
Young Won Lim
7/7/18

Background – Operators (1E)

Young Won Lim
7/7/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Background (1E)
Operators 3 Young Won Lim

7/7/18

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

Background (1E)
Operators 4 Young Won Lim

7/7/18

zip function

zip :: [a] -> [b] -> [(a,b)]

zip (a:as) (b:bs) = (a,b) : zip as bs

zip _ _ = []

Prelude> zip [1..3] [10..30]

[(1,10),(2,11),(3,12)]

Prelude> zip [1..3] [10..11]

[(1,10),(2,11)]

https://stackoverflow.com/questions/5776322/zip-function-in-haskell

Background (1E)
Operators 5 Young Won Lim

7/7/18

zipwith function

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f (a:as) (b:bs) = f a b : zipWith f as bs

zipWith _ _ _ = []

Prelude> zipWith (+) [1..3] [10..30]

[11,13,15]

Prelude> zipWith (+) [1..3] [10..11]

[11,13]

Prelude>

https://stackoverflow.com/questions/5776322/zip-function-in-haskell

Background (1E)
Operators 6 Young Won Lim

7/7/18

Set Builder Notation

https://en.wikipedia.org/wiki/List_comprehension

This can be read,

"S is the set of all numbers 2x

where x is an item in the set of natural numbers (N),

for which x squared is greater than 3

Background (1E)
Operators 7 Young Won Lim

7/7/18

List Comprehension

https://en.wikipedia.org/wiki/List_comprehension

A list comprehension has the same syntactic components to
represent generation of a list in order from an input list or iterator:

● A variable representing members of an input list.
● An input list (or iterator).
● An optional predicate expression.
● And an output expression

producing members of the output list

from members of the input iterable that satisfy the predicate

Background (1E)
Operators 8 Young Won Lim

7/7/18

Left Arrow <- in List Comprehension

https://en.wikipedia.org/wiki/List_comprehension

s = [2*x | x <- [0..], x^2 > 3]

the input list [0..] represents N

x^2>3 the predicate

2*x the output expression

results in a defined order

may generate the members of a list in order,

rather than produce the entirety of the list

thus allowing the members of an infinite list.

1 2 3 4 5 …

1 4 9 16 25

 4 6 8 10 …

 <- []

iteration over the list elements

Background (1E)
Operators 9 Young Won Lim

7/7/18

Parallel List Comprehension

https://en.wikipedia.org/wiki/List_comprehension

The Glasgow Haskell Compiler has an extension called

parallel list comprehension (zip-comprehension)

permits multiple independent branches of qualifiers

● qualifiers separated by commas are dependent ("nested"),
● qualifiers separated by pipes are evaluated in parallel

(it merely means that the branches are zipped).

Background (1E)
Operators 10 Young Won Lim

7/7/18

Parallel List Comprehension Examples

https://en.wikipedia.org/wiki/List_comprehension

[(x,y) | x <- [1..5], y <- [3..5]] -- regular list comprehension

-- [(1,3),(1,4),(1,5),(2,3),(2,4) ...

[(x,y) | x <- [1..5] | y <- [3..5]] -- parallel list comprehension

[(x,y) | (x,y) <- zip [1..5] [3..5]] -- zipped list comprehension

-- [(1,3),(2,4),(3,5)]

1 2 3 4 5

3 4 5

1 2 3 4 5

3 4 5

Background (1E)
Operators 11 Young Won Lim

7/7/18

A List Comprehension Function

let removeLower x = [c | c <- x, c `elem` ['A'..'Z']]

a list comprehension

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

removeLower x

[c |

c <- x,

 c `elem` ['A'..'Z']

]

“Hello”

[c: ‘H’

 c: ‘e’

 c: ‘l’

 c: ‘l’

 c: ‘o’]

“H”

x1 : Return value of action1

x2: Return value of action2

Background (1E)
Operators 12 Young Won Lim

7/7/18

Pattern and Predicate

let removeLower x = [c | c <- x, c `elem` ['A'..'Z']]

a list comprehension

[c | c <- x, c `elem` ['A'..'Z']]

c <- x is a generator

(x : argument of the function removeLower)

c is a pattern

matching from the elements of the list x

 successive binding of c to the elements of the list x

c `elem` ['A'..'Z']

is a predicate which is applied to each successive binding of c

Only c which passes this predicate will appear in the output list

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

[c | c <- x, c `elem` ['A'..'Z']]

List

an element

a list

Background (1E)
Operators 13 Young Won Lim

7/7/18

Assignment in Haskell

Assignment in Haskell : declaration with initialization:

● no uninitialized variables,
● must declare with an initial value
● no mutation
● a variable keeps its initial value throughout its scope.

