Lambda Calculus - Combinators (8A)

Copyright (c) 2024-2016 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice.

Fix point (1)

In mathematics, a fixed point (fixpoint),
also known as an invariant point,
is a value that does not change under a given transformation.

Specifically, for functions,
a fixed point is an element
that is mapped to itself by the function.

Formally, \mathbf{c} is a fixed point of a function \mathbf{f}
if \mathbf{c} belongs to both the domain and the codomain of \mathbf{f}, and

$$
f(c)=c .
$$

c fixed point
$f(c)=c$
https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Fix point (2)

For example, if f is defined on the real numbers by

$$
f(x)=x^{2}-3 x+4,
$$

then 2 is a fixed point of f, because $f(2)=2$.

Not all functions have fixed points: for example,
$f(\mathbf{x})=\mathbf{x}+1$, has no fixed points,
since \mathbf{x} is never equal to $\mathbf{x}+1$ for any real number.

In graphical terms, a fixed-point \mathbf{x} means
the point $(\mathbf{x}, \mathrm{f}(\mathbf{x}))$ is on the line $\mathbf{y}=\mathbf{x}$, or in other words the graph of f has a point in common with that line.
https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Extensionality (1)

In logic, extensionality, or extensional equality, refers to principles that judge objects to be equal if they have the same external properties.

It stands in contrast to the concept of intensionality, which is concerned with whether
the internal definitions of objects are the same.

Extensionality (2)

Consider the two functions \mathbf{f} and \mathbf{g} mapping from and to natural numbers, defined as follows:

To find $\mathbf{f}(\mathbf{n})$, first add $\mathbf{5}$ to \mathbf{n}, then multiply by 2. ($\mathrm{n}+5)^{*} 2$
To find $\mathbf{g}(\mathbf{n})$, first multiply \mathbf{n} by $\mathbf{2}$, then add $\mathbf{1 0} . \quad 2 \star n+10$

These functions are extensionally equal; given the same input, both functions always produce the same value.

But the definitions of the functions are not equal, and in that intensional sense the functions are not the same.
extensionally equal

intensionally inequal

Extensionality (3)

Similarly, in natural language
there are many predicates (relations)
that are intensionally different
but are extensionally identical.

For example, suppose that a town has one person named Joe, who is also the oldest person in the town.
Then, the two predicates "being called Joe", and "being the oldest person in this town"
are intensionally distinct,
but extensionally equal
for the (current) population of this town.
https://en.wikipedia.org/wiki/Extensionality

Combinatory Logic

Combinatory logic is a notation
to eliminate the need for quantified variables in mathematical logic.

It was introduced by Moses Schönfinke and Haskell Curry, and has more recently been used in computer science
as a theoretical model of computation
and also as a basis for the design of functional programming languages.

It is based on combinators

Without using quantified variables
theoretical model of computation
functional programming
combinators

Combinator

combinators were introduced by Schönfinkel in 1920
with the idea of providing an analogous way

- to build up functions
- to remove any mention of variables
- particularly in predicate logic.

A combinator is a higher-order function
that uses only function application
earlier defined combinators
to define a result from its arguments.
https://en.wikipedia.org/wiki/Combinatory_logic

Combinator Definitions (1)

Combinator : A lambda expression containing no free variables.

While this is the most general definition,
the word is usually understood more specifically
 to refer to certain combinators of special importance, in particular the following four:
$I=\lambda x \cdot x \quad$ Identity
$K=\lambda x . \lambda y . x$
$\mathrm{S}=\lambda \mathrm{x} \cdot \lambda \mathrm{y} \cdot \lambda \mathrm{z} \cdot \mathrm{x}(\mathrm{z})(\mathrm{y}(\mathrm{z}))$
$Y=\lambda f \cdot(\lambda u \cdot f(u(u)))(\lambda u \cdot f(u(u)))$

Constant function
Substitution

Combinator informal description (1-1)

Informally, a tree (xy) can be thought of as a function \mathbf{x} applied to an argument \mathbf{y}.

