
Young Won Lim
2/5/20

ISA Assembler Format (4B)

Data Transfer Instructions

Young Won Lim
2/5/20

 Copyright (c) 2014 - 2020 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

ISA (4B) Assembler
Format – Data Transfer

3 Young Won Lim
2/5/20

Based on

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

ISA (4B) Assembler
Format – Data Transfer

4 Young Won Lim
2/5/20

Data Transfer Instructions

The pre-indexed form of the instruction
LDR | STR {<cond>} {B} Rd, [Rn, <offset>] {!}

The post-indexed form
LDR | STR {<cond>} {B} {T} Rd, [Rn], <offset>

A useful PC-relative form (assembler does all the work)
LDR | STR {<cond>} Rd, LABEL

The pre-indexed form of the instruction
LDR | STR {<cond>} H | SH | SB Rd, [Rn, <offset>] {!}

The post-indexed form
LDR | STR {<cond>} H | SH | SB Rd, [Rn], <offset>

Single Word and Unsigned Byte

Half Word and Signed Data

ISA (4B) Assembler
Format – Data Transfer

5 Young Won Lim
2/5/20

Word, Byte, Half Word

Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte Byte Byte Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Half Word Half Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISA (4B) Assembler
Format – Data Transfer

6 Young Won Lim
2/5/20

Unsigned Byte Transfer B
Unsigned Half Word Transfer H
Signed Byte Transfer SB
Signed Half Word Transfer SH

little endian caseData Transfer Mnemonics

ISA (4B) Assembler
Format – Data Transfer

7 Young Won Lim
2/5/20

Data Transfer Instructions

LDR STR Single Word Transfers

LDR B STR B Unsigned Byte Transfers

LDR H STR H Unsigned Half Word Transfers

LDR SB STR SB Signed Byte Transfer

LDR SH STR SH Signed Half Word Transfer

ISA (4B) Assembler
Format – Data Transfer

8 Young Won Lim
2/5/20

Data Transfer Instructions

LDR | STR {<cond>} {B} Rd, [Rn, <offset1>] {!}
LDR | STR {<cond>} {B} {T} Rd, [Rn], <offset1>
LDR | STR {<cond>} Rd, LABEL

<offset1> = 1. #+/–<12-bit immediate>
= 2. +/–Rm {, <shift>}

LDR | STR {<cond>} H | SH | SB Rd, [Rn, <offset2>] {!}
LDR | STR {<cond>} H | SH | SB Rd, [Rn], <offset2>

<offset2> = 1. #+/–<8-bit immediate>
= 2. +/–Rm …. no shifted operand

ISA (4B) Assembler
Format – Data Transfer

9 Young Won Lim
2/5/20

Pre-indexing and Post-indexing

Rd, [Rn, <offset>] pre-indexed
Rd, [Rn, <offset>] ! pre-indexed with autoindex
Rd, [Rn], <offset> post-indexed

<offset>

<offset>

Rd, M Rn,

Rd, M Rn,

addr

addr

data

data

always

<offset>

!
Rd, M Rn,

addrdata

pre-indexed

pre-indexed.
with autoindex !

post-indexed

ISA (4B) Assembler
Format – Data Transfer

10 Young Won Lim
2/5/20

Data Transfer Instructions – single word and unsigned byte

LDR | STR {<cond>} {B} Rd, [Rn, <offset>] {!} pre-indexed
LDR | STR {<cond>} {B} {T} Rd, [Rn], <offset> post-indexed
LDR | STR {<cond>} Rd, LABEL PC-relative

B selects unsigned byte transfer, the default is word

<offset>= 1. #+/–<12-bit immediate>
= 2. +/–Rm {, <shift>}

! selects write-back (auto-indexing) in the pre-indexed form

T selects the user view of the memory translation and protection system
 should only be used in non-user mode
<shift> general shift operation but you cannot specify

 the shift amount by a register.

