Correlation & Covariance of Random Processes

Young W Lim

Sep 11 2021

Young W Lim Correlation & Covariance of Random Processes

Copyright (c) 2021 - 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

イロト イポト イラト イラト

Based on Probability, Random Variables and Random Signal Principles, P.Z. Peebles, Jr. and B. Shi

Outline

1 Auto / Cross Correlations of Random Processes

- Auto-correlation of Random Processes
- Cross-correlation of Random Variables

2 Auto / Cross Covariance Random Processes

- Auto-covariance of Random Processes
- Cross-covariance of Random Processes

Outline

Auto / Cross Correlations of Random Processes

- Auto-correlation of Random Processes
- Cross-correlation of Random Variables

2 Auto / Cross Covariance Random Processes

- Auto-covariance of Random Processes
- Cross-covariance of Random Processes

Auto-correlation of Random Processes Cross-correlation of Random Variables

Correlation functions (1)

• A correlation function gives

the statistical correlation between random variables, contingent on the spatial or temporal distance between those variables.

- An auto-correlation function random variables represent the same quantity measured at two different points
- A cross-correlation function random variables are <u>different</u> <u>quantities</u> measured at two different points

https://en.wikipedia.org/wiki/Correlation_function

Auto-correlation of Random Processes Cross-correlation of Random Variables

Correlation functions (2)

- a useful indicator of dependencies as a function of distance in time or space
- can be used to assess the <u>distance</u> required between sample points for the values to be effectively uncorrelated.
- can form the basis of rules for <u>interpolating</u> values at points for which there are no observations.

https://en.wikipedia.org/wiki/Correlation_function

Auto-correlation of Random Processes Cross-correlation of Random Variables

Auto-correlation functions (1)

in deterministic processes

- Autocorrelation is the correlation of a signal with a delayed copy of itself as a function of delay.
- the similarity between observations as a function of the time lag between them.

Auto-correlation functions (2)

in deterministic processes

• auto-correlation of continuous time signal (deterministic)

$$R_{ff}(\tau) = \int_{-\infty}^{\infty} f(t+\tau)\overline{f(t)}dt = \int_{-\infty}^{\infty} f(t)\overline{f(t-\tau)}dt$$

auto-correlation of <u>discrete</u> time signal (deterministic)

$$R_{gg}[k] = \sum_{n} g[n+k]\overline{g[k]}dt = \sum_{n} g[n]\overline{g[n-\tau]}dt$$

Auto-correlation of Random Processes Cross-correlation of Random Variables

Auto-correlation functions (3)

in deterministic processes

- a mathematical tool for
 - finding repeating patterns, such as the presence of a periodic signal obscured by noise,
 - identifying the missing fundamental frequency in a signal implied by its harmonic frequencies.
- often used in signal processing for analyzing functions or series of values, such as time domain signals.

Auto-correlation of Random Processes Cross-correlation of Random Variables

Auto-correlation functions (4)

In random processes

- the autocorrelation of a real or complex random process
- the Pearson correlation
 between values of the process at different times, as a function of the two times (t₁, t₂)
 or a function of the time lag (τ)

Auto-correlation functions (5)

In random processes

- Let {*X*(*t*)} be a random process, and *t* be any point in time *t* may be an <u>integer</u> for a discrete-time process or a <u>real number</u> for a continuous-time process
- Then *X*(*t*) is the value (or **realization**) produced by a given run of the process at time *t*.
- the auto-correlation function between times t_1 and t_2

$$R_{XX}(t_1,t_2)=E\left[X(t_1)\overline{X(t_2)}\right]$$

• the auto-correlation function for WSS random process $\{X(t)\}$

$$R_{XX}(\tau) = E\left[X(t)\overline{X(t+ au)}
ight]$$

Auto-correlation of Random Processes Cross-correlation of Random Variables

The properties of autocorrelation functions (1)

