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Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps
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zip function  

zip :: [a] -> [b] -> [(a,b)]

zip (a:as) (b:bs) = (a,b) : zip as bs

zip _      _      = []

Prelude> zip [1..3] [10..30]

[(1,10),(2,11),(3,12)]

Prelude> zip [1..3] [10..11]

[(1,10),(2,11)]

https://stackoverflow.com/questions/5776322/zip-function-in-haskell
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zipwith function  

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f (a:as) (b:bs) = f a b : zipWith f as bs

zipWith _ _      _      = []

Prelude> zipWith (+) [1..3] [10..30]

[11,13,15]

Prelude> zipWith (+) [1..3] [10..11]

[11,13]

Prelude> 

https://stackoverflow.com/questions/5776322/zip-function-in-haskell
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Set Builder Notation

https://en.wikipedia.org/wiki/List_comprehension

This can be read, 

"S is the set of all numbers 2x 

where x is an item in the set of natural numbers (N), 

for which x squared is greater than 3
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List Comprehension

https://en.wikipedia.org/wiki/List_comprehension

A list comprehension has the same syntactic components to 
represent generation of a list in order from an input list or iterator:

● A variable representing members of an input list.
● An input list (or iterator).
● An optional predicate expression.
● And an output expression 

producing members of the output list 

from members of the input iterable that satisfy the predicate
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Left Arrow <- in List Comprehension

https://en.wikipedia.org/wiki/List_comprehension

s = [ 2*x | x <- [0..],  x^2 > 3 ]

the input list [0..] represents N

x^2>3 the predicate

2*x the output expression

results in a defined order 

may generate the members of a list in order, 

rather than produce the entirety of the list 

thus allowing the members of an infinite list.

1 2 3 4 5 … 

1 4 9 16 25

 4 6 8 10  … 

 <-  [                     ]

iteration over the list elements
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Parallel List Comprehension

https://en.wikipedia.org/wiki/List_comprehension

The Glasgow Haskell Compiler has an extension called 

parallel list comprehension (zip-comprehension) 

permits multiple independent branches of qualifiers 

● qualifiers separated by commas are dependent ("nested"), 
● qualifiers separated by pipes are evaluated in parallel 

(it merely means that the branches are zipped).
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Parallel List Comprehension Examples

https://en.wikipedia.org/wiki/List_comprehension

[(x,y) | x <- [1..5], y <- [3..5]] -- regular list comprehension

-- [(1,3),(1,4),(1,5),(2,3),(2,4) ...

[(x,y) | x <- [1..5] | y <- [3..5]] -- parallel list comprehension

[(x,y) | (x,y) <- zip [1..5] [3..5]] -- zipped list comprehension

-- [(1,3),(2,4),(3,5)]

1 2 3 4 5

3 4 5

1 2 3 4 5

3 4 5
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A List Comprehension Function 

let removeLower x = [c | c <- x,  c `elem` ['A'..'Z']]

a list comprehension 

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

do { x1 <- action1

      ; x2 <- action2

      ; mk_action3 x1 x2 }

removeLower x

[ c | 

c <- x,  

      c `elem` ['A'..'Z']

]

“Hello”

[ c: ‘H’

  c: ‘e’

  c: ‘l’

  c: ‘l’

  c: ‘o’  ]

“H”

x1 : Return value of action1

x2: Return value of action2
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Pattern and Predicate

let removeLower x = [c | c <- x,  c `elem` ['A'..'Z']]

a list comprehension 

[c | c <- x, c `elem` ['A'..'Z']]

 

c <- x is a generator  

(x : argument of the function removeLower)

c is a pattern 

matching from the elements of the list x

 successive binding of c to the elements of the list x 

c `elem` ['A'..'Z']

is a predicate which is applied to each successive binding of c

Only c which passes this predicate will appear in the output list

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

[ c | c <- x, c `elem` ['A'..'Z'] ]

List

an element

a list
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Assignment in Haskell 

Assignment in Haskell : declaration with initialization:

● no uninitialized variables, 
● must declare with an initial value
● no mutation
● a variable keeps its initial value throughout its scope.

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell
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Equal = vs.  Left Arrow <- 

let x = readFile file1

This takes the action "readFile file1" 

and stores the action in x.

x is an unexecuted I/O action object. 

x <- readFile file1

This executes the action "readFile file1" 

and stores the result of the action in x.

x is the contents of a file on disk.

https://stackoverflow.com/questions/28624408/equal-vs-left-arrow-symbols-in-haskell

let x = action 

defines x to be equivalent to action, 

but does not run anything. 