Single Word and Unsigned Byte

ISA (4B) Assembler
Format – Data Transfer

11 Young Won Lim
2/5/20

Data Transfer Instructions – single word and unsigned byte

The pre-indexed form of the instruction
LDR | STR {<cond>} {B} Rd, [Rn, <offset>] {!}

LDR | STR Rd, [Rn, +-Rm] {!}
LDR | STR Rd, [Rn, +-Rm, <sh>, amount] {!}
LDR | STR Rd, [Rn, #+-<12-bit immediate>] {!}
LDR | STR B Rd, [Rn, +-Rm]] {!}
LDR | STR B Rd, [Rn, +-Rm, <sh>, amount] {!}
LDR | STR B Rd, [Rn, #+-<12-bit immediate>] {!}
LDR | STR <cond> Rd, [Rn, +-Rm] {!}
LDR | STR <cond> Rd, [Rn, +-Rm, <sh>, amount] {!}
LDR | STR <cond> Rd, [Rn, #+-<12-bit immediate>] {!}
LDR | STR <cond> B Rd, [Rn, +-Rm]] {!}
LDR | STR <cond> B Rd, [Rn, +-Rm, <sh>, amount] {!}
LDR | STR <cond> B Rd, [Rn, #+-<12-bit immediate>] {!}

ISA (4B) Assembler
Format – Data Transfer

12 Young Won Lim
2/5/20

Data Transfer Instructions – single word and unsigned byte

The post-indexed form
LDR | STR {<cond>} {B} {T} Rd, [Rn], <offset>

LDR | STR Rd, [Rn], +-Rm
LDR | STR Rd, [Rn], +-Rm, <sh>, amount
LDR | STR Rd, [Rn], #+-<12-bit immediate>
LDR | STR {B}{T} Rd, [Rn], +-Rm
LDR | STR {B}{T} Rd, [Rn], +-Rm, <sh>, amount
LDR | STR {B}{T} Rd, [Rn], #+-<12-bit immediate>
LDR | STR <cond> Rd, [Rn], +-Rm
LDR | STR <cond> Rd, [Rn], +-Rm, <sh>, amount
LDR | STR <cond> Rd, [Rn], #+-<12-bit immediate>
LDR | STR <cond> {B}{T} Rd, [Rn], +-Rm
LDR | STR <cond> {B}{T} Rd, [Rn], +-Rm, <sh>, amount
LDR | STR <cond> {B}{T} Rd, [Rn], #+-<12-bit immediate>

ISA (4B) Assembler
Format – Data Transfer

13 Young Won Lim
2/5/20

Data Transfer Instructions – single word and unsigned byte

A useful PC-relative form (assembler does all the work)
LDR | STR {<cond>} Rd, LABEL

LDR | STR Rd, LABEL
LDR | STR <cond> Rd, LABEL

ISA (4B) Assembler
Format – Data Transfer

14 Young Won Lim
2/5/20

Unsigned Byte Transfer B

Byte Byte Byte Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte0 0

Byte Byte Byte Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte Byte Byte Byte

LDRB

STRB

selected byte

repeated bytes

little endian case

mem

reg

mem

reg

ISA (4B) Assembler
Format – Data Transfer

15 Young Won Lim
2/5/20

Unsigned Byte Load B

Byte Byte Byte Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte0 0

LDRB R0 A
selected byte

little endian case

mem

reg

0 reg

0 reg

Byte0 reg

AA+1A+2A+3

LDRB R0 A+1LDRB R0 A+1

LDRB R0 A+2

LDRB R0 A+3

Byte

Byte

ISA (4B) Assembler
Format – Data Transfer

16 Young Won Lim
2/5/20

T suffix

The post-indexed form
LDR | STR {<cond>} {B} {T} Rd, [Rn], <offset>

LDR T Rd, [Rn], <offset> STR T Rd, [Rn], <offset>
LDR BT Rd, [Rn], <offset> STR BT Rd, [Rn], <offset>

if T is present the W bit will be set in a post-indexed instruction,
forcing non-privileged (user) mode for the transfer cycle.

T is not allowed when a pre-indexed addressing mode
is specified or implied.

T selects the user view of the memory translation and protection system
should only be used in non-user mode

ISA (4B) Assembler
Format – Data Transfer

17 Young Won Lim
2/5/20

T suffix applications

accesses memory as if in the user-mode,
applies the permission check based on the code being "user".

useful in a kernel
where a user-space process passes a pointer to the kernel,
and you want to ensure that the user process, not the kernel,
had right permissions to read the data.

used in a privileged code, such as an exception handler,
to test whether an access is possible in thread mode.

