrect CP#

The CRd field and the N bit field in the encoding
contain information which may be interpreted in different ways
by different coprocessors,

CRd is the register to be transferred (the first register)

N bit selects transfer length options.
N=0 the transfer of a single register :: when L is present (long transfer)
N=1 the transfer of all the registers for context switching. :: otherwise

ISA (4C) Assembler 10 Young W(;n I7im
Format — Coprocessor 12/14/19

Pre-indexing and Post-indexing Coprocessor Instructions

CRd, [Rn, <offset>] pre-indexed
CRd, [Rn, <offset>] ! pre-indexed with autoindex
CRd, [Rn], <offset> post-indexed

addr |
-—- + <offset>| = pre-indexed
:
addr ‘ _
- - <offset>|] pre-indexed.
| - with autoindex !
always
addr |)
‘ = <offset>| = post-indexed
Coprocessor R ~ ARM processor
ISA (4C) Assembler 11 Young Won Lim
12/14/19

Format — Coprocessor

Pre-indexing and Post-indexing Coprocessor Instructions

Coprocessor Data Transfers

LDC | STC {<cond>}{L} <CP#>, CRd, [Rn, <offset>] {I}

LDC | STC {<cond>}{L} <CP#>, CRd, [Rn], <offset>

= addr
| ST M — =+ <offset>

Pre-indexed
CRd, [Rn, <offset>]

| .
= = (7] .
8 LLTC g pre-indexed.
g ST M - <offset>| £ with autoindex !
5 | = CRd, [Rn, <offset>] !
8 <
always |
Post-indexed
M j <offsety CRd, [Rn], <offset>
Young Won Lim
ISA (4C) Assembler 12 Won

Format — Coprocessor

Coprocessor Data Transfers — Preindex

Preindex Coprocessor Data Transfer

LDC | STC {<cond>}{L} <CP#>, CRd, [Rn, <offset>] {!}

CP# : Coprocessor Number

LDC | STC
LDC | STC <cond>
LDC | STC
LDC | STC <cond>

LDC | STC L
LDC | STC <cond> L
LDC | STC L
LDC | STC <cond> L

ISA (4C) Assembler
Format — Coprocessor

<CP#>, CRd, [Rn, <offset>]
<CP#>, CRd, [Rn, <offset>]
<CP#>, CRd, [Rn, <offset>] !
<CP#>, CRd, [Rn, <offset>] !

<CP#>, CRd, [Rn, <offset>]
<CP#>, CRd, [Rn, <offset>]
<CP#>, CRd, [Rn, <offset>] !
<CP#>, CRd, [Rn, <offset>] !

13

Young Won Lim
12/14/19

Coprocessor Data Transfers — Postindex

Postindex Coprocessor Data Transfer
LDC | STC {<cond>}{L} <CP#>, CRd, [Rn], <offset>

CP# : Coprocessor Number

LDC | STC <CP#>, CRd, [Rn], <offset>
LDC | STC <cond> <CP#>, CRd, [Rn], <offset>
LDC | STC L <CP#>, CRd, [Rn], <offset>
LDC | STC <cond> L <CP#>, CRd, [Rn], <offset>
LDC | STC <CP#>, CRd, [Rn], <offset>!
LDC | STC <cond> <CP#>, CRd, [Rn], <offset> !
LDC | STC L <CP#>, CRd, [Rn], <offset>!

LDC | STC <cond> L <CP#>, CRd, [Rn], <offset> !

ISA (4C) Assembler 14 Young Won Lim
Format — Coprocessor 12/14/19

Coprocessor Data Operations

Coprocessor Data Processing Operations
CDP {<cond>} <CP#>, <Copl>, CRd, CRn, CRm
CDP {<cond>} <CP#>, <Copl>, CRd, CRn, CRm, <Cop2>

CP# : identifes a coprocessor (a number in [0, 15])
a coprocessor will ignore any instruction
that has an incorrect CP#

CP Opc (Copl) and possible the CP (Cop2):
specified what operation the coprocessor should perform
on the contents of CRn and CRm, and place the result in CRd.

