
Young Won Lim
7/26/23

Data Transfer (4A)

Young Won Lim
7/26/23

 Copyright (c) 2014 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Assembly Programming
(4A) Data Transfer

3 Young Won Lim
7/26/23

Based on

Introduction to ARM Cortex-M Microcontrollers – Embedded Systems,
J. W Valvano

Assembly Programming
(4A) Data Transfer

4 Young Won Lim
7/26/23

Memory Objects

Memory object type Register Example operand

Constants in code space PC =Constant [PC, #28]

Local variables on the stack SP [SP, #0x04]

Global variables in RAM R0-R12 [R0]

I/O ports R0-R12 [R0]

Assembly Programming
(4A) Data Transfer

5 Young Won Lim
7/26/23

Address loading pseudo-instructions

https://stackoverflow.com/questions/42065155/how-to-replace-ldr-with-adr-in-assembler

ADR {cond} Rd, label (address)

ADRL {cond} Rd, expression (address arithmetic)

LDR {cond} Rd, =label (=address)

LDR {cond} Rd, =number (=constant)

Assembly Programming
(4A) Data Transfer

6 Young Won Lim
7/26/23

ADR Rd, label

https://stackoverflow.com/questions/42065155/how-to-replace-ldr-with-adr-in-assembler

ADR {cond} Rd, label

ADR is to get the address
of the literal pool (type constant)
to a register.

The literal pool in code area
is typically after the end of functions

ADR Rd,label can be translated into

ADD Rd,pc,#offset

ADR...

offset

+8

label:

Assembly Programming
(4A) Data Transfer

7 Young Won Lim
7/26/23

ADRL Rd, expression

https://stackoverflow.com/questions/42065155/how-to-replace-ldr-with-adr-in-assembler

ADRL {cond} Rd, expression

The assembler converts an ADRL Rd, label
into

two data processing instructions
that load the address, if it is in range

start MOV r0,#10
ADRL r4,start + 60000

; ADD r4,pc,#0xe800
; ADD r4,r4,#0x254

60000-8-4 = 59988 = &ea54
&e800 + &254 = &ea54 prefix & = prefix 0x

ADRL...

Offset

+8

start:

start+60000-8
start+59992+4

Assembly Programming
(4A) Data Transfer

8 Young Won Lim
7/26/23

LDR Rd, =label

https://stackoverflow.com/questions/42065155/how-to-replace-ldr-with-adr-in-assembler

LDR {cond} Rd, =label (=address)

placing the address label in a literal pool

LDR Rd,=label

LDR Rd,[pc,#offset]

the offset to a literal pool

LDR...

offset

label:

label

a full 32-bit label

+8

a literal
pool

Assembly Programming
(4A) Data Transfer

9 Young Won Lim
7/26/23

LDR Rd, =number

https://stackoverflow.com/questions/42065155/how-to-replace-ldr-with-adr-in-assembler

LDR {cond} Rd, =number (=constant)

placing the number in a literal pool

LDR Rd,=number

LDR Rd,[pc,#offset] the offset to a literal pool

MOV Rd, #imm16 for a small range number,

LDR...

offset

number

a literal
pool

+8

Assembly Programming
(4A) Data Transfer

10 Young Won Lim
7/26/23

PC-relative address

ADR / LDR instruction
adds or subtracts an offset
to the current PC value
to form a PC-relative address

at the time of executing
a current instruction,
PC has been advanced
by 2 instructions forward (+8)

pc – target = offset

https://stackoverflow.com/questions/15774581/getting-an-label-address-to-a-register-on-arm

ADR...

offset

target

PCcurrent

In ARM state, the value of the PC
is the address of the current
instruction plus 8 bytes.

Assembly Programming
(4A) Data Transfer

11 Young Won Lim
7/26/23

Getting a label address into a register

 target:
 .long 0xfeadbeef

 adr r0,target
 adrl r0,target
 ldr r0,=target
 sub r0,pc,#(.+8-target)

1) and 2) are very similar and generate sub r0,pc,#target.
3) puts a long in a literal pool and loads this

via ldr r0,[pc,#offset2]
or it may use a mov r0,#offset2
if the assembler finds it can
(usually an aligned label, like at 0x8000).