$|R_{XX}(\tau)|, R_{XX}(-\tau), R_{XX}(0)|$

 $|R_{XX}(\tau)| \le R_{XX}(0)$ $R_{XX}(-\tau) = R_{XX}(\tau)$ $R_{XX}(0) = E[X^{2}(t)]$ $P[|X(t+\tau) - X(t)| > \varepsilon] = \frac{2}{\varepsilon^{2}} (R_{XX}(0) - R_{XX}(\tau))$

Young W Lim Correlation & Covariance of Random Processes

Auto-correlation of Random Processes Cross-correlation of Random Variables

The properties of autocorrelation functions (2)

$R_{NN}(\tau), R_{XX}(\tau)$

$$X(t) = \overline{X} + N(t)$$

where N(t) is WSS, is zero-mean,

$$m_N(t)=0$$

has autocorrelation function

$$R_{NN}(au) o 0$$
 as $| au| o \infty$

then

$$R_{XX}(au) o \overline{X}^2$$
 as $| au| o \infty$

イロト イポト イヨト イヨト

э

Auto-correlation of Random Processes Cross-correlation of Random Variables

The properties of autocorrelation functions (3)

$R_{NN}(\tau), R_{XX}(\tau)$

lf

$$X(t) = \overline{X} + N(t)$$
$$m_N(t) = 0$$
$$\lim_{\tau \to \infty} R_{NN}(\tau) = 0$$

then

$$\lim_{|\tau|\to\infty}R_{XX}(\tau)=\overline{X}^2$$

A 1

Auto-correlation of Random Processes Cross-correlation of Random Variables

The properties of autocorrelation functions (4)

$R_{NN}(\tau), R_{XX}(\tau)$

if X(t) is mean square periodic, i.e, there exists a $T \neq 0$ such that

$$E\left[\left\{X(t+T)-X(t)\right\}^2\right]=0 \quad \text{for all } t,$$

then $R_{XX}(t)$ will have a **periodic** component with the same period

$$R_{XX}(\tau+T)=R_{XX}(\tau)$$

Auto-correlation of Random Processes Cross-correlation of Random Variables

The properties of autocorrelation functions (5)

$R_{NN}(\tau), R_{XX}(\tau)$

- $R_{XX}(\tau+T) = R_{XX}(\tau)$
- $R_{XX}(T) = R_{XX}(0)$
- E[X(t)X(t+T)] = E[X(t)X(t)]
- E[X(t)X(t+T)] = E[X(t+T)X(t+T)]
- 2E[X(t)X(t+T)] = E[X(t)X(t)] + E[X(t+T)X(t+T)]
- $E\left[\left\{X(t)-X(t+T)\right\}^2\right]=0$

http://www.math.pitt.edu/~troy/stochastic/meansquareperiodic.pdf

Auto-correlation of Random Processes Cross-correlation of Random Variables

The properties of autocorrelation functions (6)

$R_{NN}(\tau), R_{XX}(\tau)$

 $R_{XX}(\tau)$ cannot have an arbitrary shape

any arbitrary function cannot be an autocorrelation funciton.

 $R_{XX}(\tau)$ is related to the **power density spectrum** through the Fourier transform and the form of the spectrum is <u>not</u> arbitrary

Auto-correlation of Random Processes Cross-correlation of Random Variables

Outline

Auto / Cross Correlations of Random Processes Auto-correlation of Random Processes Cross-correlation of Random Variables

- 2 Auto / Cross Covariance Random Processes
 Auto-covariance of Random Processes
 - Cross-covariance of Random Processes

Crosscorrelation functions (1)

In signal processing

- a measure of similarity of two series as a function of the displacement of one relative to the other.
- commonly used for searching a long signal for a shorter, known feature.
- It has applications in pattern recognition, single particle analysis, electron tomography, averaging, cryptanalysis, and neurophysiology.

