
Young Won Lim
10/5/17

Functor (1A)

Young Won Lim
10/5/17

 Copyright (c) 2016 - 2017 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Functor (1A) 3 Young Won Lim
10/5/17

Based on

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Functor (1A) 4 Young Won Lim
10/5/17

Function Definition

Function Definition I.

square x = x * x - function type is inferred → not efficient Type Inference

Function Definition II.

square :: Double -> Double – function type declaration

square x = x * x

Function Type Declaration

Type Declaration

the declaration of an identifier's type

the identifier name :: the type name ...

type names in Haskell always begin with a capital letter,

identifier names (including function identifiers) must always begin with a lower-case letter

http://www.toves.org/books/hsfun/

● function type declaration
● function definition

Functor (1A) 5 Young Won Lim
10/5/17

Function Types and Type Classes

Function Definition I.

square x = x * x

Function Definition II.

square :: Double -> Double

square x = x * x

http://www.toves.org/books/hsfun/

● function type declaration

function definition

function definition

● function type 1
● function type 2
●

● function type n

type class – a set of types

=

=

Functor (1A) 6 Young Won Lim
10/5/17

Typeclasses and Instances

Typeclasses are like interfaces

defines some behavior
comparing for equality
comparing for ordering
enumeration

Instances of that typeclass
 types possessing such behavior

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

 a function definition

 (==) :: a -> a -> Bool - a type declaration

 x == y = not (x /= y)

 a function type

 (==) :: a -> a -> Bool - a type declaration

 A function definition can be overloaded

such behavior is defined by

● function type declaration only

● function definition

Functor (1A) 7 Young Won Lim
10/5/17

Typeclasses and Type

Typeclasses are like interfaces

defines some behavior
comparing for equality
comparing for ordering
enumeration

Instances of that typeclass
 types possessing such behavior

No relation with classes in Java or C++

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

a type is an instance of a typeclass implies

the function types declared by the typeclass
are defined (implemented) in the instance

so that we can use the functions
that the typeclass defines with that type

Functor (1A) 8 Young Won Lim
10/5/17

Car Type Example

the Eq typeclass

defines the functions == and /=

a type Car

comparing two cars c1 and c2 with the equality function ==

The Car type is an instance of Eq typeclass

Instances : various types

Typeclass : a group or a class of these similar types

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

a type Car

a type Bag

a type Phone

Eq typeclass

functions
== and /=

instances

Functor (1A) 9 Young Won Lim
10/5/17

TrafficLight Type Example (1)

 class Eq a where
 (==) :: a -> a -> Bool - a type declaration
 (/=) :: a -> a -> Bool - a type declaration
 x == y = not (x /= y) - a function definition
 x /= y = not (x == y) - a function definition

 data TrafficLight = Red | Yellow | Green

 instance Eq TrafficLight where
 Red == Red = True
 Green == Green = True
 Yellow == Yellow = True
 _ == _ = False

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

ghci> Red == Red
True
ghci> Red == Yellow
False
ghci> Red `elem` [Red, Yellow, Green]
True

Functor (1A) 10 Young Won Lim
10/5/17

TrafficLight Type Example (2)

 class Show a where
 show :: a -> String - a type declaration
 * * *

 data TrafficLight = Red | Yellow | Green

 instance Show TrafficLight where
 show Red = "Red light"
 show Yellow = "Yellow light"
 show Green = "Green light"

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

ghci> [Red, Yellow, Green]
[Red light,Yellow light,Green light]

a type
TrafficLight

Eq typeclass

Show typeclass

Instance

Functor (1A) 11 Young Won Lim
10/5/17

Class Constraints

 class (Eq a) => Num a where
 ...

 class Num a where
 ...

class constraint on a class declaration

an instance of Eq
before being an instance of Num

the required function bodies can be defined in
● the class declaration
● an instance declarations,

we can safely use == because a is a part of Eq

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

a

Eq

Num

instance

(Eq a) =>

typeclass

typeclass

Num : a subclass of Eq

Functor (1A) 12 Young Won Lim
10/5/17

Class Constraints : class & instance declarations

class constraints in class declarations

to make a typeclass a subclass of another typeclass

 class (Eq a) => Num a where
…

class constraints in instance declarations

to express requirements about the contents of some type.