4) is to manually calculated a full 32-bit absolute address

https://stackoverflow.com/questions/15774581/getting-an-label-address-to-a-register-on-arm

Assembly Programming
(4A) Data Transfer

12 Young Won Lim
7/26/23

ADR / ADRL offsets

 target:
 .long 0xfeadbeef

 adr r0,target
 adrl r0,target

1) and 2) are very similar and
generate sub r0,pc,offset

r0 ← pc – target
r0 ← offset

pc – target = offset

https://stackoverflow.com/questions/15774581/getting-an-label-address-to-a-register-on-arm

ADR...

feadbeef

offset

target

In ARM state, the value of the PC
is the address of the current
instruction plus 8 bytes.

PCcurrent

Assembly Programming
(4A) Data Transfer

13 Young Won Lim
7/26/23

ADR vs ADRL

The difference between adr and adrl
comes from immediate operands.

immediate operands are 8bits rotated by a multiple of two.

So if the address is far, you may need to
perform two instructions (adrl)

adrl will usually be faster than
the ldr variant (ldr =target)
which get a full 32-bits address in the literal pool

https://stackoverflow.com/questions/15774581/getting-an-label-address-to-a-register-on-arm

Assembly Programming
(4A) Data Transfer

14 Young Won Lim
7/26/23

LDR offset

 target:
 .long 0xfeadbeef

 ldr r0,=target

puts a long in a literal pool
to hold a full 32-bit address of target
and loads this address via

ldr r0,[pc,#offset2]

Or it may use a MOV if the assembler finds it can
(usually an aligned label, like at 0x8000).

https://stackoverflow.com/questions/15774581/getting-an-label-address-to-a-register-on-arm

LDR...

feadbeef

offset2

target

targeta literal
pool

created

a full 32-bit target

PCcurrent

Assembly Programming
(4A) Data Transfer

15 Young Won Lim
7/26/23

Manual computing an address

 target:
 .long 0xfeadbeef

 sub r0,pc,#(.+8-target)

https://stackoverflow.com/questions/15774581/getting-an-label-address-to-a-register-on-arm

ADR...

feadbeeftarget

In ARM state, the value of the PC
is the address of the current
instruction plus 8 bytes.

PCcurrent. : address of the current instruction
 address of the sub …

.+8 : where the current PC points to

PC – (.+8 – target) =
PC – (PC – target) =
a full 32-bit target address

Assembly Programming
(4A) Data Transfer

16 Young Won Lim
7/26/23

ADR Label Example

Access ADR R5, Pi ; R5 points to Pi
LDR R6, [R5] ; R6 = 123456

…
BX LR

Pi DCD 123456 ; literal pool

Pi
R5

Pi 123456

123456
R6

LDR R6, [R5]

[R5]

ADR R5,Pi

Mem

Pi the address of the location
where the value N is stored

Pi DCD 123456

R5 ← PC-relative Pi

Assembly Programming
(4A) Data Transfer

17 Young Won Lim
7/26/23

LDR =number example

In LDR R5, =0x12345678
LDR R6, [R5]
…
BX LR

In LDR R5, [PC, #16]
LDR R6, [R5]
…
BX LR
DCD 0x12345678

&N
R5

&N N

N
R6

LDR R6, [R5]

[R5]

R5

Mem

&N the address of the location
where the value N is stored

R5 ← PC-relative &N

Assembly Programming
(4A) Data Transfer

18 Young Won Lim
7/26/23

Data Transfer Types

B Unsigned 8-bit byte
SB Signed 8-bit byte
H Unsigned 16-bit halfword
SH Signed 16-bit halfword
D 64-bit data

Assembly Programming
(4A) Data Transfer

19 Young Won Lim
7/26/23

Data Transfer Examples

LDR{type}{cond}Rd, [Rn] [Rn]
STR{type}{cond}Rd, [Rn] [Rn]

LDR{type}{cond}Rd, [Rn, #n] [Rn + #n]
STR{type}{cond}Rt, [Rn, #n] [Rn + #n]

LDR{type}{cond}Rd, [Rn, Rm, LSL #n] [R+(Rm<<#n)]
STR{type}{cond}Rd, [Rn, Rm, LSL #n] [R+(Rm<<#n)]

{type} = {B|SB|H|SH|D}

Assembly Programming
(4A) Data Transfer

20 Young Won Lim
7/26/23

Data Transfer Examples

MOV{S}{cond} Rd, <op2>
MOV {cond} Rd, #im16
MVN{S} Rd, <op2>

If S is specified, the condition code flags
are updated on the result of the operation