Auto-correlation of Random Processes Cross-correlation of Random Variables

Crosscorrelation functions (2)

In signal processing

- similar in nature to the convolution of two functions.
- In an autocorrelation, which is the cross-correlation of a signal with itself, there will always be a peak at a <u>lag</u> of <u>zero</u>, and its size will be the signal energy.

Auto-correlation of Random Processes Cross-correlation of Random Variables

Crosscorrelation functions (3)

for deterministic signals

- consider two real valued functions *f* and *g* differing only by an unknown shift along the x-axis.
- One can use the cross-correlation to find how much g must be shifted along the x-axis to make it identical to f.
- The formula essentially slides the *g* function along the x-axis, calculating the integral of their product at each position.

Auto-correlation of Random Processes Cross-correlation of Random Variables

Crosscorrelation functions (4)

for deterministic signals

 With complex-valued functions f and g, taking the conjugate of f ensures that aligned peaks (or aligned troughs) with <u>imaginary components</u> will contribute <u>positively</u> to the integral.

$$(f\star g)(\tau) \triangleq \int_{-\infty}^{\infty} \overline{f(t)}g(t+\tau)dt$$

Crosscorrelation functions (5)

for deterministic signals

- When the functions match, the value of $(f \star g)$ is maximized.
- This is because when <u>peaks</u> (positive areas) are <u>aligned</u>, they make a <u>large contribution</u> to the integral.
- Similarly, when troughs (negative areas) align, they also make a positive contribution to the integral because the product of two negative numbers is positive.

$$(f\star g)(\tau) \triangleq \int_{-\infty}^{\infty} \overline{f(t)}g(t+\tau) dt$$

Auto-correlation of Random Processes Cross-correlation of Random Variables

Crosscorrelation functions (6)

for random processes

• the cross-correlation of a pair of random processes is the correlation between values of the processes at different times, as a function of the two times.

Auto-correlation of Random Processes Cross-correlation of Random Variables

Crosscorrelation functions (6)

for random processes

- Let (X(t), Y(t)) be a pair of random processes, and t be any point in time
- t may be an <u>integer</u> for a <u>discrete-time</u> process or a real number for a continuous-time process
- Then X(t) is the value (or realization) produced by a given run of the process at time t.

$$R_{XY}(t_1, t_2) = E[X_{t_1}\overline{Y_{t_2}}]$$

Auto-correlation of Random Processes Cross-correlation of Random Variables

Crosscorrelation functions (7)

Normalization

- It is common practice in some disciplines

 (e.g. statistics and time series analysis)
 to normalize the cross-correlation function
 to get a time-dependent Pearson correlation coefficient.
- However, in other disciplines (e.g. engineering) the normalization is usually dropped and the terms "cross-correlation" and "cross-covariance" are used interchangeably.

Auto-correlation of Random Processes Cross-correlation of Random Variables

Crosscorrelation functions (8)

$R_{XY}(t_1,t_2), R_{XY}(t,t+\tau)$

 $R_{XY}(t_1,t_2) = E\left[X(t_1)Y(t_2)\right]$

$$R_{XY}(t,t+\tau) = E[X(t)Y(t+\tau)] = R_{XY}(\tau)$$

Auto-correlation of Random Processes Cross-correlation of Random Variables

Crosscorrelation functions (9)

$R_{XY}(t_1,t_2),R_{XY}(t,t+\tau)$

if

$$R_{XY}(t,t+\tau)=R_{XY}(\tau)=0$$

then X(t) and Y(t) are called orthogonal processes

Orthogonal Random Variables (1)

$R_{XY}(t_1,t_2), R_{XY}(t,t+\tau)$

vectors \boldsymbol{x} and \boldsymbol{y} are **orthogonal** if their dot product is zero, i.e. $\boldsymbol{x}^T \boldsymbol{y} = 0$.

