
Young Won Lim
12/14/19

ISA Assembler Format (4C)

Coprocessor Instructions

Young Won Lim
12/14/19

 Copyright (c) 2014 - 2019 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

ISA (4C) Assembler
Format – Coprocessor

3 Young Won Lim
12/14/19

Based on

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

ISA (4C) Assembler
Format – Coprocessor

4 Young Won Lim
12/14/19

Coprocessor Instruction

Coprocessor Data Transfers
LDC | STC {<cond>} {L} <CP#>, CRd, [Rn, <offset>] {!}
LDC | STC {<cond>} {L} <CP#>, CRd, [Rn], <offset>

Coprocessor Data Operations
CDP {<cond>} <CP#>, <Cop1>, CRd, CRn, CRm {, <Cop2>}

Coprocessor Register Transfers
MRC {<cond>} <CP#>, <Cop1>, Rd, CRn, CRm {, <Cop2>}
MCR {<cond>} <CP#>, <Cop1>, Rd, CRn, CRm {, <Cop2>}

ISA (4C) Assembler
Format – Coprocessor

5 Young Won Lim
12/14/19

Coprocessor Instruction Mnemonics

L D C

S T C

C D P

M R C

M C R

coprocessor

coprocessor

coprocessor

coprocessor

coprocessor

Data Processing

L o a d

S t o r e

Move

Move

Reg

Reg

command to pass some data
to a coprocessor

command to get some data
from a coprocessor

Store data from a coprocessor
register to the memory

Load data from the memory
into a coprocessor register

CRd, CRn, CRm

CRd, [Rn, <offset>] {!}
CRd, [Rn], <offset>

Rd, CRn, CRm

Perform an operation over
CRd and CRm and place
the result in CRd

ISA (4C) Assembler
Format – Coprocessor

6 Young Won Lim
12/14/19

Coprocessor Instruction Encodings

Coprocessor Data Transfers
LDC | STC {<cond>} {L} <CP#>, CRd, [Rn, <offset>] {!}
LDC | STC {<cond>} {L} <CP#>, CRd, [Rn], <offset>

Coprocessor Data Operations
CDP {<cond>} <CP#>, <Cop1>, CRd, CRn, CRm {, <Cop2>}

Coprocessor Register Transfers
MRC {<cond>} <CP#>, <Cop1>, Rd, CRn, CRm {, <Cop2>}
MCR {<cond>} <CP#>, <Cop1>, Rd, CRn, CRm {, <Cop2>}

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 0 P U N W L OffsetRn CRd CP# (12)

cond 1 1 1 0 CP Opc CP 0 CRm

cond 1 1 1 0 CP Opc L

CRn CRd CP#

CP 1 CRmCRn Rd CP#

(13)

(14)

ISA (4C) Assembler
Format – Coprocessor

7 Young Won Lim
12/14/19

ARM Coprocessor Instruction Fields

<CP#> Coprocessor number

<Cop2> Coprocessor operation 2 <CP>

Coprocessor RdCRd

Coprocessor RnCRn

Coprocessor RmCRm

a<CP#>

aa

a<Cop2>

a<Cop1>

aa

Coprocessor operation 1 <CP Opc><Cop1>

aa

aa

CP# : identifes a coprocessor (a number in [0, 15])
a coprocessor will ignore any instruction
that has an incorrect CP#

CP Opc (Cop1) and possible the CP (Cop2):
specified what operation the coprocessor should perform
on the contents of CRn and CRm, and place the result in CRd.

ISA (5A)
Binary Encoding

8 Young Won Lim
12/14/19

Coprocessor Access Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

cond 1 1 1 0 CP Opc CP 0 CRm

cond 1 1 1 0 CP Opc L

1 1 0 P U N W L OffsetRn CRd CP#

CRn CRd CP#

CP 1 CRmCRn Rd CP#

(13)

(14)

(12)

Coprocessor Data Transfer

Coprocessor Data Operation

Coprocessor Register Transfer

CRd :=: [Rn,Offset]; CRd :=: [Rn], Offset

CRd :=: CRn <CP Opc, CP> CRm

Rd :=: CRn <CP Opc, CP> CRm

Pre/Post IndexP

Up/DownU

Transfer LengthN

Load/StoreL

Write-back (auto-index)W

CP# Coprocessor number

CP Coprocessor Information

Coprocessor RdCRd

Coprocessor RnCRn

Coprocessor RmCRm

a<CP#>

Coprocessor OP CodeCOpc

Rn Base Reg

Rd Destination Reg

4-bit

3-bit

4-bit

4-bit

4-bit

4/3-bit

4-bit

4-bitN (= L flag in assembler)

ISA (5A)
Binary Encoding

9 Young Won Lim
12/14/19

ARM Access Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond

cond 1 1 1 0 CP Opc CP 0 CRm

cond 1 1 1 0 CP Opc L

1 1 0 P U N W L OffsetRn CRd CP#

CRn CRd CP#

CP 1 CRmCRn Rd CP#

(13)