When evaluated (i.e., when the function is "applied" to the argument), the tree "returns a value", i.e., transforms into another tree.

The "function", "argument" and the "value" are either combinators or binary trees.

If they are binary trees, they may be thought of as functions too, if needed.

Combinator informal description (1-2)

Although the most formal representation of the objects in this system requires binary trees,
for simpler typesetting
they are often represented as parenthesized expressions, as a shorthand for the tree they represent.

Any subtrees may be parenthesized,
but often only the right-side subtrees are parenthesized, with left associativity implied for any unparenthesized applications.

For example, ISK means ((IS)K).

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (1-3)

a tree whose left subtree is the tree KS and whose right subtree is the tree SK can be written as KS(SK).

If more explicitness is desired,
the implied parentheses can be included as well: ((KS)(SK)).

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (2-1)

The evaluation operation is defined as follows:
x, y, and z represent expressions
made from the functions S, K, and I , and set values:

I returns its argument:
Ix = x

https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (2-2)

\mathbf{K}, when applied to any argument \mathbf{x}, yields a one-argument constant function $\mathbf{K} \mathbf{x}$, which, when applied to any argument \mathbf{y}, returns \mathbf{x} :

$$
K x y=x
$$

Combinator informal description (2-3)

\mathbf{S} is a substitution operator.
It takes three arguments ($\mathbf{x} \mathbf{y} \mathbf{z}$) and then
returns the first argument (\mathbf{x}) applied to the third (\mathbf{z}),
which is then applied
to the result of the second argument (\mathbf{y}) applied to the third (z).

More clearly:
S x y z = x z (y z)

Combinator informal description (3-1)

SKSK evaluates to KK(SK) by the S-rule.
Then if we evaluate $\mathbf{K K}(\mathbf{S K})$, we get \mathbf{K} by the K -rule.
As no further rule can be applied, the computation halts here.

For all trees \mathbf{x} and all trees \mathbf{y},
SKxy will always evaluate to \mathbf{y} in two steps, $\mathbf{K y}(\mathbf{x y})=\mathbf{y}$,
so the ultimate result of evaluating SKxy
will always equal the result of evaluating \mathbf{y}.

We say that SKx and I are "functionally equivalent" for any \mathbf{x} because they always yield the same result when applied to any \mathbf{y}.
https://en.wikipedia.org/wiki/SKI_combinator_calculus

Combinator informal description (3-2)

From these definitions it can be shown
that SKI calculus is not the minimum system
that can fully perform the computations of lambda calculus,
as all occurrences of I in any expression can be replaced
by (SKK) or (SKS) or (SK x) for any x,
and the resulting expression will yield the same result.

So the "I" is merely syntactic sugar.

Since I is optional, the system is also referred as SK calculus or SK combinator calculus.

Combinator informal description (4-1)

It is possible to define a complete system using only one (improper) combinator.

An example is Chris Barker's iota combinator,
which can be expressed in terms of S and K as follows:
Ix = xSK

Combinator informal description (4-1)

It is possible to reconstruct S, K, and I from the iota combinator.
Applying t to itself gives $\mathrm{\|}=\mathrm{I} \mathrm{SK}=\mathrm{SSKK}=\mathrm{SK}(\mathrm{KK})$
which is functionally equivalent to I .

K can be constructed by applying a twice to I
(which is equivalent to application of t to itself):
$ı(($ (I)) $)=ı($ (ISK) $)=ı($ ISK $)=ı($ SK $)=$ SKSK $=$ K.
Applying \quad one more time gives $ı(1(1(1)))=\mathrm{I}=\mathrm{KSK}=\mathrm{S}$.

Combinator Definitions (2)

The combinators I, K, and \mathbf{S} were introduced by Schönfinkel and Curry, who showed that any λ-expression can essentially be formed by combining them.