However for vectors with <u>random components</u>, the **orthogonality** condition is modified to be Expected Value $E[\mathbf{x}^T \mathbf{y}] = 0$.

for orthogonality, each <u>random</u> <u>outcome</u> of $\mathbf{x}^T \mathbf{y}$ may <u>not</u> be <u>zero</u>, sometimes positive, sometimes negative, possibly also zero, but Expected Value $E[\mathbf{x}^T \mathbf{y}] = 0$.

https://math.stackexchange.com/questions/474840/what-does-orthogonal-

random-variables-mean

Auto-correlation of Random Processes Cross-correlation of Random Variables

Orthogonal Random Variables (2)

$R_{XY}(t_1,t_2),R_{XY}(t,t+\tau)$

Two random processes X(t) and Y(t) are called **orthogonal** if their cross-correlation

$$R_{XY}(\tau) = E\left[X(t)Y(t+\tau)\right] = 0$$

https://en.wikipedia.org/wiki/Stochastic process#Orthogonality

Auto-correlation of Random Processes Cross-correlation of Random Variables

Statistically independent

$R_{XY}(t,t+\tau), R_{XY}(\tau)$

if X(t) and Y(t) are statistically independent

$$R_{XY}(t,t+\tau) = E\left[X(t)Y(t+\tau)\right] = m_X(t)m_Y(t+\tau)$$

if X(t) and Y(t) are stistically independent and are at least WSS,

$$R_{XY}(\tau) = \overline{X} \overline{Y}$$

which is constant

Auto-correlation of Random Processes Cross-correlation of Random Variables

The properties of crosscorrelation functions (1)

$R_{XY}(\tau), |R_{XY}(\tau)|$

$$R_{\mathbf{X}\mathbf{Y}}(-\boldsymbol{\tau}) = R_{\mathbf{Y}\mathbf{X}}(\boldsymbol{\tau})$$

$$|R_{XY}(\tau)| \leq \sqrt{R_{XX}(0)R_{YY}(0)}$$

$$|R_{XY}(\tau)| \leq rac{1}{2} [R_{XX}(0) + R_{YY}(0)]$$

A 10

Auto-correlation of Random Processes Cross-correlation of Random Variables

The properties of crosscorrelation functions (2)

$R_{YX}(-\tau)$

$$R_{\mathbf{Y}\mathbf{X}}(-\tau) = E\left[\mathbf{Y}(t)\mathbf{X}(t-\tau)\right] = E\left[\mathbf{Y}(s+\tau)\mathbf{X}(s)\right] = R_{\mathbf{X}\mathbf{Y}}(\tau)$$

$$E\left[\left\{\frac{\mathbf{Y}(t+\tau)+\alpha \mathbf{X}(t)\right\}^{2}\right]\geq 0$$

the **geometric mean** of two positive numbers cannot exceed their **arithmetic mean**

Auto-correlation of Random Processes Cross-correlation of Random Variables

The properties of crosscorrelation functions (3)

$|R_{XY}(\tau)|$

$$|R_{XY}(\tau)| \leq \frac{1}{2} [R_{XX}(0) + R_{YY}(0)]$$
$$\sqrt{R_{XX}(0)R_{YX}(0)} \leq \frac{1}{2} [R_{XX}(0) + R_{YY}(0)]$$

Young W Lim Correlation & Covariance of Random Processes

A 10

∃ >

Outline

- Auto / Cross Correlations of Random Processes
 Auto-correlation of Random Processes
 Cross-correlation of Random Variables
- Auto / Cross Covariance Random Processes
 Auto-covariance of Random Processes
 Cross-covariance of Random Processes

Auto-covariance (1)

• With the usual notation E for the expectation operator, if the stochastic process $\{X(t)\}$ has the mean function $\mu(t) = E[X(t)]$, then the autocovariance is given by

$$\begin{split} \mathsf{K}_{XX}(t_1, t_2) &= \operatorname{cov}\left[X(t_1), X(t_2)\right] \\ &= \mathsf{E}[(X(t_1) - \mu(t_1))(X(t_2) - \mu(t_2))] \\ &= \mathsf{E}[X(t_1)X(t_2)] - \mu(t_1)\mu(t_2) \end{split}$$

• where t_1 and t_2 are two moments in time.