 instance (Eq x, Eq y) => Eq (Pair x y) where

 Pair x0 y0 == Pair x1 y1 = x0 == x1 && y0 == y1

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

http://cmsc-16100.cs.uchicago.edu/2016/Lectures/07-type-classes.php

subclass

requirements

Functor (1A) 13 Young Won Lim
10/5/17

Class constraints in instance declaration examples

 instance (Eq m) => Eq (Maybe m) where

 Just x == Just y = x == y

 Nothing == Nothing = True

 _ == _ = False

 instance (Eq x, Eq y) => Eq (Pair x y) where

 Pair x0 y0 == Pair x1 y1 = x0 == x1 && y0 == y1

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Eq x Eq yEq (Pair x y)

Eq m

 Derived instance

Functor (1A) 14 Young Won Lim
10/5/17

A Concrete Type and a Type Constructor

a : a concrete type

Maybe : not a concrete type

: a type constructor that takes one parameter

 produces a concrete type.

Maybe a : a concrete type

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 15 Young Won Lim
10/5/17

Functor typeclass

the Functor typeclass is basically for things that can be mapped over

ex) mapping over lists

the list type is part of the Functor typeclass

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

Functor (1A) 16 Young Won Lim
10/5/17

Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

The Functor typeclass

defines one function, fmap

no default implementation

the type variable f

not a concrete type (a concrete type can hold a value)

a type constructor taking one type parameter

Maybe Int : a concrete type

Maybe : a type constructor that takes one type as the parameter

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

function fmap

type constructor f
function func

Functor (1A) 17 Young Won Lim
10/5/17

Function map & fmap

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

fmap takes
● a function from one type to another (a -> b)
● a Functor f applied with one type (f a)

fmap returns
● a Functor f applied with another type (f b)

 map :: (a -> b) -> [a] -> [b]

map takes
● a function from one type to another (* 2)
● take a list of one type [1, 2, 3]
● returns a list of another type [2, 4, 6]

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

(a -> b) -> f a -> f b

function type type

func

Functor (1A) 18 Young Won Lim
10/5/17

List : an instance of the Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 map :: (a -> b) -> [a] -> [b]

map is just a fmap that works only on lists

a list is an instance of the Functor typeclass.

 instance Functor [] where

 fmap = map

f : a type constructor that takes one type

[] : a type constructor that takes one type

[a] : a concrete type ([Int], [String] or [[String]])

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

funca b

map[a] [b]

function fmap

type constructor f
function func

Functor (1A) 19 Young Won Lim
10/5/17

List Examples

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 map :: (a -> b) -> [a] -> [b]

 instance Functor [] where

 fmap = map

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

 map :: (a -> b) -> [a] -> [b]

 ghci> fmap (*2) [1..3]

 [2,4,6]

 ghci> map (*2) [1..3]

 [2,4,6]

*21 2

map[1,2,3] [2,4,6]

Functor (1A) 20 Young Won Lim
10/5/17

Maybe : an instance of the Functor typeclass

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

funca b

fmapMaybe a Maybe b

f a

f b

f

Maybe a

Maybe b

Maybe

 (a -> b) func

Functor (1A) 21 Young Won Lim
10/5/17

Maybe : a type constructor

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

funca b

fmapMaybe a Maybe bMaybe : an instance of Functor typeclass

f : a type variable

f : a type constructor taking one type parameter

Functor (1A) 22 Young Won Lim
10/5/17

Maybe : an argument to fmap, together with a

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

funca b

fmapMaybe a Maybe bfmap :: (a -> b) -> f a -> f b

fmap func (Just x) = Just (func x)

fmap func Nothing = Nothing

Just x

Nothing

Just (func x)

Nothing

Functor (1A) 23 Young Won Lim
10/5/17

A function argument to fmap and a Functor f

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

fa b

fmapf a f b

fa b

fmapMaybe a Maybe b

f is different from the type constructor f

func : a -> b

 f : a -> b

 f

func

 f

funca b

Functor (1A) 24 Young Won Lim
10/5/17

Maybe Examples (1)

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

*2200 400

fmapJust 200 Just 400

 ghci> fmap (*2) (Just 200)

 Just 400

 ghci> fmap (*2) Nothing

 Nothing

 f

 f

Functor (1A) 25 Young Won Lim
10/5/17

Maybe Examples (2)

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

http://learnyouahaskell.com/making-our-own-types-and-typeclasses#the-functor-typeclass

funca b

fmapf a f b

 (++ "BBB")

fmap

 ghci> fmap (++ "BBB") (Just "AAA")

 Just "AAABBB"

 ghci> fmap (++ "BBB") Nothing

 Nothing

"AAA"

Just "AAA"

"AAABBB"

Just "AAABBB"

 f

 f

Functor (1A) 26 Young Won Lim
10/5/17

Maybe as a functor

Functor typeclass:
● transforming one type to another
● transforming operations of one type to those of another

Maybe a is an instance of a functor type class

Functor provides fmap method
maps functions of the base type (such as Integer)
to functions of the lifted type (such as Maybe Integer).