S cannot be used with 16-bit immediate operand

These belong to data processing instructions

Assembly Programming
(4A) Data Transfer

21 Young Won Lim
7/26/23

LDM / STM examples (1)

http://www.cburch.com/books/arm/

 ; R0 holds address of first integer in array
 ; R1 holds array's length;
 ; fragment works only if length is multiple of 4

 addInts MOV R4, #0
 addLoop LDMIA R0!, { R5-R8 }
 ADD R5, R5, R6
 ADD R7, R7, R8
 ADD R4, R4, R5
 ADD R4, R4, R7
 SUBS R1, R1, #4
 BNE addLoop

R0 R5
R6
R7
R8

R4 = 0

R4
R5

R4
R7

R1
#4

R1= 4*4

Assembly Programming
(4A) Data Transfer

22 Young Won Lim
7/26/23

LDM / STM examples (2)

http://www.cburch.com/books/arm/

the ARM processor looks into the R0 register for an address.

It loads into R5 the four bytes starting at that address,
into R6 the next four bytes,
into R7 the next four bytes,
and into R8 the next four bytes.

R5 := mem
32

[R0 + 0]
R6 := mem

32
[R0 + 4]

R7 := mem
32

[R0 + 8]
R8 := mem

32
[R0 + 12]

Meanwhile, R0 is stepped forward by 16 bytes,
so with the next iteration the LDMIA instruction
will load the next four words into the registers.

R0 := R0 + 12

R0

R4 = 0

R1= 4*4

R5
R6
R7
R8

LDMIA R0!, { R5-R8 }

Assembly Programming
(4A) Data Transfer

23 Young Won Lim
7/26/23

LDM / STM examples (3)

http://www.cburch.com/books/arm/

Inside the braces { } can be any list of registers,
using dashes to indicate ranges of registers,
and using commas to separate ranges.

The order in which the registers are listed is not significant;

Thus, the instruction LDMIA R0!, { R1-R4, R8, R11-R12 }
will load seven words from memory.

even if we write LDMIA R0!, { R11-R12, R8, R1-R4 },
R1 will receive the first word loaded from memory.

{ R1, R2, R3, R4, R8, R11, R12 }

R5
R6
R7
R8

LDMIA R0!, { R5-R8 }

R1
R2
R3
R4

R0

R14 (LR)
R15 (PC)

R10
R11
R12

R13 (SP)

R9

R5
R6
R7
R8

R1
R2
R3
R4

R0

R14 (LR)
R15 (PC)

R10
R11
R12

R13 (SP)

R9

Assembly Programming
(4A) Data Transfer

24 Young Won Lim
7/26/23

LDM / STM examples (4)

http://www.cburch.com/books/arm/

R0

R4 = 0

R1= 4*4

R5
R6
R7
R8

equivalent instructions without !
pre-indexed

LDR R5, =[R0, #0]
LDR R6, =[R0, #4]
LDR R7, =[R0, #8]
LDR R8, =[R0, #12]
ADD R0, R0, #12

equivalent instructions with !
post-indexed

LDR R5, =[R0], #4
LDR R6, =[R0], #4
LDR R7, =[R0], #4
LDR R8, =[R0], #4

If the exclamation mark ! following R0 is omitted,
then the address register R0 is not altered
R0 would continue pointing to the first integer in the array.

we want R0 to change so that it is pointing
to the next four integers for the next iteration,
the exclamation point should be included

LDMIA R0!, { R5-R8 }

Assembly Programming
(4A) Data Transfer

25 Young Won Lim
7/26/23

LDM / STM examples (5)

http://www.cburch.com/books/arm/

STMIA stores several registers into memory.

In the following example, every number in an array
is shifted into the next element;

the array <2,3,5,7> becomes <0,2,3,5>.

Assembly Programming
(4A) Data Transfer

26 Young Won Lim
7/26/23

LDM / STM examples (6)

http://www.cburch.com/books/arm/

 ; R0 holds address of first integer in array
 ; R1 holds array's length;
 ; fragment works only if length is multiple of 4

 shift MOV R4, #0
 shLoop LDMIA R0, { R5-R8 }
 STMIA R0!, { R4-R7 }
 MOV R4, R8
 SUBS R1, R1, #4
 BNE shLoop

Notice how the LDMIA instruction does not have !
so that R0 isn't modified.