Auto-covariance (2)

If $\{X(t)\}$ is a weakly stationary (WSS) process, then the following are true

•
$$\mu(t_1) = \mu(t_2) riangleq \mu$$
 for all t_1 , t_2

•
$$\mathsf{E}[|X(t)|^2] < \infty$$
 for all t

•
$$K_{XX}(t_1, t_2) = K_{XX}(t_2 - t_1, 0) \triangleq K_{XX}(t_2 - t_1) = K_{XX}(\tau)$$

where $\tau = t_2 - t_1$ is the lag time, or the amount of time by which the signal has been shifted.

Auto-covariance (3)

The autocovariance function of a WSS process is therefore given by

$$\begin{aligned} \mathsf{K}_{XX}(\tau) &= \mathsf{E}[(X(t) - \mu(t))(X(t - \tau) - \mu(t - \tau))] \\ &= \mathsf{E}[X(t)X(t - \tau)] - \mu^2 \end{aligned}$$

which is equivalent to

$$\begin{split} \mathsf{K}_{XX}(\tau) &= \mathsf{E}[(X(t+\tau) - \mu(t+\tau))(X(t) - \mu(t))] \\ &= \mathsf{E}[X(t)X(t+\tau)] - \mu^2 \end{split}$$

Outline

Auto / Cross Correlations of Random Processes Auto-correlation of Random Processes Cross-correlation of Random Variables

Auto / Cross Covariance Random Processes Auto-covariance of Random Processes

• Cross-covariance of Random Processes

Cross-covariance (1)

• Let {*X*(*t*)} and {*Y*(*t*)} denote stochastic processes. Then the cross-covariance function of the processes *K*_{*XY*} is defined by

$$\begin{aligned} \mathsf{K}_{XY}(t_1, t_2) &= \mathsf{cov}\left[X(t_1), Y(t_2)\right] \\ &= \mathsf{E}[(X(t_1) - \mu_X(t_1))(Y(t_2) - \mu_Y(t_2))] \\ &= \mathsf{E}[X(t_1)X(t_2)] - \mu_X(t_1)\mu_Y(t_2) \end{aligned}$$

• where t_1 and t_2 are two moments in time.

https://en.wikipedia.org/wiki/Autocovariance

Cross-covariance (2)

If $\{X(t)\}$ and $\{Y(t)\}$ are a jointly weakly stationary (WSS) process, then the following are true

•
$$\mu_X(t_1) = \mu_X(t_2) \triangleq \mu_X$$
 for all t_1 , t_2

•
$$\mu_Y(t_1) = \mu_Y(t_2) riangleq \mu_Y$$
 for all t_1 , t_2

• $K_{XY}(t_1, t_2) = K_{XY}(t_2 - t_1, 0) \triangleq K_{XY}(t_2 - t_1) = K_{XY}(\tau)$

where $\tau = t_2 - t_1$ is the lag time, or the amount of time by which the signal has been shifted.

https://en.wikipedia.org/wiki/Autocovariance

伺下 イヨト イヨト

Cross-covariance (3)

The autocovariance function of a WSS process is therefore given by

$$K_{XY}(\tau) = \mathbb{E}[(X(t) - \mu_X(t))(Y(t - \tau) - \mu_Y(t - \tau))]$$
$$= \mathbb{E}[X(t)Y(t - \tau)] - \mu_X\mu_Y$$

which is equivalent to

$$\begin{aligned} \mathsf{K}_{XY}(\tau) &= \mathsf{E}[(X(t+\tau) - \mu_X(t+\tau))(Y(t) - \mu_Y(t))] \\ &= \mathsf{E}[X(t)Y(t+\tau)] - \mu_X\mu_Y \end{aligned}$$

Units of measurement

- The units of measurement of the **covariance** cov(X, Y) are those of X times those of Y.
- By contrast, correlation coefficients, which <u>depend</u> on the covariance, are a <u>dimensionless</u> <u>measure</u> of linear dependence. (In fact, correlation coefficients can simply be understood as a normalized version of covariance.)