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

Functor (1A) 27 Young Won Lim
10/5/17

Maybe as a functor

A function f transformed with fmap
can work on a Maybe value

case maybeVal of
 Nothing -> Nothing -- there is nothing, so just return Nothing
 Just val -> Just (f val) -- there is a value, so apply the function to it

 father :: Person -> Maybe Person
 mother :: Person -> Maybe Person

 f :: Int -> Int
fmap f :: Maybe Integer -> Maybe Integer

a Maybe Integer value: m_x

fmap f m_x

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

Functor (1A) 28 Young Won Lim
10/5/17

Transforming operations

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

Functor provides fmap method
maps functions of the base type (such as Integer)
to functions of the lifted type (such as Maybe Integer).

fInt Int

fmap fMaybe Int Maybe Int

fmap fF Int F Int

fa b

fmapF a F b

Functor (1A) 29 Young Won Lim
10/5/17

Maybe as a functor

m_x : a Maybe Integer value (Just 101, Nothing, …)
f :: Int -> Int

you can do fmap f m_x
to apply the function f directly to the Maybe Integer
without worrying whether it is Nothing or not

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

fmap f m_x

Function of (a -> b)

lifted type

A Functor f applied with
one type f a or f b

Functor (1A) 30 Young Won Lim
10/5/17

Maybe as a functor

Can apply a whole chain of
lifted Integer -> Integer functions
to Maybe Integer values
and only have to worry about explicitly checking for Nothing
once when you're finished.

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

fInt Int

fmap fMaybe Int Maybe Int

F Int F Int

Maybe F Int Maybe F Int

g

fmap g

F Int Int

Maybe F Int Maybe Int

h

fmap h

Functor (1A) 31 Young Won Lim
10/5/17

Maybe Type Definition

The Maybe type definition

 data Maybe a = Just a | Nothing
 deriving (Eq, Ord)

Maybe is
● an instance of Eq and Ord (as a base type)
● an instance of Functor
● an instance of Monad

For Functor, the fmap function f
moves inside the Just constructor and
is identity on the Nothing constructor.

For Monad,
the bind operation passes through Just, while
Nothing will force the result to always be Nothing.

https://wiki.haskell.org/Maybe

 class Functor f where

 fmap :: (a -> b) -> f a -> f b

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

Functor (1A) 32 Young Won Lim
10/5/17

Maybe class

The Maybe type definition

 data Maybe a = Just a | Nothing
 deriving (Eq, Ord)

Maybe is
an instance of Eq and Ord (as a base type)
an instance of Functor

 an instance of Monad

For Functor, the fmap function f
moves inside the Just constructor and
is identity on the Nothing constructor.

For Monad,
the bind operation passes through Just, while
Nothing will force the result to always be Nothing.

https://wiki.haskell.org/Maybe

Functor (1A) 33 Young Won Lim
10/5/17

Monad

a Monad is just a special Functor with extra features

Monads like IO map types to new types

that represent "computations that result in values"

can lift regular functions into Monad types

via a liftM function (like a fmap function)

liftM transform a regular function

into a "computations that results in the value obtained by evaluating the function."

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Functor (1A) 34 Young Won Lim
10/5/17

Maybe as a Monad

Maybe is also a Monad

represents “computations that could fail to return a value"

an immediate abort

a valueless return in the middle of a computation.

enable a whole bunch of computations

without explicit checking for errors in each step

a computation on Maybe values stops

as soon as a Nothing is encountered

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

Functor (1A) 35 Young Won Lim
10/5/17

Maybe as a Monad

 f::Int -> Maybe Int
 f 0 = Nothing
 f x = Just x

 g :: Int -> Maybe Int
 g 100 = Nothing
 g x = Just x

 h ::Int -> Maybe Int
 h x = case f x of
 Just n -> g n
 Nothing -> Nothing

 h' :: Int -> Maybe Int
 h' x = do n <- f x
 g n

 h & h' give the same results
 h 0 = h' 0 = h 100 = h' 100 = Nothing;
 h x = h' x = Just x

https://wiki.haskell.org/Maybe

if x==0 then Nothing else Just x

if x==100 then Nothing else Just x

if f x==Nothing then Nothing else g n

g (f x)

Functor (1A) 36 Young Won Lim
10/5/17

Maybe as a Library Function

When the module is imported import Data.Maybe

maybe :: b->(a->b) -> Maybe a -> b

 Applies the second argument (a->b) to the third Maybe a,
 when it is Just x, otherwise returns the first argument (b).

isJust, isNothing
 Test the argument, returing a Bool based on the constructor.