<expressionl> evaluated to a constant and placed in the CP Opc field
<expression2> where present is evaluated to a constant and placed in the CP field

ISA (4C) Assembler 15 Young Won Lim
Format — Coprocessor 12/14/19

Coprocessor Data Operations

Coprocessor Data Processing Operations
CDP {<cond>} <CP#>, <Copl>, CRd, CRn, CRm
CDP {<cond>} <CP#>, <Copl>, CRd, CRn, CRm, <Cop2>

<Copl>or
<Copl, Cop2>

Co-
Processor

ISA (4C) Assembler 16 Young Won Lim
Format — Coprocessor 12/14/19

Coprocessor Data Operations

Coprocessor Data Processing Operations
CDP {<cond>} <CP#>, <Copl>, CRd, CRn, CRm
CDP {<cond>} <CP#>, <Copl>, CRd, CRn, CRm, <Cop2>

CP# : Coprocessor Number

CDP <CP#>, <Copl>, CRd, CRn, CRm
CDP <CP#>, <Copl>, CRd, CRn, Crm, <Cop2>
CDP <cond> <CP#>, <Copl>, CRd, CRn, CRm
CDP <cond> <CP#>, <Copl>, CRd, CRn, CRm, <Cop2>

ISA (4C) Assembler 17 Young Won Lim
Format — Coprocessor 12/14/19

Coprocessor Register Transfers (R<C, C«<R)

Move to ARM Register from Coprocessor

MRC {<cond>} <CP#>, <Copl>, Rd, CRn, CRm {, <Cop2>}
Move to Coprocessor from ARM Registers

MCR {<cond>} <CP#>, <Copl>, Rd, CRn, CRm {, <Cop2>}

CP# : identifes a coprocessor (a number in [0, 15])
a coprocessor will ignore any instruction
that has an incorrect CP#

CP Opc (Copl) and possible the CP (Cop2).
specified what operation the coprocessor should perform
on the contents of CRn and CRm, and place the result in CRd.

CRn is the coprocessor src / dst register of the transformation

CRm is a 2" coprocessor register involved in some way
which depends on the particular operation specified.

ISA (4C) Assembler 18 Young W(;n I7im
Format — Coprocessor 12/14/19

Coprocessor Register Transfers (R<C, C«<R)

Move to ARM Register from Coprocessor

MRC {<cond>} <CP#>, <Copl>, Rd, CRn, CRm {, <Cop2>}
Move to Coprocessor from ARM Registers

MCR {<cond>} <CP#>, <Copl>, Rd, CRn, CRm {, <Cop2>}

<Copl> or <Copl Cop2>

command to get some data
Rd, CRm from a coprocessor
‘ Load

1

ARM ‘ Co-
Processor ‘ : <Copl> or <Cop1 Cop2> ‘ Processor

command to pass some data
to a coprocessor

ISA (4C) Assembler 19 Young Won Lim
Format — Coprocessor 12/14/19

Coprocessor Register Transfers (R«<C)

Move to ARM Register from Coprocessor

MRC {<cond>} <CP#>, <Copl>, Rd, CRn, CRm
MRC {<cond>} <CP#>, <Copl>, Rd, CRn, CRm, <Cop2>

CP# : Coprocessor Number

MRC <CP#>, <Copl>, Rd, CRn, CRm
MRC <CP#>, <Copl>, Rd, CRn, CRm, <Cop2>
MRC <cond> <CP#>, <Copl>, Rd, CRn, CRm
MRC <cond> <CP#>, <Copl>, Rd, CRn, CRm, <Cop2>
ISA (4C) Assembler Young Won Lim
(4C) 20 12/14/19

Format — Coprocessor

Coprocessor Register Transfers (C«R)

Move to Coprocessor from ARM Registers
MCR {<cond>} <CP#>, <Copl1>, Rd, CRn, CRm
MCR {<cond>} <CP#>, <Copl>, Rd, CRn, CRm, <Cop2>

CP# : Coprocessor Number

MCR <CP#>, <Copl>, Rd, CRn, CRm
MCR <CP#>, <Copl>, Rd, CRn, CRm, <Cop2>
MCR <cond> <CP#>, <Copl>, Rd, CRn, CRm
MCR <cond> <CP#>, <Copl>, Rd, CRn, CRm, <Cop2>

ISA (4C) Assembler 21 Young Won Lim
Format — Coprocessor 12/14/19

Breakpoint Instruction

Breakpoint Instruction (BKPT)
BRK

ISA (4C) Assembler 292 Young Won Lim
Format — Coprocessor 12/14/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ISA (4C) Assembler 23 Young \{\g;?ébllrg
Format — Coprocessor

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