For example, if a user mode access were aborted,
the exception handler may try to correct the problem
by changing the memory protection settings.
The LDRT could then be used to test
whether the access was now possible.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka14336.html

ISA (4B) Assembler
Format – Data Transfer

18 Young Won Lim
2/5/20

Data Transfer Instructions – half-word and signed data

LDR | STR {<cond>} H | SH | SB Rd, [Rn, <offset>] {!} pre-indexed
LDR | STR {<cond>} H | SH | SB Rd, [Rn], <offset> post-indexed

H | SH | SB selects the data type (H: half-word, S:signed)

<offset> = 1. #+/–<8-bit immediate>
= 2. +/–Rm …. no shifted operand

! selects write-back (auto-indexing) in the pre-indexed form

Half Word and Signed Data

ISA (4B) Assembler
Format – Data Transfer

19 Young Won Lim
2/5/20

Data Transfer Instructions – half-word and signed data

The pre-indexed form of the instruction
LDR | STR {<cond>} H | SH | SB Rd, [Rn, <offset>] {!}

LDR | STR H Rd, [Rn, #+-Rm] {!}
LDR | STR H Rd, [Rn, #+-<8-bit immediate>] {!}
LDR | STR SH Rd, [Rn, #+-Rm] {!}
LDR | STR SH Rd, [Rn, #+-<8-bit immediate>] {!}
LDR | STR SB Rd, [Rn, #+-Rm] {!}
LDR | STR SB Rd, [Rn, #+-<8-bit immediate>] {!}
LDR | STR <cond> H Rd, [Rn, #+-Rm] {!}
LDR | STR <cond> H Rd, [Rn, #+-<8-bit immediate>] {!}
LDR | STR <cond> SH Rd, [Rn, #+-Rm] {!}
LDR | STR <cond> SH Rd, [Rn, #+-<8-bit immediate>] {!}
LDR | STR <cond> SB Rd, [Rn, #+-Rm] {!}
LDR | STR <cond> SB Rd, [Rn, #+-<8-bit immediate>] {!}

ISA (4B) Assembler
Format – Data Transfer

20 Young Won Lim
2/5/20

Data Transfer Instructions – half-word and signed data

The post-indexed form
LDR | STR {<cond>} H | SH | SB Rd, [Rn], <offset>

LDR | STR H Rd, [Rn], #+-Rm
LDR | STR H Rd, [Rn], #+-<8-bit immediate>
LDR | STR SH Rd, [Rn], #+-Rm
LDR | STR SH Rd, [Rn], #+-<8-bit immediate>
LDR | STR SB Rd, [Rn], #+-Rm
LDR | STR SB Rd, [Rn], #+-<8-bit immediate>
LDR | STR <cond> H Rd, [Rn], #+-Rm
LDR | STR <cond> H Rd, [Rn], #+-<8-bit immediate>
LDR | STR <cond> SH Rd, [Rn], #+-Rm
LDR | STR <cond> SH Rd, [Rn], #+-<8-bit immediate>
LDR | STR <cond> SB Rd, [Rn], #+-Rm
LDR | STR <cond> SB Rd, [Rn], #+-<8-bit immediate>

ISA (4B) Assembler
Format – Data Transfer

21 Young Won Lim
2/5/20

Unsigned Half Word Transfer H

Half Word Half Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Half Word0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Half Word Half Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Half Word Half Word

LDRH

STRH repeated half words

selected half word

little endian case

mem

reg

mem

reg

ISA (4B) Assembler
Format – Data Transfer

22 Young Won Lim
2/5/20

Unsigned Half Word LDR H

Half Word Half Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Half Word

selected half word

little endian case

mem

reg

AA+1A+2A+3

LDRSB R0 A

LDRSB R0 A+2
Half Word reg

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ISA (4B) Assembler
Format – Data Transfer

23 Young Won Lim
2/5/20

Signed Half Word Transfer SH

Half Word Half Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Half Words s s s s s s s s s s s s s s s

LDRSH selected half word

s

sign extension

STRSH

little endian case

mem

reg

ISA (4B) Assembler
Format – Data Transfer

24 Young Won Lim
2/5/20

Signed Half Word LDR SH

Half Word Half Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Half Words s s s s s s s s s s s s s s s

selected half word

s

little endian case

mem

reg

AA+1A+2A+3

LDRSB R0 A

LDRSB R0 A+2
Half Words s s s s s s s s s s s s s s s s reg

ISA (4B) Assembler
Format – Data Transfer

25 Young Won Lim
2/5/20

Signed Byte Transfer SB

Byte Byte Byte Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bytes s

LDRSB selected byte

s

sign extension

STRSB (little endian case)

little endian case

mem

reg

ISA (4B) Assembler
Format – Data Transfer

26 Young Won Lim
2/5/20

Signed Byte LDR SB

Byte Byte Byte Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte

LDRSB R0 A
selected byte

little endian case

mem

reg

reg

reg

Byte reg

AA+1A+2A+3

LDRSB R0 A+1

LDRSB R0 A+2

LDRSB R0 A+3

Byte

Byte

s s

s s

s s

s s

sign extension

ISA (4B) Assembler
Format – Data Transfer

27 Young Won Lim
2/5/20

Data Transfer with Shifted Operand Instructions

The pre-indexed form of the instruction
LDR | STR {<cond>} {B} Rd, [Rn, <offset>] {!} shifted operand