More recently combinators have been applied to the design of implementations for functional languages.

In particular \mathbf{Y} (also called the paradoxical combinator) can be seen as producing fixed points, since $Y(f)$ reduces to $f(Y(f))$.

$$
\begin{aligned}
& I=\lambda x \cdot x \\
& K=\lambda x \cdot \lambda y \cdot x \\
& S=\lambda x \cdot \lambda y \cdot \lambda z \cdot x(z)(y(z)) \\
& Y=\lambda f \cdot(\lambda u \cdot f(u(u)))(\lambda u \cdot f(u(u)))
\end{aligned}
$$

Combinatory Logic and Lambda Calculus (1)

Lambda calculus is concerned with objects called lambda-terms, which can be represented by the following three forms of strings:

$$
\begin{aligned}
& v \\
& \lambda v . E_{1} \\
& \left(E_{1} E_{2}\right)
\end{aligned}
$$

where \mathbf{v} is a variable name drawn
from a predefined infinite set of variable names,
and \mathbf{E}_{1} and \mathbf{E}_{2} are lambda-terms.
https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (2)

Terms of the form $\boldsymbol{\lambda} \mathbf{v} . \mathbf{E}_{\mathbf{1}}$ are called abstractions.

The variable \mathbf{v} is called the formal parameter of the abstraction,
v
$\lambda v . E_{1}$
$\left(E_{1} E_{2}\right)$ and \mathbf{E}_{1} is the body of the abstraction.

The term $\lambda v . E_{1}$ represents the function
applied to an argument,
binds the formal parameter \mathbf{v} to the argument
computes the resulting value of E_{1}
returns \mathbf{E}_{1}, with every occurrence of \mathbf{v} replaced by the argument.

Combinatory Logic and Lambda Calculus (3-1)

Terms of the form ($\mathbf{E}_{1} \mathbf{E}_{2}$) are called applications.
applications model function invocation or execution:
the function represented by \mathbf{E}_{1} is to be invoked,
with \mathbf{E}_{2} as its argument, and the result is computed.

Combinatory Logic and Lambda Calculus (3-2)

If \mathbf{E}_{1} (the applicand) is an abstraction, the term may be reduced:
\mathbf{E}_{2}, the argument, may be substituted into the body of \mathbf{E}_{1}
in place of the formal parameter \mathbf{v} of \mathbf{E}_{1},
and the result is a new lambda term which is equivalent to the old one.

If a lambda term contains no subterms of the form $\left(\left(\boldsymbol{\lambda} \mathbf{v} . \mathbf{E}_{1}\right) \mathbf{E}_{2}\right)$
then it cannot be reduced, and is said to be in normal form.

Combinatory Logic and Lambda Calculus (4)

The motivation for this definition of reduction is
that it captures the essential behavior of all mathematical functions.

For example, consider the function
that computes the square of a number. We might write

The square of \mathbf{x} is \mathbf{x} * \mathbf{x} (using * to indicate multiplication.)
x here is the formal parameter of the function.
To evaluate the square for a particular argument, say 3,
we insert it into the definition in place of the formal parameter:
The square of $\mathbf{3}$ is $\mathbf{3 * 3}$
https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (5)

To evaluate the resulting expression $\mathbf{3}$ * $\mathbf{3}$, we would have to resort to our knowledge of multiplication and the number 3.

Since any computation is simply a composition of
the evaluation of suitable functions
on suitable primitive arguments,
this simple substitution principle suffices
to capture the essential mechanism of computation.
https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (6)

Moreover, in lambda calculus, notions such as ' 3 ' and ' ${ }^{\prime}$ ' can be represented without any need for externally defined primitive operators or constants.

It is possible to identify terms in lambda calculus, which, when suitably interpreted, behave like the number 3 and like the multiplication operator *, q.v. Church encoding.