(14)

(12)

Coprocessor Data Transfer

Coprocessor Data Operation

Coprocessor Register Transfer

CRd :=: [Rn,Offset]; CRd :=: [Rn], Offset

CRd :=: CRn <CP Opc, CP> CRm

Rd :=: CRn <CP Opc, CP> CRm

a<CP#>

Store to memoryL=0

Load from memoryL=1

Short TransferN=0

STC MCR

LDC MRC

Long TransferN=1 with L flag in assembler

ISA (4C) Assembler
Format – Coprocessor

10 Young Won Lim
12/14/19

Coprocessor Data Transfers

Preindex Coprocessor Data Transfer
LDC | STC {<cond>} {L} <CP#>, CRd, [Rn, <offset>] {!}

Postindex Coprocessor Data Transfer
LDC | STC {<cond>} {L} <CP#>, CRd, [Rn], <offset>

CP# : identifes a coprocessor (a number in [0, 15])
a coprocessor will ignore any instruction
that has an incorrect CP#

The CRd field and the N bit field in the encoding
contain information which may be interpreted in different ways
by different coprocessors,

CRd is the register to be transferred (the first register)
N bit selects transfer length options.

N=0 the transfer of a single register :: when L is present (long transfer)
N=1 the transfer of all the registers for context switching. :: otherwise

ISA (4C) Assembler
Format – Coprocessor

11 Young Won Lim
12/14/19

Pre-indexing and Post-indexing Coprocessor Instructions

CRd, [Rn, <offset>] pre-indexed
CRd, [Rn, <offset>] ! pre-indexed with autoindex
CRd, [Rn], <offset> post-indexed

<offset>

<offset>

CRd, M Rn,

CRd, M Rn,

addr

addr

LTC

always

<offset>

!
CRd, M Rn,

addr

pre-indexed

pre-indexed.
with autoindex !

post-indexed

Coprocessor ARM processor

STC

LTC

STC

LTC

STC

ISA (4C) Assembler
Format – Coprocessor

12 Young Won Lim
12/14/19

Pre-indexing and Post-indexing Coprocessor Instructions

<offset>

<offset>

CRd, M Rn,

CRd, M Rn,

addr

addr

LTC

always

<offset>

!
CRd, M Rn,

addr

Pre-indexed
CRd, [Rn, <offset>]

pre-indexed.
with autoindex !
CRd, [Rn, <offset>] !

Post-indexed
CRd, [Rn], <offset>

C
o

p
ro

c
e

s
s

o
r

A
R

M
 p

ro
c

e
s

s
o

r

STC

LTC

STC

LTC

STC

Coprocessor Data Transfers
LDC | STC {<cond>} {L} <CP#>, CRd, [Rn, <offset>] {!}
LDC | STC {<cond>} {L} <CP#>, CRd, [Rn], <offset>

ISA (4C) Assembler
Format – Coprocessor

13 Young Won Lim
12/14/19

Coprocessor Data Transfers – Preindex

Preindex Coprocessor Data Transfer
LDC | STC {<cond>} {L} <CP#>, CRd, [Rn, <offset>] {!}

CP# : Coprocessor Number

LDC | STC <CP#>, CRd, [Rn, <offset>]
LDC | STC <cond> <CP#>, CRd, [Rn, <offset>]
LDC | STC <CP#>, CRd, [Rn, <offset>] !
LDC | STC <cond> <CP#>, CRd, [Rn, <offset>] !

LDC | STC L <CP#>, CRd, [Rn, <offset>]
LDC | STC <cond> L <CP#>, CRd, [Rn, <offset>]
LDC | STC L <CP#>, CRd, [Rn, <offset>] !
LDC | STC <cond> L <CP#>, CRd, [Rn, <offset>] !

ISA (4C) Assembler
Format – Coprocessor

14 Young Won Lim
12/14/19

Coprocessor Data Transfers – Postindex

Postindex Coprocessor Data Transfer
LDC | STC {<cond>} {L} <CP#>, CRd, [Rn], <offset>

CP# : Coprocessor Number

LDC | STC <CP#>, CRd, [Rn], <offset>
LDC | STC <cond> <CP#>, CRd, [Rn], <offset>
LDC | STC L <CP#>, CRd, [Rn], <offset>
LDC | STC <cond> L <CP#>, CRd, [Rn], <offset>
LDC | STC <CP#>, CRd, [Rn], <offset> !
LDC | STC <cond> <CP#>, CRd, [Rn], <offset> !
LDC | STC L <CP#>, CRd, [Rn], <offset> !
LDC | STC <cond> L <CP#>, CRd, [Rn], <offset> !

ISA (4C) Assembler
Format – Coprocessor

15 Young Won Lim
12/14/19

Coprocessor Data Operations

Coprocessor Data Processing Operations
CDP {<cond>} <CP#>, <Cop1>, CRd, CRn, CRm
CDP {<cond>} <CP#>, <Cop1>, CRd, CRn, CRm, <Cop2>

CP# : identifes a coprocessor (a number in [0, 15])
a coprocessor will ignore any instruction
that has an incorrect CP#

CP Opc (Cop1) and possible the CP (Cop2):
specified what operation the coprocessor should perform
on the contents of CRn and CRm, and place the result in CRd.