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

Background (1E)
Operators 14 Young Won Lim

7/7/18

Equal = vs. Left Arrow <-

let x = readFile file1

This takes the action "readFile file1"

and stores the action in x.

x is an unexecuted I/O action object.

x <- readFile file1

This executes the action "readFile file1"

and stores the result of the action in x.

x is the contents of a file on disk.

https://stackoverflow.com/questions/28624408/equal-vs-left-arrow-symbols-in-haskell

let x = action

defines x to be equivalent to action,

but does not run anything.

Later on, you can use

y <- x meaning y <- action.

x <- action

runs the IO action,

gets its result,

and binds it to x

Background (1E)
Operators 15 Young Won Lim

7/7/18

Binding the execution result of actions

do c <- x
 return c

x >>= (\c -> return c)

x >>= return

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

action1 >>= (\ x1 ->

 action2 >>= (\ x2 ->

 mk_action3 x1 x2))

c gets the result of the
execution of the action x

x <- action

runs the IO action,

gets its result,

and binds it to x

stateful computation x

Background (1E)
Operators 16 Young Won Lim

7/7/18

Generator

[c| c <- x, c `elem` ['A'..'Z']]

filter (`elem` ['A' .. 'Z']) x

[c | c <- x]

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

c: an element
x: a list

 <- []

iteration over the list elements

pairs :: [a] -> [b] -> [(a,b)]

pairs xs ys = do x <- xs

 y <- ys

 return (x, y)

x, y : elements
xs, ys : lists

x <- xs

x
1
 x

2
 x

3
 x

4
 x

5

y <- ys

y
1
 y

2
 y

3
 y

4
 y

5

Background (1E)
Operators 17 Young Won Lim

7/7/18

Anonymous Functions

(\x -> x + 1) 4
5 :: Integer

(\x y -> x + y) 3 5
8 :: Integer

inc1 = \x -> x + 1

incListA lst = map inc2 lst
 where inc2 x = x + 1

incListB lst = map (\x -> x + 1) lst

incListC = map (+1)

https://wiki.haskell.org/Anonymous_function

Background (1E)
Operators 18 Young Won Lim

7/7/18

do Statements (1)

exp -> do { stmts } (do expression)

stmts -> stmt
1
 ... stmt

n
 exp [;] (n>=0)

stmts -> exp ;

| pat <- exp ;

| let decls ;

| ; (empty statement)

https://www.haskell.org/onlinereport/exps.html#sect3.11

Background (1E)
Operators 19 Young Won Lim

7/7/18

do Statements (2)

A do expression provides

a more conventional syntax

 do putStr "x: "

 l <- getLine

 return (words l)

monadic way

 putStr "x: " >>

 getLine >>= \l ->

 return (words l)

https://www.haskell.org/onlinereport/exps.html#sect3.11

Background (1E)
Operators 20 Young Won Lim

7/7/18

do Statements (3)

Do expressions satisfy these identities,

which may be used as a translation into the kernel,

after eliminating empty stmts:

do {e} = e

do {e; stmts} = e >> do {stmts}

do {p <- e; stmts} = let ok p = do {stmts}

 ok _ = fail "..."

 in e >>= ok

do {let decls; stmts} = let decls in do {stmts}

The ellipsis "..." stands for a compiler-generated error message,

passed to fail, preferably giving some indication of the location of the pattern-match failure;

the functions >>, >>=, and fail are operations in the class Monad,

as defined in the Prelude; and ok is a fresh identifier.

https://www.haskell.org/onlinereport/exps.html#sect3.11

Background (1E)
Operators 21 Young Won Lim

7/7/18

Then Operator (>>) and do Statements

a chain of actions

to sequence input / output operations

the (>>) (then) operator works almost identically in do notation

https://en.wikibooks.org/wiki/Haskell/do_notation

putStr "Hello" >>

putStr " " >>

putStr "world!" >>

putStr "\n"

do { putStr "Hello"

 ; putStr " "

 ; putStr "world!"

 ; putStr "\n" }

Background (1E)
Operators 22 Young Won Lim

7/7/18

Chaining in do and >> notations

do { action1

 ; action2

 ; action3 }

do { action1

 ; do { action2

 ; action3 } }

do { action1

 ; do { action2

 ; do { action3 } } }

https://en.wikibooks.org/wiki/Haskell/do_notation

can chain any actions

all of which are in the same monad

action1 action2 action3

action1 >>

do { action2

 ; action3 }

action1 >>

 action2 >>

 action3

Background (1E)
Operators 23 Young Won Lim

7/7/18

Bind Operator (>==) and do statements

The bind operator (>>=)

passes a value ->

(the result of an action or function),

downstream in the binding sequence.

https://en.wikibooks.org/wiki/Haskell/do_notation

anonymous function

(lambda expression)

is used

action1 >>= (\ x1 ->

 action2 >>= (\ x2 ->

 mk_action3 x1 x2))