Combinatory Logic and Lambda Calculus (7)

Lambda calculus is known to be computationally equivalent in power to many other plausible models for computation (including Turing machines);
that is, any calculation that can be accomplished in any of these other models can be expressed in lambda calculus, and vice versa.

According to the Church-Turing thesis,
both models can express any possible computation.

Combinatory Logic and Lambda Calculus (8-1)

lambda-calculus can represent any conceivable computation
using only the simple notions
of function abstraction and application
based on simple textual substitution of terms for variables.
abstraction is not even required.

Combinatory logic is
a model of computation equivalent to lambda calculus,
but without abstraction.
https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Logic and Lambda Calculus (8-2)

Combinatory logic is
a model of computation equivalent to lambda calculus, but without abstraction.

The advantage of this is that
evaluating expressions in lambda calculus is quite complicated
because the semantics of substitution must be specified
with great care to avoid variable capture problems.
evaluating expressions in combinatory logic is much simpler, because there is no notion of substitution.
https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Calculus

abstraction is the only way to manufacture functions
in the lambda calculus

Instead of abstraction,
combinatory calculus provides a limited set of primitive functions out of which other functions may be built.
https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Terms (1)

A combinatory term has one of the following forms:

Syntax	Name	Description
\mathbf{X}	Variable	A character or string representing a combinatory term.
\mathbf{P}	Primitive function	One of the combinator symbols $\mathbf{I}, \mathbf{K}, \mathbf{S}$.
$\mathbf{(M ~ N) ~}$	Application	Applying a function to an argument. \mathbf{M} and \mathbf{N} are combinatory terms.

https://en.wikipedia.org/wiki/Combinatory_logic

Combinatory Terms (2)

The primitive functions are combinators, or functions that, when seen as lambda terms, contain no free variables.

To shorten the notations, a general convention is that ($E_{1} E_{2} E_{3} \ldots E_{n}$), or even $\mathbf{E}_{1} \mathbf{E}_{2} \mathbf{E}_{3} \ldots \mathbf{E}_{\mathrm{n}}$, denotes the term $\left(\ldots\left(\left(\mathbf{E}_{1} \mathbf{E}_{2}\right) \mathbf{E}_{3}\right) \ldots \mathbf{E}_{\mathrm{n}}\right)$.

This is the same general convention (left-associativity) as for multiple application in lambda calculus.

Reductions in Combinatory Logic

In combinatory logic, each primitive combinator comes
with a reduction rule of the form
$\left(P x_{1} \ldots x_{n}\right)=E$
where \mathbf{E} is a term mentioning only variables from the set $\left\{\mathbf{x}_{1} \ldots \mathbf{x}_{\mathrm{n}}\right\}$.

It is in this way that primitive combinators behave as functions.

Examples of Combinators (1-1)

The simplest example of a combinator is \mathbf{I}, the identity combinator, defined by

```
(IX)=x for all terms }\mathbf{x}
```

https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (1-2)

Another simple combinator is \mathbf{K},
which manufactures constant functions:
($\mathbf{K} \mathbf{x}$) is the function which, for any argument, returns \mathbf{x}, so we say
$((K \mathbf{x}) \mathbf{y})=\mathbf{x} \quad$ for all terms \mathbf{x} and \mathbf{y}.

Or, following the convention for multiple application,

$$
(K x y)=x
$$

Examples of Combinators (2-1)

A third combinator is \mathbf{S}, which is a generalized version of application:
$(S x y z)=(x z(y z))$

S applies \mathbf{x} to \mathbf{y}
after first substituting \mathbf{z} into each of them (\mathbf{x} and \mathbf{y})
\mathbf{x} is applied to \mathbf{y}
inside the environment \mathbf{z}.
https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (2-2)

Given \mathbf{S} and \mathbf{K}, I itself is unnecessary, since it can be built from the other two:

```
((S K K) x)
    = (S K K x)
    =(K x (K x))
    = x
```

for any term \mathbf{x}.