ListToMaybe , maybeToList
 Convert to/from a one element or empty list.

mapMaybe
 A different way to filter a list.

https://wiki.haskell.org/Maybe

Functor (1A) 37 Young Won Lim
10/5/17

Maybe as Monad

maybe :: b->(a->b) -> Maybe a -> b
The maybe function takes

a default value (b),
a function (a->b), and
a Maybe value (Maybe a).

If the Maybe value is Nothing,
the function returns the default value.

Otherwise, it applies the function to the value inside the Just and returns the result.

>>> maybe False odd (Just 3)
True

>>> maybe False odd Nothing
False

https://hackage.haskell.org/package/base-4.10.0.0/docs/Data-
Maybe.html

Functor (1A) 38 Young Won Lim
10/5/17

Then Operator (>>) and do Statements

putStr "Hello" >>

putStr " " >>

putStr "world!" >>

putStr "\n"

do { putStr "Hello"

 ; putStr " "

 ; putStr "world!"

 ; putStr "\n" }

https://en.wikibooks.org/wiki/Haskell/do_notation

Functor (1A) 39 Young Won Lim
10/5/17

Translating in do notation

do { action1

 ; action2

 ; action3 }

action1 >>

do { action2

 ; action3 }

do { action1

 ; do { action2

 ; action3 } }

do { action1

 ; do { action2

 ; do { action3 } } }

https://en.wikibooks.org/wiki/Haskell/do_notation

can chain any actions

as long as all of them are

in the same monad

action1 action2 action3

Functor (1A) 40 Young Won Lim
10/5/17

Bind Operator (>==) and do statements

The bind operator (>>=)

passes a value (the result of an action or function),

downstream in the binding sequence.

action1 >>= (\ x1 ->

 action2 >>= (\ x2 ->

 mk_action3 x1 x2))

do notation assigns a variable name

to the passed value using the <-

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

https://en.wikibooks.org/wiki/Haskell/do_notation

anonymous function

(lambda expression)

is used

Functor (1A) 41 Young Won Lim
10/5/17

Translation using the bind operator (>>=)

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

action1 >>= (\ x1 -> action2 >>= (\ x2 -> mk_action3 x1 x2))

action1

 >>=

 (\ x1 -> action2

 >>=

 (\ x2 -> mk_action3 x1 x2))

action1 >>= (\ x1 ->

 action2 >>= (\ x2 ->

 mk_action3 x1 x2))

https://en.wikibooks.org/wiki/Haskell/do_notation

action1

action2

mk_action3

x1

x2

Functor (1A) 42 Young Won Lim
10/5/17

Anonymous Function

\x -> x + 1

(\x -> x + 1) 4

5 :: Integer

(\x y -> x + y) 3 5

8 :: Integer

addOne = \x -> x + 1

https://wiki.haskell.org/Anonymous_function

Lambda Expression

Functor (1A) 43 Young Won Lim
10/5/17

Functor Typeclass

 instance Functor IO where

 fmap f action = do

 result <- action

 return (f result)

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

fa b

fmapIO a IO b

action1 fresult

(a -> b) -> IO a -> IO b

f action

f result

Functor (1A) 44 Young Won Lim
10/5/17

Functor Typeclass

 main = do line <- getLine

 let line' = reverse line

 putStrLn $ "You said " ++ line' ++ " backwards!"

 putStrLn $ "Yes, you really said" ++ line' ++ " backwards!"

 main = do line <- fmap reverse getLine

 putStrLn $ "You said " ++ line ++ " backwards!"

 putStrLn $ "Yes, you really said" ++ line ++ " backwards!"

 instance Functor IO where

 fmap f action = do

 result <- action

 return (f result)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 fmap reverse getLine = do

 result <- getLine

 return (reverse result)

Functor (1A) 45 Young Won Lim
10/5/17

$ Operator

$ operator to avoid parentheses

Anything appearing after $

will take precedence over anything that comes before.

putStrLn (show (1 + 1))

putStrLn (show $ 1 + 1)

putStrLn $ show (1 + 1)

putStrLn $ show $ 1 + 1

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

Functor (1A) 46 Young Won Lim
10/5/17

. Operator

 . operator to chain functions

putStrLn (show (1 + 1))

 (1 + 1) is not a function, so the . operator cannot be applied

 show can take an Int and return a String.

 putStrLn can take a String and return an IO().