The post-indexed form
LDR | STR {<cond>} {B} {T} Rd, [Rn], <offset> shifted operand

A useful PC-relative form (assembler does all the work)
LDR | STR {<cond>} Rd, LABEL shifted operand

The pre-indexed form of the instruction
LDR | STR {<cond>} H | SH | SB Rd, [Rn, <offset>] {!} shifted operand

The post-indexed form
LDR | STR {<cond>} H | SH | SB Rd, [Rn], <offset> shifted operand

only single (word / unsigned byte) data transfer instructions support shifted offset

Single Word and Unsigned Byte

Half Word and Signed Data

ISA (4B) Assembler
Format – Data Transfer

28 Young Won Lim
2/5/20

Data Transfer Offset – <shift> operand

Data Transfer Instructions with <shift>
LDR | STR {<cond>} {B} Rd, [Rn, <offset>] {!}
LDR | STR {<cond>} {B} {T} Rd, [Rn], <offset>

<offset>
#+/–<12-bit immediate>
+/–Rm {, <shift>}

<shift type> # <#shift>
<shift type> Rs … not allowed in single data transfers

LSL, ASL, Logical Shift Left, Arithmetic Shift Left
LSR, Logical Shift Right
ASR, Arithmetic Shift Right
ROR Rotate Right

<shift type>
RRX Rotate Right Extended

ISA (4B) Assembler
Format – Data Transfer

29 Young Won Lim
2/5/20

Unaligned Memory Access

Older ARM processors require data load and stores
to be to/from architecturally aligned addresses. This means:

LDRB / STRB - address must be byte aligned A, A+1, A+2, A+3
LDRH / STRH - address must be 2-byte aligned A, A+2
LDR / STR - address must be 4-byte aligned A

LDM - address must be 4-byte aligned A
handling multiple word quantities

an unaligned load is one where
the address does not match the architectural alignment.

On older processors (ARM9 family)
an unaligned load
software synthesised

performing a series of small accesses,
combining the results.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html

ISA (4B) Assembler
Format – Data Transfer

30 Young Won Lim
2/5/20

Unaligned Memory Access

The ARMv6 architecture
introduced the first hardware support for unaligned accesses.

ARM11 and Cortex-A/R processors
can deal with unaligned accesses in hardware,
removing the need for software routines.

Support for unaligned accesses is limited to a sub-set of load/store instructions:

LDRB / LDRSB / STRB
LDRH / LDRSH / STRH
LDR / STR

Instructions which do NOT support unaligned accesses include:

LDM / STM
LDRD / STRD

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15414.html

ISA (4B) Assembler
Format – Data Transfer

31 Young Won Lim
2/5/20

Single Word LDR little endian case

A word load (LDR) will normally use a word aligned address (A)

an address offset from a word boundary
will cause the data to be rotated into the register
so that the addressed byte occupies bits 0 to 7

half-words accessed at offsets 0 and 2 from the word boundary (A, A+2)
will be correctly loaded into bits 0 to 15 of the register.

An address offset of 1 or 3 from a word boundary
will cause the data to be rotated into the register
so that the addressed byte occupies bits 15 to 8.

Two shift operations are then required to clear or to sign extend the upper 16 bits.

AA+1A+2A+3

Byte Byte Byte Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

mem

AA+1A+2A+3

ARM7TDMI-S Data Sheet ARM DDI 0084D Final

ISA (4B) Assembler
Format – Data Transfer

32 Young Won Lim
2/5/20

Single Word LDR

Byte Byte Byte Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte

LDR R0 A

little endian case

mem

reg

reg

reg

Byte reg

AA+1A+2A+3

LDR R0 A+1

LDR R0 A+2

LDR R0 A+3

Byte

Byte Byte Byte

Byte ByteByteByte

Byte Byte Byte

ByteByte Byte

ISA (4B) Assembler
Format – Data Transfer

33 Young Won Lim
2/5/20

Single Word LDR

Byte Byte Byte Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte

LDR R0 A

little endian case

mem

reg

reg

AA+1A+2A+3

LDR R0 A+2

Byte Byte Byte

Byte Byte

Byte regByte Byte Byte

ISA (4B) Assembler
Format – Data Transfer

34 Young Won Lim
2/5/20

Single Word LDR / STR little endian case

Loading a word at a non-word-aligned address A+1, A+2, A+3
the loaded data is the word-aligned word
containing the addressed byte, but rotated so that
the addressed byte is in the least significant byte
of the destination register