Examples of Combinators (3-1)

Note that although $(\mathbf{(S K K)} \mathbf{x})=(\mathbf{I} \mathbf{x})$ for any \mathbf{x},
(S K K) itself is not equal to I.

We say the terms are extensionally equal.

Extensional equality captures the mathematical notion
of the equality of functions:
that two functions are equal
if they always produce the same results for the same arguments.
https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-2)

In contrast, the terms themselves,
together with the reduction of primitive combinators, capture the notion of intensional equality of functions:
that two functions are equal
only if they have identical implementations
up to the expansion of primitive combinators.
https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (3-3)

There are many ways to implement an identity function;
(S K K) and I are among these ways.
(S K S) is yet another.

We will use the word equivalent to indicate extensional equality, reserving equal for identical combinatorial terms.
https://en.wikipedia.org/wiki/Combinatory_logic

Examples of Combinators (4)

A more interesting combinator is
the fixed point combinator or Y combinator, which can be used to implement recursion.

Fix-point combinator (1)

In combinatory logic for computer science,
a fixed-point combinator (or fixpoint combinator), denoted fix, is a higher-order function (which takes a function as argument) that returns some fixed point (a value that is mapped to itself) of its argument function, if one exists.

Formally, if the function f has one or more fixed points, then $\mathbf{f i x} \mathbf{f}=\mathbf{f}(\mathbf{f i x} \mathbf{f})$,
and hence, by repeated application,
fix $f=f(f(\ldots f(f i x f) \ldots))$
https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (1111)

Every recursively defined function can be seen as a fixed point of some suitably defined function closing over the recursive call with an extra argument,
and therefore, using Y , every recursively defined function can be expressed as a lambda expression.

In particular, we can now cleanly define
the subtraction, multiplication and comparison predicate
of natural numbers recursively.
https://en.wikipedia.org/wiki/Lambda_calculus\#Formal_definition

Fix-point combinator (3-1)

In the classical untyped lambda calculus, every function has a fixed point.

A particular implementation of fix is
Curry's paradoxical combinator Y, represented by

$$
Y=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

In functional programming, the Y combinator can be used to formally define recursive functions in a programming language that does not support recursion.

Fix-point combinator (3-2)

This combinator may be used in implementing Curry's paradox.

The heart of Curry's paradox is
that untyped lambda calculus is unsound as a deductive system, and the \mathbf{Y} combinator demonstrates this
by allowing an anonymous expression
to represent zero, or even many values.

This is inconsistent in mathematical logic.

Fix-point combinator (4)

Every recursively defined function can be seen as a fixed point of some suitably defined function closing over the recursive call with an extra argument,
and therefore, using Y , every recursively defined function can be expressed as a lambda expression.

In particular, we can now cleanly define the subtraction, multiplication and comparison predicate of natural numbers recursively.

Fix-point combinator (5)

Applied to a function with one variable, the Y combinator usually does not terminate.

More interesting results are obtained
by applying the Y combinator to functions of two or more variables.

The additional variables may be used as a counter, or index.

The resulting function behaves like a while or a for loop in an imperative language.
https://en.wikipedia.org/wiki/Fixed-point_combinator

Fix-point combinator (6)

Used in this way, the Y combinator implements simple recursion.

In the lambda calculus, it is not possible
to refer to the definition of a function inside its own body by name.

Recursion though may be achieved
by obtaining the same function passed in as an argument, and then using that argument to make the recursive call, instead of using the function's own name,
as is done in languages which do support recursion natively.

The Y combinator demonstrates this style of programming.

Fix-point combinator (7)

An example implementation of Y combinator in two languages is presented below.
\# Y Combinator in Python
$Y=l a m b d a f:(l a m b d a x: f(x(x)))(l a m b d a x: f(x(x)))$
$Y(Y)$
https://en.wikipedia.org/wiki/Fixed-point_combinator

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