(putStrLn . show) (1 + 1)

putStrLn . show $ 1 + 1

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

show putStrLn
Int String IO()

Functor (1A) 47 Young Won Lim
10/5/17

Functor Typeclass

 instance Functor ((->) r) where

 fmap f g = (\x -> f (g x))

A function takes any thing and returns any thing

g :: a -> b

g :: r -> a

fmap :: (a -> b) -> f a -> f b

fmap :: (a -> b) -> ((->) r a) -> ((->) r b)

fmap :: (a -> b) -> (r -> a) -> (r -> b)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

fa b

fmapg a g b

ga b

gr a

gr b

Functor (1A) 48 Young Won Lim
10/5/17

Functor Typeclass

 instance Functor ((->) r) where

 fmap f g = (\x -> f (g x))

 instance Functor ((->) r) where

 fmap = (.)

 ghci> :t fmap (*3) (+100)

 fmap (*3) (+100) :: (Num a) => a -> a

 ghci> fmap (*3) (+100) 1

 303

 ghci> (*3) `fmap` (+100) $ 1

 303

 ghci> (*3) . (+100) $ 1

 303

 ghci> fmap (show . (*3)) (*100) 1

 "300"

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

(*3)a b

fmap(+100) a (+100) b

Functor (1A) 49 Young Won Lim
10/5/17

Functor Typeclass

 ghci> :t fmap (*2)

 fmap (*2) :: (Num a, Functor f) => f a -> f a

 ghci> :t fmap (replicate 3)

 fmap (replicate 3) :: (Functor f) => f a -> f [a]

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

(*2)a a

fmapf a f a

(replicate 3)a [a]

fmapf a f [a]

Functor (1A) 50 Young Won Lim
10/5/17

Functor Typeclass

 ghci> fmap (replicate 3) [1,2,3,4]

 [[1,1,1],[2,2,2],[3,3,3],[4,4,4]]

 ghci> fmap (replicate 3) (Just 4)

 Just [4,4,4]

 ghci> fmap (replicate 3) (Right "blah")

 Right ["blah","blah","blah"]

 ghci> fmap (replicate 3) Nothing

 Nothing

 ghci> fmap (replicate 3) (Left "foo")

 Left "foo"

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Functor (1A) 51 Young Won Lim
10/5/17

Functor Laws

fmap id = id

id :: a -> a

id x = x

 instance Functor Maybe where

 fmap func (Just x) = Just (func x)

 fmap func Nothing = Nothing

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

 instance Functor Maybe where

 fmap id (Just x) = Just (id x)

 fmap id Nothing = Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

ida a

fmapF a F a

idF a F a

Just x Just x

Nothing Nothing

Functor (1A) 52 Young Won Lim
10/5/17

Functor Typeclass

 ghci> fmap id (Just 3)

 Just 3

 ghci> id (Just 3)

 Just 3

 ghci> fmap id [1..5]

 [1,2,3,4,5]

 ghci> id [1..5]

 [1,2,3,4,5]

 ghci> fmap id []

 []

 ghci> fmap id Nothing

 Nothing

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Functor (1A) 53 Young Won Lim
10/5/17

Functor Laws

fmap (f . g) = fmap f . fmap g

fmap (f . g) F = fmap f (fmap g F)

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

af . ga

fmapF a

ga

fmap F a

a

F a

ga

fmapF a

fa

fmap

f

F a

a a

F a

Functor (1A) 54 Young Won Lim
10/5/17

Functor Laws

fmap (f . g) = fmap f . fmap g

fmap (f . g) F = fmap f (fmap g F)

 instance Functor Maybe where

 fmap f (Just x) = Just (f x)

 fmap f Nothing = Nothing

fmap (f . g) Nothing = Nothing

fmap f (fmap g Nothing) = Nothing

fmap (f . g) (Just x) = Just ((f . g) x) = Just (f (g x))

fmap f (fmap g (Just x)) = fmap f (Just (g x)) = Just (f (g x))

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Young Won Lim
10/5/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