Thus, the STMIA stores into the same range of addresses
that were just loaded into the registers.

The STMIA instruction has ! because R0 must be modified
for the next iteration of the loop.

R5
R6
R7
R8

R4
R0

R4 = 0

R1= 4*4

R5
R6
R7
R8

R4 = 0
R0

R4 = 0

R1= 4*4

Assembly Programming
(4A) Data Transfer

27 Young Won Lim
7/26/23

LDM / STM examples (7)

http://www.cburch.com/books/arm/

R0

R0

R0

R0

LDMIA, STMIA
Increment after

LDMIB, STMIB
Increment before

LDMDA, STMDA
Decrement after

LDMDB, STMDB
Decrement before

Assembly Programming
(4A) Data Transfer

28 Young Won Lim
7/26/23

LDM / STM examples (8)

http://www.cburch.com/books/arm/

LDMIA, STMIA Increment after

loading from the named address and
storing into increasing addresses.

LDMIB, STMIB Increment before

loading from four more than the named address and
storing into increasing addresses.

LDMDA, STMDA Decrement after

loading from the named address and
storing into decreasing addresses.

LDMDB, STMDB Decrement before

loading from four less than the named address and
storing into decreasing addresses.

Assembly Programming
(4A) Data Transfer

29 Young Won Lim
7/26/23

LDM / STM examples (9)

http://www.cburch.com/books/arm/

Across all four modes,
the highest-numbered register
always corresponds to
the highest address in memory.

Thus, the instruction LDMDA R0, { R1-R4 }
will place R4 into the address named by R0,
R3 into R0 − 4, and so on.

useful when we want to use a block of unused memory
as a stack.

R0

LDMDA, STMDA
Decrement after

R1
R2
R3
R4

Assembly Programming
(4A) Data Transfer

30 Young Won Lim
7/26/23

PUSH, POP Synonyms

PUSH{cond} reglist
POP{cond} reglist

Synonyms
PUSH = STMDB R13! = STMFD R13!
POP = LDMIA R13! or even LDM = LDMFD R13!

Assume
the base register SP (R13)

 the adjusted address written back to the base register

registers are stored on the stack in numerical order
with the lowest numbered register at the lowest address.

Full Descending Stack with SP (=R13)

Assembly Programming
(4A) Data Transfer

31 Young Won Lim
7/26/23

PUSH, POP examples

R0 R0
R1

R0
R1
R2

PUSH {R0} PUSH {R1} PUSH {R2}

SP
SP

SP
SP

POP {R0} POP {R1} POP {R2}

High

Low

STMDB : Decrement SP Before STR

LDMIA : Increment SP After LDR

Full Descending Stack with SP (=R13)

Assembly Programming
(4A) Data Transfer

32 Young Won Lim
7/26/23

Reglist examples

R2
R1
R0

PUSH {R2, R1, R0}
PUSH {R1-R2,R0}

SP

SP

POP {R0, R1, R2}

High

Low

{R1, R2, R0}
{R0, R1, R2}
{R0, R1, R2}

Sorted in ascending order

Low High

PUSH {R2}
PUSH {R1}
PUSH {R0}

Equivalent instructions

Equivalent sequence
of instructions

PUSH {R0}
PUSH {R1}
PUSH {R2}

POP {R2, R1, R0}

POP {R1-R2, R0}

Assembly Programming
(4A) Data Transfer

33 Young Won Lim
7/26/23

Stack Types and Stack Top Operations

Stack Types – Semantics

(F,E) x (A,D) = { FA, FD, EA, ED } (Full, Empty) x (Ascending, Descending)

PUSH (STM) / POP (LDM)
over an { FA / FD / EA / ED } type stack

Stack Top Operations – Syntax

(I,D) x (B,A) = { IB, IA, DB, DA } (Increment, Decrement) x (After, Before)

{ Inc / Dec } stack top operation
{ Before / After } STM / LDM

Assembly Programming
(4A) Data Transfer

34 Young Won Lim
7/26/23

Stack Types

STMFA

LDMFA

STMFD

LDMFD

STMEA

LDMEA

STMED

LDMED

Full Ascending Stack Full Descending Stack

Empty Ascending Stack Empty Descending Stack

Default Stack Type, SP (R13)