Later on, you can use 

y <- x meaning y <- action.

x <- action 

runs the IO action, 

gets its result, 

and binds it to x
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Binding the execution result of actions

 

 

 

do c <- x
   return c

x >>= ( \c -> return c )

x >>= return

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

action1 >>= (\ x1 ->

  action2 >>= (\ x2 ->

    mk_action3 x1 x2 ))

c gets the result of the 
execution of the action x

x <- action 

runs the IO action, 

gets its result, 

and binds it to x

stateful computation x 
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Generator

[c| c <- x, c `elem` ['A'..'Z']]

filter (`elem` ['A' .. 'Z']) x

[ c |  c <- x ]

https://stackoverflow.com/questions/35198897/does-mean-assigning-a-variable-in-haskell

c: an element
x: a list 

 <-  [                     ]

iteration over the list elements

pairs :: [a] -> [b] -> [(a,b)]

pairs xs ys =  do x <- xs

                  y <- ys

                  return (x, y)

x,   y : elements
xs, ys : lists 

x <-      xs

x
1
 x

2
 x

3
 x

4
 x

5

y <-      ys

y
1
 y

2
 y

3
 y

4
 y

5
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Anonymous Functions

(\x -> x + 1) 4
5 :: Integer

(\x y -> x + y) 3 5
8 :: Integer

inc1 = \x -> x + 1

incListA lst = map inc2 lst
    where inc2 x = x + 1

incListB lst = map (\x -> x + 1) lst

incListC = map (+1)

https://wiki.haskell.org/Anonymous_function
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do Statements (1)

exp -> do { stmts } (do expression)

stmts -> stmt
1
 ... stmt

n
 exp [;] (n>=0)

stmts -> exp ;

| pat <- exp ;

| let decls ;

| ; (empty statement)

https://www.haskell.org/onlinereport/exps.html#sect3.11
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do Statements (2)

A do expression provides 

a more conventional syntax 

  do putStr "x: "

     l <- getLine

     return (words l)

monadic way

   putStr "x: "   >> 

   getLine         >>= \l ->

   return (words l)

https://www.haskell.org/onlinereport/exps.html#sect3.11
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do Statements (3)

Do expressions satisfy these identities, 

which may be used as a translation into the kernel, 

after eliminating empty stmts:

do {e} = e

do {e; stmts} = e >> do {stmts}

do {p <- e; stmts} = let ok p  = do {stmts}

    ok _ =  fail "..."

  in e >>= ok

do {let decls; stmts} = let decls in do {stmts}

The ellipsis "..." stands for a compiler-generated error message, 

passed to fail, preferably giving some indication of the location of the pattern-match failure; 

the functions >>, >>=, and fail are operations in the class Monad, 

as defined in the Prelude; and ok is a fresh identifier. 

https://www.haskell.org/onlinereport/exps.html#sect3.11
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Then Operator (>>) and do Statements

a chain of actions 

to sequence input / output operations

the (>>) (then) operator works almost identically in do notation

https://en.wikibooks.org/wiki/Haskell/do_notation

putStr "Hello"  >> 

putStr " "         >> 

putStr "world!" >> 

putStr "\n"

do { putStr "Hello"

     ; putStr " "

     ; putStr "world!"

     ; putStr "\n" }
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Chaining in do and >> notations

do { action1           

     ; action2                                                                  

     ; action3 }                                                                       

do { action1 

      ; do { action2

              ; action3 } }

do { action1 

      ; do { action2

              ; do { action3 } } }

https://en.wikibooks.org/wiki/Haskell/do_notation

can chain any actions 

all of which are in the same monad

action1 action2 action3

action1 >>

do { action2

      ; action3 }

action1 >>

   action2  >>

       action3 
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Bind Operator (>==) and do statements

The bind operator (>>=) 

passes a value   ->

(the result of an action or function), 

downstream in the binding sequence. 