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

do notation assigns a variable name

to the passed value using the <-

Background (1E)
Operators 24 Young Won Lim

7/7/18

Chaining >>= and do notations

action1 >>= (\ x1 -> action2 >>= (\ x2 -> mk_action3 x1 x2))

action1

 >>=

 (\ x1 -> action2

 >>=

 (\ x2 -> mk_action3 x1 x2))

action1 >>= (\ x1 ->

 action2 >>= (\ x2 ->

 mk_action3 x1 x2))

https://en.wikibooks.org/wiki/Haskell/do_notation

action1

action2

mk_action3

x1

x2

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

-> <-

Background (1E)
Operators 25 Young Won Lim

7/7/18

fail method

do { Just x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

O.K. when action1 returns Just x1

when action1 returns Nothing

crash with an non-exhaustive patterns error

Handling failure with fail method

action1 >>= f where

 f (Just x1) = do { x2 <- action2

 ; mk_action3 x1 x2 }

 f _ = fail "..." -- A compiler-generated message.

https://en.wikibooks.org/wiki/Haskell/do_notation

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

Background (1E)
Operators 26 Young Won Lim

7/7/18

Example

nameDo :: IO ()

nameDo = do { putStr "What is your first name? "

 ; first <- getLine

 ; putStr "And your last name? "

 ; last <- getLine

 ; let full = first ++ " " ++ last

 ; putStrLn ("Pleased to meet you, " ++ full ++ "!") }

A possible translation into vanilla monadic code:

nameLambda :: IO ()

nameLambda = putStr "What is your first name? " >>

 getLine >>= \ first ->

 putStr "And your last name? " >>

 getLine >>= \ last ->

 let full = first ++ " " ++ last

 in putStrLn ("Pleased to meet you, " ++ full ++ "!")

https://en.wikibooks.org/wiki/Haskell/do_notation

do { x1 <- action1

 ; x2 <- action2

 ; mk_action3 x1 x2 }

using then (>>) and Bind (>>=) operators

using the do statement

Background (1E)
Operators 27 Young Won Lim

7/7/18

return method

nameReturn :: IO String

nameReturn = do putStr "What is your first name? "

 first <- getLine

 putStr "And your last name? "

 last <- getLine

 let full = first ++ " " ++ last

 putStrLn ("Pleased to meet you, " ++ full ++ "!")

 return full

greetAndSeeYou :: IO ()

greetAndSeeYou = do name <- nameReturn

 putStrLn ("See you, " ++ name ++ "!")

https://en.wikibooks.org/wiki/Haskell/do_notation

Background (1E)
Operators 28 Young Won Lim

7/7/18

Without a return method

nameReturn :: IO String

nameReturn = do putStr "What is your first name? "

 first <- getLine

 putStr "And your last name? "

 last <- getLine

 let full = first ++ " " ++ last

 putStrLn ("Pleased to meet you, " ++ full ++ "!")

 return full

nameDo :: IO ()

nameDo = do { putStr "What is your first name? "

 ; first <- getLine

 ; putStr "And your last name? "

 ; last <- getLine

 ; let full = first ++ " " ++ last

 ; putStrLn ("Pleased to meet you, " ++ full ++ "!") }

https://en.wikibooks.org/wiki/Haskell/do_notation

no return statement

returns empty IO monad

explicit return statement

returns IO String monad

Background (1E)
Operators 29 Young Won Lim

7/7/18

return method – not a final statement

nameReturnAndCarryOn :: IO ()

nameReturnAndCarryOn = do putStr "What is your first name? "

 first <- getLine

 putStr "And your last name? "

 last <- getLine

 let full = first++" "++last

 putStrLn ("Pleased to meet you, "++full++"!")

 return full

 putStrLn "I am not finished yet!"

https://en.wikibooks.org/wiki/Haskell/do_notation

the return statement does not interrupt the flow

the last statements of the sequence returns a value

Background (1E)
Operators 30 Young Won Lim

7/7/18

$ Operator

$ operator to avoid parentheses

anything appearing after $

will take precedence over anything that comes before.

putStrLn (show (1 + 1))

putStrLn (show $ 1 + 1) (1+1) is the single argument to show

putStrLn $ show $ 1 + 1 (show $ 1+1) is the single argument to putStrLn

putStrLn $ show (1 + 1) show (1+1) is the single argument to putStrLn

putStrLn $ show $ 1 + 1 (1+1) is the single argument to show

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

B $ A

higher precedence A

Background (1E)
Operators 31 Young Won Lim

7/7/18

(.) Operator

. operator to chain functions

putStrLn (show (1 + 1))

show can take an Int and return a String.

putStrLn can take a String and return an IO().