Storing a word at a non-word-aligned address A+1, A+2, A+3
ignoring the least significant two bits of the address
the word is stored as though they had been zero

Some ARM systems may raise an exception under these circumstances
controlled by the A flag in bit 1 of CP15 register

AA+1A+2A+3

Byte Byte Byte Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

mem

AA+1A+2A+3

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

ISA (4B) Assembler
Format – Data Transfer

35 Young Won Lim
2/5/20

CP15 Register little endian case

The MMU is controlled with the System Control coprocessor registers.
from VMSAv6, several new registers, and register fields have been added:
• a TLB type register in register 0
• additional control bits to register 1
• a second translation table base register, and new control fields to register 2
• an additional fault status register to register 5
• an additional Fault Address register to register 6
• TLB invalidate by ASID support in register 8
• ASID control in register 13.

Domain support (register 3) and TLB lockdown support (register 10)
are the same as in earlier versions of the architecture.

All VMSA-related registers are accessed with instructions of the form:
MRC p15, 0, Rd, CRn, CRm, opcode_2
MCR p15, 0, Rd, CRn, CRm, opcode_2
Where CRn is the system control coprocessor register.
Unless specified otherwise, CRm and opcode_2 SBZ.

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

ISA (4B) Assembler
Format – Data Transfer

36 Young Won Lim
2/5/20

Single Word LDR

Byte Byte Byte Byte

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte

LDR R0 A

little endian case

mem

reg

reg

reg

Byte reg

AA+1A+2A+3

LDR R0 A+1

LDR R0 A+2

LDR R0 A+3

Byte

Byte Byte Byte

Byte ByteByteByte

Byte Byte

ByteByte

Byte

Byte

ISA (4B) Assembler
Format – Data Transfer

37 Young Won Lim
2/5/20

Multiple data transfer instructions

The normal form
LDM | STM {<cond>} <add mode> Rn {!}, reglist

<add mode> specifies one of the addressing mode
(I,D)x(B,A) | (F,E)x(A,D)

IB Inc Before | FA Full Ascending
IA Inc After | FD Full Descending
DB Dec Before | EA Empty Ascending
DA Dec After | ED Empty Descending

Rn ! Updates the base register Rn
Increment / Decrement the base (stack top) register Rn

reglist examples : {r0}, {r0, r1}, {r0, r1-r4} { } necessary

ISA (4B) Assembler
Format – Data Transfer

38 Young Won Lim
2/5/20

Multiple data transfer instructions – the normal form

The normal form
LDM | STM {<cond>} <add mode> Rn {!}, reglist

<add mode> specifies one of the addressing mode
IB, IA, DB, DA, FA, FD, EA, ED (I,D)x(B,A) | (F,E)x(A,D)

LDM | STM IB | IA | DB | DA | FA | FD | EA | ED Rn, reglist
LDM | STM IB | IA | DB | DA | FA | FD | EA | ED Rn!, reglist
LDM | STM <cond> IB | IA | DB | DA | FA | FD | EA | ED Rn, reglist
LDM | STM <cond> IB | IA | DB | DA | FA | FD | EA | ED Rn!, reglist

ISA (4B) Assembler
Format – Data Transfer

39 Young Won Lim
2/5/20

Multiple data transfer instructions – non-user mode

To restore the CPSR in a non-user mode
LDM {<cond>} <add mode> Rn {!}, <reglist + pc>^

To save / restore the use registers in a non-user mode
LDM | STM {<cond>} <add mode> Rn, <reglist - pc>^

when pc is included in the <reglist>
… returning from an execution handler

SPSR → CPSR

when pc is not included in the <reglist>
load to <registers> … load to the user mode registers
store from <register> ... store from the user mode registers