https://en.wikibooks.org/wiki/Haskell/do_notation

anonymous function  

(lambda expression)

is used 

action1 >>= (\ x1 ->

  action2 >>= (\ x2 ->

    mk_action3 x1 x2 ))

do { x1 <- action1

      ; x2 <- action2

      ; mk_action3 x1 x2 }

do notation assigns a variable name 

to the passed value using the <-
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Chaining >>= and do notations

action1 >>= (\ x1 -> action2 >>= (\ x2 -> mk_action3 x1 x2 ))

action1

  >>=

    (\ x1 -> action2

       >>=

         (\ x2 -> mk_action3 x1 x2 ))

action1 >>= (\ x1 ->

  action2 >>= (\ x2 ->

    mk_action3 x1 x2 ))

https://en.wikibooks.org/wiki/Haskell/do_notation

action1

action2

mk_action3

x1

x2

do { x1 <- action1

      ; x2 <- action2

      ; mk_action3 x1 x2 }

-> <-
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fail method

do { Just x1 <- action1

      ;        x2 <- action2

      ; mk_action3 x1 x2     }

O.K. when action1 returns Just x1 

when action1 returns Nothing 

crash with an non-exhaustive patterns error 

Handling failure with fail method

action1 >>= f where

     f (Just x1) = do { x2 <- action2

                                 ; mk_action3 x1 x2 } 

     f _             = fail "..." -- A compiler-generated message.

https://en.wikibooks.org/wiki/Haskell/do_notation

do { x1 <- action1

      ; x2 <- action2

      ; mk_action3 x1 x2 }



Background (1E)
Operators 26 Young Won Lim

7/7/18

Example

nameDo :: IO ()

nameDo = do { putStr "What is your first name? "

                        ; first <- getLine

                        ; putStr "And your last name? "

                        ; last <- getLine

                        ; let full = first ++ " " ++ last

                        ; putStrLn ("Pleased to meet you, " ++ full ++ "!") }

A possible translation into vanilla monadic code:

nameLambda :: IO ()

nameLambda = putStr "What is your first name? " >>

                           getLine >>= \ first ->

 putStr "And your last name? " >>

                           getLine >>= \ last ->

                           let full = first ++ " " ++ last

                           in putStrLn ("Pleased to meet you, " ++ full ++ "!")

https://en.wikibooks.org/wiki/Haskell/do_notation

do { x1 <- action1

      ; x2 <- action2

      ; mk_action3 x1 x2 }

using then (>>) and Bind (>>=) operators

using the do statement
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return method 

nameReturn :: IO String

nameReturn = do putStr "What is your first name? "

                         first <- getLine

                         putStr "And your last name? "

                         last <- getLine

                         let full = first ++ " " ++ last

                         putStrLn ("Pleased to meet you, " ++ full ++ "!")

                         return full

greetAndSeeYou :: IO ()

greetAndSeeYou = do name <- nameReturn

                                      putStrLn ("See you, " ++ name ++ "!")

https://en.wikibooks.org/wiki/Haskell/do_notation
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Without a return method 

nameReturn :: IO String

nameReturn = do putStr "What is your first name? "

                         first <- getLine

                         putStr "And your last name? "

                         last <- getLine

                         let full = first ++ " " ++ last

                         putStrLn ("Pleased to meet you, " ++ full ++ "!")

                         return full

nameDo :: IO ()

nameDo = do { putStr "What is your first name? "

                        ; first <- getLine

                        ; putStr "And your last name? "

                        ; last <- getLine

                        ; let full = first ++ " " ++ last

                        ; putStrLn ("Pleased to meet you, " ++ full ++ "!") }

https://en.wikibooks.org/wiki/Haskell/do_notation

no return statement

returns empty IO monad 

explicit return statement

returns IO String monad 
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return method – not a final statement 

nameReturnAndCarryOn :: IO ()

nameReturnAndCarryOn = do putStr "What is your first name? "

                                first <- getLine

                               putStr "And your last name? "

                               last <- getLine

                               let full = first++" "++last

                               putStrLn ("Pleased to meet you, "++full++"!")

                               return full

                               putStrLn "I am not finished yet!"

https://en.wikibooks.org/wiki/Haskell/do_notation

the return statement does not interrupt the flow 

the last statements of the sequence returns a value
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$ Operator

$ operator to avoid parentheses

anything appearing after $ 

will take precedence over anything that comes before.

putStrLn (show (1 + 1))

putStrLn (show $ 1 + 1)  (1+1) is the single argument to show

putStrLn $ show $ 1 + 1 (show $ 1+1) is the single argument to putStrLn

putStrLn $ show (1 + 1) show (1+1) is the single argument to putStrLn

putStrLn $ show $ 1 + 1 (1+1) is the single argument to show

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

B $ A

higher precedence  A



Background (1E)
Operators 31 Young Won Lim

7/7/18

( . ) Operator

. operator to chain functions

putStrLn (show (1 + 1))

show can take an Int and return a String.

putStrLn can take a String and return an IO().