<expression1> evaluated to a constant and placed in the CP Opc field
<expression2> where present is evaluated to a constant and placed in the CP field

ISA (4C) Assembler
Format – Coprocessor

16 Young Won Lim
12/14/19

Coprocessor Data Operations

Coprocessor Data Processing Operations
CDP {<cond>} <CP#>, <Cop1>, CRd, CRn, CRm
CDP {<cond>} <CP#>, <Cop1>, CRd, CRn, CRm, <Cop2>

CRd, CRn, CRm

<Cop1> or
<Cop1, Cop2>

CDP

Co-
Processor

ISA (4C) Assembler
Format – Coprocessor

17 Young Won Lim
12/14/19

Coprocessor Data Operations

Coprocessor Data Processing Operations
CDP {<cond>} <CP#>, <Cop1>, CRd, CRn, CRm
CDP {<cond>} <CP#>, <Cop1>, CRd, CRn, CRm, <Cop2>

CP# : Coprocessor Number

CDP <CP#>, <Cop1>, CRd, CRn, CRm
CDP <CP#>, <Cop1>, CRd, CRn, Crm, <Cop2>
CDP <cond> <CP#>, <Cop1>, CRd, CRn, CRm
CDP <cond> <CP#>, <Cop1>, CRd, CRn, CRm, <Cop2>

ISA (4C) Assembler
Format – Coprocessor

18 Young Won Lim
12/14/19

Coprocessor Register Transfers (R←C, C←R)

Move to ARM Register from Coprocessor
MRC {<cond>} <CP#>, <Cop1>, Rd, CRn, CRm {, <Cop2>}

Move to Coprocessor from ARM Registers
MCR {<cond>} <CP#>, <Cop1>, Rd, CRn, CRm {, <Cop2>}

CP# : identifes a coprocessor (a number in [0, 15])
a coprocessor will ignore any instruction
that has an incorrect CP#

CP Opc (Cop1) and possible the CP (Cop2):
specified what operation the coprocessor should perform
on the contents of CRn and CRm, and place the result in CRd.

CRn is the coprocessor src / dst register of the transformation

CRm is a 2nd coprocessor register involved in some way
which depends on the particular operation specified.

ISA (4C) Assembler
Format – Coprocessor

19 Young Won Lim
12/14/19

Coprocessor Register Transfers (R←C, C←R)

Move to ARM Register from Coprocessor
MRC {<cond>} <CP#>, <Cop1>, Rd, CRn, CRm {, <Cop2>}

Move to Coprocessor from ARM Registers
MCR {<cond>} <CP#>, <Cop1>, Rd, CRn, CRm {, <Cop2>}

 Rd, CRn, CRm

<Cop1> or <Cop1, Cop2>

MRC

 Rd, CRn, CRm

<Cop1> or <Cop1, Cop2>

MCR

command to pass some data
to a coprocessor

command to get some data
from a coprocessor

ARM
Processor

Co-
Processor

Load

Store

ISA (4C) Assembler
Format – Coprocessor

20 Young Won Lim
12/14/19

Coprocessor Register Transfers (R←C)

Move to ARM Register from Coprocessor
MRC {<cond>} <CP#>, <Cop1>, Rd, CRn, CRm
MRC {<cond>} <CP#>, <Cop1>, Rd, CRn, CRm, <Cop2>

CP# : Coprocessor Number

MRC <CP#>, <Cop1>, Rd, CRn, CRm
MRC <CP#>, <Cop1>, Rd, CRn, CRm, <Cop2>
MRC <cond> <CP#>, <Cop1>, Rd, CRn, CRm
MRC <cond> <CP#>, <Cop1>, Rd, CRn, CRm, <Cop2>

ISA (4C) Assembler
Format – Coprocessor

21 Young Won Lim
12/14/19

Coprocessor Register Transfers (C←R)

Move to Coprocessor from ARM Registers
MCR {<cond>} <CP#>, <Cop1>, Rd, CRn, CRm
MCR {<cond>} <CP#>, <Cop1>, Rd, CRn, CRm, <Cop2>

CP# : Coprocessor Number

MCR <CP#>, <Cop1>, Rd, CRn, CRm
MCR <CP#>, <Cop1>, Rd, CRn, CRm, <Cop2>
MCR <cond> <CP#>, <Cop1>, Rd, CRn, CRm
MCR <cond> <CP#>, <Cop1>, Rd, CRn, CRm, <Cop2>

ISA (4C) Assembler
Format – Coprocessor

22 Young Won Lim
12/14/19

Breakpoint Instruction

Breakpoint Instruction (BKPT)
BRK

ISA (4C) Assembler
Format – Coprocessor

23 Young Won Lim
12/14/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