(putStrLn . show) (1 + 1)

putStrLn . show $ 1 + 1

(1 + 1) is not a function,

so the . operator cannot be applied

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

show putStrLn
Int String IO()

(putStrLn . show)
Int IO()

Background (1E)
Operators 32 Young Won Lim

7/7/18

($) vs (.) Operators

($) calls the function which is its left-hand argument left_func $ right_value

on the value which is its right-hand argument.

(.) composes the function which is its left-hand argument left_func . right_func

on the function which is its right-hand argument.

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

Background (1E)
Operators 33 Young Won Lim

7/7/18

(.) Operator

(.) : for a composite function

result = (f . g) x

is the same as building a function

that passes the result (g x)

of its argument x passed to g on to f.

h = \x -> f (g x)

result = h x

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

Background (1E)
Operators 34 Young Won Lim

7/7/18

($) calculates the right argument first

($) is intended to replace normal function application

but at a different precedence

to help avoid parentheses.

($) is a right-associative apply function

with low binding precedence.

So it merely calculates the things to the right of it first.

this matters because of Haskell’s lazy computation,

f will be evaluated first

result = f $ g x

is the same as this,

procedurally result = f (g x)

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

h = f

gx = g x

hgx = h gx

result = hgx

h = \x -> f (g x)

result = h x

Background (1E)
Operators 35 Young Won Lim

7/7/18

($) operator as an identity function

Can consider ($) as an identity function for function types.

id :: a -> a

id x = x

($) :: (a -> b) -> (a -> b) – intentional parenthesis

($) = id

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

Background (1E)
Operators 36 Young Won Lim

7/7/18

Eliminating ($) and (.)

($) can usually be eliminated

by adding parenthesis

(unless the operator is used in a section)

f $ g x f (g x).

(.) are often slightly harder to replace;

they usually need a lambda or the introduction

of an explicit function parameter.

h = f . g h x = (f . g) x h x = f (g x)

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

h = \x -> f (g x)

result = h x

Background (1E)
Operators 37 Young Won Lim

7/7/18

($) and (.) are operators

($) and (.) are not syntactic sugar for eliminating parentheses
● functions
● infixed

thus we may call them operators.

infixr 9 .

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) x = f (g x)

infixr 0 $

($) :: (a -> b) -> a -> b

f $ x = f x

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

Background (1E)
Operators 38 Young Won Lim

7/7/18

($) vs (.) Operator Types

infixr 9 .

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) x = f (g x)

infixr 0 $

($) :: (a -> b) -> a -> b

f $ x = f x

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

f
b c

f.g
a c

(.)

g
a b

f
a b

($)
a b

Background (1E)
Operators 39 Young Won Lim

7/7/18

Interchanging ($) vs (.) Operators

In some cases ($) and (.) are interchangeable,

but this is not true in general.

f $ g $ h $ x

f . g . h $ x

a chain of ($)s can be replaced by (.)

all but the last ($)

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

Background (1E)
Operators 40 Young Won Lim

7/7/18

Fixity Declaration (1)

specifies a precedence level from 0 to 9
● with 9 being the strongest
● with 0 being the weakest
● normal application is assumed

to have a precedence level of 10

● left-associativity (infixl)
● right-associativity (infixr)
● non-associativity (infix)

http://zvon.org/other/haskell/Outputsyntax/fixityQdeclaration_reference.html

Background (1E)
Operators 41 Young Won Lim

7/7/18

Fixity Declaration (2)

main = print (1 +++ 2 *** 3)

infixr 6 +++

infixr 7 ***,///

(+++) :: Int -> Int -> Int

a +++ b = a + 2*b

(***) :: Int -> Int -> Int

a *** b = a - 4*b

(///) :: Int -> Int -> Int

a /// b = 2*a - 3*b

http://zvon.org/other/haskell/Outputsyntax/fixityQdeclaration_reference.html

(1 +++ 2 *** 3)

(1 +++ (2(*** 3)))

(1 +++ (2 - 4*3))

(1 +++ (-10))

1 – 20

-19

Background (1E)
Operators 42 Young Won Lim

7/7/18

Guard operator

patterns are a way of

making sure a value conforms to some form

and deconstructing it

guards are a way of

testing whether some property of a value

(or several of them) are true or false.

http://learnyouahaskell.com/syntax-in-functions

Background (1E)
Operators 43 Young Won Lim

7/7/18

!! operator

!! indexes lists

It takes a list and an index

and returns the item at that index

If the index is out of bounds, it returns ⊥

:t (!!)

(!!) :: [a] -> Int -> a

0 1 2 3 4

Prelude> [11, 22, 33, 44, 55] !! 0

11

Prelude> [11, 22, 33, 44, 55] !! 10

*** Exception: Prelude.!!: index too large

Prelude> [11, 22, 33, 44, 55] !! 1

22

Prelude> [11, 22, 33, 44, 55] !! 4

55

http://learnyouahaskell.com/syntax-in-functions

Young Won Lim
7/7/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