ISA (4B) Assembler
Format – Data Transfer

40 Young Won Lim
2/5/20

Multiple data transfer instructions

Name Stack Block L P U
Pre-Increment Load LDMED LDMIB 1 1 1
Post-Increment Load LDMFD LDMIA 1 0 1
Pre-Decrement Load LDMEA LDMDB 1 1 0
Post-Decrement Load LDMFA LDMDA 1 0 0
Pre-Increment Store STMFA STMIB 0 1 1
Post-Increment Store STMEA STMIA 0 0 1
Pre-Decrement Store STMFD STMDB 0 1 0
Post-Decrement Store STMED STMDA 0 0 0

ISA (4B) Assembler
Format – Data Transfer

41 Young Won Lim
2/5/20

Multiple data transfer instruction mnemonics

Pre Inc Load

Before Inc LDRIB

Empty Descend LDRED

Post Inc Load

After Inc LDRIA

Full Descend LDRFD

Pre Dec Load

Before Dec LDRDB

Empty Ascend LDREA

Post Dec Load

Before Dec LDRDA

Full Ascend LDRFA

Pre Inc Store

Before Inc STRIB

Full Ascend STRFA

Post Inc Store

After Inc STRIA

Empty Ascend STREA

Pre Dec Store

Before Dec STRDB

Full Descend STRFD

Post Dec Store

Before Dec STRDA

Empty Descend STRED

ISA (4B) Assembler
Format – Data Transfer

42 Young Won Lim
2/5/20

Multiple data transfer instruction mnemonic rules

Pre

Inc

Before

Inc

Post After

Dec

STR

Dec

Pre

Inc

Full

Ascend

Post Empty

Dec Descend

Pre

Inc

Full

Ascend

Post Empty

Dec Descend

LDRSTR,LDR

If the stack top is full
then inc / dec the stack pointer
before storing a new element

If the stack top is full
then inc / dec the stack pointer
after getting an element

If the stack top is empty
then inc / dec the stack pointer
after storing a new element

If the stack top is empty
then inc / dec the stack pointer
before getting an element

ISA (4B) Assembler
Format – Data Transfer

43 Young Won Lim
2/5/20

Multiple data transfer instructions – auto indexing !

Rn ! Updates the base register Rn

Increment / Decrement the base register Rn

LDMIB, LDMIA LDMDB, LDMDA
STMIB, STMIA STMDB, STMDA

Increment / Decrement the stack top pointer Rn

LDMFD, LDMED LDMFA, LDMEA …. Pop
STMFA, STMEA STMFD, STMED …. Push

Descending Ascending …. Pop (Load)
Ascending Descending …. Push (Store)

 Increment Decrement

ISA (4B) Assembler
Format – Data Transfer

44 Young Won Lim
2/5/20

Optional suffix ^ – recover CPSR

must not use it in User mode or System mode.

● LDM {<cond>} <add mode> Rn {!}, <registers + pc>^

If op is LDM and <reglist> contains the pc (r15),

in addition to the normal multiple register transfer,

the SPSR is copied into the CPSR.

this is for returning from exception handlers.

use this only from exception modes.

http://infocenter.arm.com/help/topic/com.arm.doc.dui0068b/DUI0068.pdf#E7.CIHCADDA

ISA (4B) Assembler
Format – Data Transfer

45 Young Won Lim
2/5/20

Optional suffix ^ – user mode register load/store

must not use it in User mode or System mode.

● LDM | STM {<cond>} <add mode> Rn, <registers - pc>^

when pc is not included in <reglist>,

data is transferred into or out of the User mode registers

instead of the current non-user mode registers

no auto write back ! is allowed

http://infocenter.arm.com/help/topic/com.arm.doc.dui0068b/DUI0068.pdf#E7.CIHCADDA

ISA (4B) Assembler
Format – Data Transfer

46 Young Won Lim
2/5/20

Software Interrupt (SWI)

Software Interrupt (SWI)
SWI {<cond>} <24-bit immediate>

ISA (4B) Assembler
Format – Data Transfer

47 Young Won Lim
2/5/20

Swap Memory and Register Instructions

Swap Memory and Register Instrucitons
SWP {<cond>} {B} Rd, Rm, [Rn]

Rd := [Rn], [Rn] = Rm
the swap address by the base register (Rn)

Rd, Rm, [Rn]

(1)

(2)

ISA (4B) Assembler
Format – Data Transfer

48 Young Won Lim
2/5/20

Count Leading Zeros (CLZ)

Count Leading Zeros (CLZ)
CLZ {<cond>} Rd, Rm

ISA (4B) Assembler
Format – Data Transfer

49 Young Won Lim
2/5/20

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