(putStrLn . show) (1 + 1)

putStrLn . show $ 1 + 1

(1 + 1) is not a function, 

so the . operator cannot be applied

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

show putStrLn
Int String IO()

(putStrLn . show)
Int IO()
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($) vs (.) Operators

($) calls the function which is its left-hand argument left_func $ right_value

on the value which is its right-hand argument.

( . ) composes the function which is its left-hand argument   left_func . right_func

on the function which is its right-hand argument.

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign



Background (1E)
Operators 33 Young Won Lim

7/7/18

( . ) Operator

( . ) : for a composite function 

result = (f . g) x

is the same as building a function 

that passes the result (g x) 

of its argument x passed to g on to f.

h = \x -> f (g x)

result = h x

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign
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($) calculates the right argument first

($) is intended to replace normal function application 

but at a different precedence 

to help avoid parentheses. 

($) is a right-associative apply function 

with low binding precedence. 

So it merely calculates the things to the right of it first. 

this matters because of Haskell’s lazy computation, 

f will be evaluated first

result = f $ g x

is the same as this, 

procedurally result = f (g x)

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

h = f

gx = g x

hgx = h gx

result = hgx

h = \x -> f (g x)

result = h x
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($) operator as an identity function

Can consider ($) as an identity function for function types. 

id :: a -> a

id x = x

($) :: (a -> b) -> (a -> b) – intentional parenthesis 

($) = id

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign
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Eliminating ($) and ( . ) 

($) can usually be eliminated 

by adding parenthesis 

(unless the operator is used in a section) 

f $ g x           f (g x).

( . ) are often slightly harder to replace; 

they usually need a lambda or the introduction 

of an explicit function parameter. 

h = f . g   h x = (f . g) x h x = f (g x)

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

h = \x -> f (g x)

result = h x
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($) and ( . ) are operators

($) and ( . ) are not syntactic sugar for eliminating parentheses 
● functions 
● infixed

thus we may call them operators.

infixr 9 .

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) x = f (g x)

infixr 0 $

($) :: (a -> b) -> a -> b

f $ x = f x

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign
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($) vs ( . ) Operator Types

infixr 9 .

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) x = f (g x)

infixr 0 $

($) :: (a -> b) -> a -> b

f $ x = f x

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign

f
b c

f.g
a c

( . )

g
a b

f
a b

($)
a b
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Interchanging ($) vs ( . ) Operators

In some cases ($) and ( . ) are interchangeable, 

but this is not true in general. 

f $ g $ h $ x

f  .  g . h $ x

a chain of ($)s can be replaced by ( . ) 

all but the last ($)

https://stackoverflow.com/questions/940382/haskell-difference-between-dot-and-dollar-sign
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Fixity Declaration (1)

specifies a precedence level from 0 to 9 
● with 9 being the strongest
● with 0 being the weakest 
● normal application is assumed 

to have a precedence level of 10 

● left-associativity (infixl)  
● right-associativity (infixr) 
● non-associativity (infix) 

http://zvon.org/other/haskell/Outputsyntax/fixityQdeclaration_reference.html
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Fixity Declaration (2)

main = print (1 +++ 2 *** 3)

infixr  6 +++

infixr  7 ***,///

(+++) :: Int -> Int -> Int

a +++ b = a + 2*b

(***) :: Int -> Int -> Int

a *** b = a - 4*b

(///) :: Int -> Int -> Int

a /// b = 2*a - 3*b

http://zvon.org/other/haskell/Outputsyntax/fixityQdeclaration_reference.html

(1 +++ 2 *** 3)

(1 +++ (2( *** 3)))

(1 +++ (2 - 4*3))

(1 +++ (-10))

1 – 20 

-19
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Guard operator

patterns are a way of 

making sure a value conforms to some form 

and deconstructing it

 

guards are a way of 

testing whether some property of a value 

(or several of them) are true or false. 

http://learnyouahaskell.com/syntax-in-functions
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!! operator

!! indexes lists 

It takes a list and an index

and returns the item at that index 

If the index is out of bounds, it returns ⊥

:t (!!) 

(!!) :: [a] -> Int -> a

0    1    2    3    4

Prelude> [11, 22, 33, 44, 55] !! 0

11

Prelude> [11, 22, 33, 44, 55] !! 10

*** Exception: Prelude.!!: index too large

Prelude> [11, 22, 33, 44, 55] !! 1

22

Prelude> [11, 22, 33, 44, 55] !! 4

55

http://learnyouahaskell.com/syntax-in-functions
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