Assembly Programming
(4A) Data Transfer

35 Young Won Lim
7/26/23

(F_ / E_) and (_B / _A) reasoning

If the stack top is full then inc / dec the stack pointer
before storing a new element

If the stack top is full then inc / dec the stack pointer
after getting an element

STMF□ STM□B

LDMF□ LDM□A

Ascend

Descend

Inc

Dec□ = □ =

If the stack top is empty then inc / dec the stack pointer
after storing a new element

STME□ STM□A

If the stack top is empty then inc / dec the stack pointer
before getting an element

LDME□ LDM□B

Assembly Programming
(4A) Data Transfer

36 Young Won Lim
7/26/23

(_A / _D) and (I_ / D_) reasoning

To push
onto the ascending stack

To push
onto the descending stack

To pop
from the ascending stack

To pop
from the descending stack

Increment the stack top pointer

Decrement the stack top pointer

Decrement the stack top pointer

Increment the stack top pointer

STM□A STMI□

STM□D STMD□

LDM□A LDMD□

LDM□D LDMI□

Full

Empty

Before

After□ = □ =

Assembly Programming
(4A) Data Transfer

37 Young Won Lim
7/26/23

Block copy view Stack view

Ascending

LDMED

Descending

Ascending

LDMFD

Descending

STMIB

LDMIB

STMIA

LDMIA

STMDB

STMDA

LDMFA

LDMEA

LDMDA

LDMDB

STMFA

STMFD

STMEA

STMED

Full

Full

Empty

Empty

Descending

Ascending

Descending

Ascending

Empty

Empty

Full

Full

PUSH

PUSH

PUSH

PUSH

POP

POP

POP

POP

Inc Before ST

Dec Before ST

Inc After ST

Dec After ST

Inc Before LD

Dec Before LD

Inc After LD

Dec Before LD

Assembly Programming
(4A) Data Transfer

38 Young Won Lim
7/26/23

Stack view Block copy view

Ascending

LDMED

Descending

Ascending

LDMFD

Descending

STMIB

LDMIB

STMIA

LDMIA

STMDB

STMDA

LDMFA

LDMEA

LDMDA

LDMDB

STMFA

STMFD

STMEA

STMED

Full

Full

Empty

Empty

Descending

Ascending

Descending

Ascending

Empty

Empty

Full

Full

PUSH

PUSH

PUSH

PUSH

POP

POP

POP

POP

Inc Before ST

Dec Before ST

Inc After ST

Dec After ST

Inc Before LD

Dec Before LD

Inc After LD

Dec Before LD

Assembly Programming
(4A) Data Transfer

39 Young Won Lim
7/26/23

Stack View Addressing

STMFA r8! {r0,r1,r4}
LDMFA r8! {r0,r1,r4}
STMEA r8! {r0,r1,r4}
LDMEA r8! {r0,r1,r4}
STMFD r8! {r0,r1,r4}
LDMFD r8! {r0,r1,r4}
STMED r8! {r0,r1,r4}
LDMED r8! {r0,r1,r4}

Stack Types – Semantics

PUSH(STM) / POP(LDM)
on an FA type stack

PUSH(STM) / POP(LDM)
on an EA type stack

PUSH(STM) / POP(LDM)
on an FD type stack

PUSH(STM) / POP(LDM)
on an ED type stack

Assembly Programming
(4A) Data Transfer

40 Young Won Lim
7/26/23

Block Copy Addressing

STMIB r8! {r0,r1,r4}
LDMIB r8! {r0,r1,r4}
STMIA r8! {r0,r1,r4}
LDMIA r8! {r0,r1,r4}
STMDB r8! {r0,r1,r4}
LDMDB r8! {r0,r1,r4}
STMDA r8! {r0,r1,r4}
LDMDA r8! {r0,r1,r4}

Do inc stack top operation
before STM / LDM

Do inc stack top operation
after STM / LDM

Do dec stack top operation
before STM / LDM

Do dec stack top operation
after STM / LDM

Stack Top Operations – Syntax

Assembly Programming
(4A) Data Transfer

41 Young Won Lim
7/26/23

Addressing mode examples (4)

Assembly Programming
(4A) Data Transfer

42 Young Won Lim
7/26/23

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