Covariance with itself

• The variance is a special case of the covariance in which the two variables are identical (that is, in which one variable always takes the same value as the other)

$$\operatorname{cov}(X,X) = \operatorname{var}(X) \equiv \sigma^2(X) \equiv \sigma_X^2.$$

Covariance of linear combination

• If X, Y, W, and V are real-valued random variables and a, b, c, d are real-valued constants, then the following facts are a consequence of the definition of covariance:

$$cov(X, a) = 0$$

$$cov(X, X) = var(X)$$

$$cov(X, Y) = cov(Y, X)$$

$$cov(aX, bY) = ab cov(X, Y)$$

$$cov(X + a, Y + b) = cov(X, Y)$$

$$cov(aX + bY, cW + dV) = ac cov(X, W) + ad cov(X, V)$$

$$+ bc cov(Y, W) + bd cov(Y, V)$$

Uncorrelated (1)

- Random variables whose covariance is zero are called uncorrelated.
- For example, let X be uniformly distributed in [-1,1] and let $Y = X^2$. Clearly, X and Y are not independent, but $cov(X, Y) = cov(X, X^2)$ $= E[X \cdot X^2] - E[X] \cdot E[X^2]$ $= E[X^3] - E[X]E[X^2]$ $= 0 - 0 \cdot E[X^2]$ = 0.

Uncorrelated (2)

- In this case, the relationship between Y and X is non-linear, while correlation and covariance are measures of linear dependence between two random variables.
- This example shows that if two random variables are uncorrelated,

that does not in general imply that they are independent.

• However, if two variables are jointly normally distributed (but not if they are merely individually normally distributed), uncorrelatedness does imply independence.

Inner Product

- Many of the properties of covariance can be extracted elegantly by observing that it satisfies similar properties to those of an inner product:
- bilinear: for constants a and b and random variables X, Y, Z, cov(aX + bY, Z) = a cov(X, Z) + b cov(Y, Z)
- symmetric: cov(X, Y) = cov(Y, X)
- positive semi-definite: $\sigma^2(X) = \operatorname{cov}(X, X) \ge 0$ for all random variables X, and $\operatorname{cov}(X, X) = 0$ implies that X is constant almost surely. $\operatorname{cov}(X, X) = 0\operatorname{cov}(X, X) = 0$ implies that X is constant almost surely.

https://en.wikipedia.org/wiki/Covariance

https://en.wikipedia.org/wiki/Covariance

・ 同 ト ・ ヨ ト ・ ヨ ト

Auto-covariance of Random Processes Cross-covariance of Random Processes

Covariance Functions

$C_{XX}(t,t+\tau), C_{XY}(t,t+\tau)$

$$C_{XX}(t,t+\tau) = E\left[\left\{X(t) - m_X(t)\right\}\left\{X(t+\tau) - m_X(t+\tau)\right\}\right]$$

$$C_{XY}(t,t+\tau) = E\left[\left\{X(t) - m_X(t)\right\}\left\{Y(t+\tau) - m_Y(t+\tau)\right\}\right]$$

$$C_{XX}(t,t+\tau) = R_{XX}(t,t+\tau) - m_X(t)m_X(t+\tau)$$

$$C_{XY}(t,t+\tau) = R_{XY}(t,t+\tau) - m_X(t)m_Y(t+\tau)$$
at least jointly WSS

$$C_{XX}(\tau) = R_{XX}(\tau) - \overline{X}^2$$

$$C_{XY}(\tau) = R_{XY}(\tau) - \overline{XY}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Auto-covariance of Random Processes Cross-covariance of Random Processes

The properties of covariance functions

$C_{XX}(0)$

For a WSS process, variance does not depend on time and if au=0

$$C_{XX}(0) = R_{XX}(0) - \overline{X}^2$$

$$\sigma_{\mathbf{X}}^{2} = E\left[\left\{\mathbf{X}(t) - E\left[\mathbf{X}(t)\right]\right\}^{2}\right] = C_{\mathbf{X}\mathbf{X}}(0)$$

it the two random processes uncorrelated

$$C_{XY}(t,t+\tau) = R_{XY}(t,t+\tau) - m_X(t)m_Y(t+\tau) = 0$$

$$R_{XY}(t,t+\tau) = m_X(t)m_Y(t+\tau)$$

Auto-covariance of Random Processes Cross-covariance of Random Processes

Discrete-Time Processes and Sequences (1)

$R_{XX}[n, n+k], \overline{R_{YY}[n, n+k]}, C_{XX}[n, n+k], \overline{C_{YY}[n, n+k]}$ $m_X[n] = \overline{X}, m_Y[n] = \overline{Y}$ $R_{XX}[n, n+k] = R_{XX}[k]$ $R_{YY}[n, n+k] = R_{YY}[k]$ $C_{\mathbf{X}\mathbf{X}}[n, n+k] = R_{\mathbf{X}\mathbf{X}}[k] - \overline{X}^2$ $C_{\mathbf{Y}}[n, n+k] = R_{\mathbf{Y}}[k] - \overline{Y}^2$

周 ト イ ヨ ト イ ヨ ト

Auto-covariance of Random Processes Cross-covariance of Random Processes

Discrete-Time Processes and Sequences (2)

$R_{XY}[n, n+k], R_{YX}[n, n+k], C_{XY}[n, n+k], C_{YX}[n, n+k]$ $m_X[n] = \overline{X}, m_Y[n] = \overline{Y}$ $R_{XY}[n, n+k] = R_{XY}[k]$ $R_{YX}[n, n+k] = R_{YX}[k]$

$$C_{XY}[n, n+k] = R_{XY}[k] - \overline{XY}$$
$$C_{YX}[n, n+k] = R_{YX}[k] - \overline{YX}$$

Young W Lim Correlation & Covariance of Random Processes

.

Covariance example (1)

 Suppose that X and Y have the following joint probability mass function, in which the six central cells give the discrete joint probabilities f(x, y) of the six hypothetical realizations

		X			$f_{\rm V}(y)$
		5	6	7	<i>1Y</i> (<i>y</i>)
V	8	0	0.4	0.1	0.5
у	9	0.3	0	0.2	0.5
$f_X(x)$		0.3	0.4	0.3	1

- $\mu_X = 5(0.3) + 6(0.4) + 7(0.1 + 0.2) = 6$
- $\mu_Y = 8(0.4 + 0.1) + 9(0.3 + 0.2) = 8.5$

Auto-covariance of Random Processes Cross-covariance of Random Processes

Covariance example (2)

		X			$f_{\rm V}({\rm v})$
		5	6	7	<i>1Y</i> (<i>y</i>)
y	8	0	0.4	0.1	0.5
	9	0.3	0	0.2	0.5
$f_X(x)$		0.3	0.4	0.3	1

•
$$\mu_X = 6$$
 and $\mu_Y = 8.5$

•
$$cov(X,Y) = \sigma_{XY} = \sum_{(x,y)\in S} f(x,y)(x-\mu_X)(y-\mu_Y)$$

(0)(5-6)(8-8.5) + (0.4)(6-6)(8-8.5) + (0.1)(7-6)(8-8.5) + (0.3)(5-6)(9-8.5) + (0)(6-6)(9-8.5) + (0.2)(7-6)(9-8.5) = -0.1

https://en.wikipedia.org/wiki/Covariance

▲ 同 ▶ → (三 ▶