Systems of Linear Equations

Young W Lim

Jul 22, 2024

Copyright (c) 2024 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Based on A First Course in Linear Algebra, R. A. Beezer http://linear.ups.edu/fcla/front-matter.html

Image: A matrix

4 E F

Systems of Linear Equations Solving systems of linear equations

Systems of Linear Equations Solving systems of linear equations

System of a Linear Equations

A System of Linear Equations

is a collection of m equations in the variable quantities $x_1, x_2, x_3, \ldots, x_n$ of the form,

 $\begin{array}{ll} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n &= b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n &= b_3 \\ &\vdots &\vdots \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n &= b_m \end{array}$

where the values of a_{ij} , x_j , and b_i , $(1 \le i \le m, 1 \le j \le n)$, are from the set of complex numbers, \mathbb{C} .

Solution of a System of a Linear Equations

A Solution of a System of Linear Equations

```
is an ordered list of n complex numbers, s_1, s_2, s_3, \ldots, s_n for n variables, x_1, x_2, x_3, \ldots, x_n, such that
```

if we substitute

```
s_1 for x_1,
```

```
s_2 for x_2,
```

```
s_3 for x_3,
```

. . . .

```
s_3 for x_n,
```

then all *m* equations are true simultaneously, i.e,

```
for every equation of the system the left side will equal to the right side
```

Solution Set of a System of a Linear Equations

The solution set of a System of Linear Equations

is the set which contains $\underline{every} \ \underline{solution}$ to the system, and nothing more.

Three types of a solution set						
۰	$2x_1$ x_1	$+3x_2 \\ -x_2$	= 3 = 4	a single solution		
۰	2 <i>x</i> ₁ 4 <i>x</i> ₁	$+3x_{2}$ + $6x_{2}$	= 3 = 6	inifintely many solution		
۰	2 <i>x</i> ₁ 4 <i>x</i> ₁	$+3x_{2}$ + $6x_{2}$	= 3 = 10	no soution		

Equivalent Systems

Equivalent Systems

Two systems of linear equations are **equivalent** if their solution sets are equal.

Equation Operations

Equation Operations

Given a system of linear equations, the following three <u>operations</u> will <u>transform</u> the system into a different one, and each operation is known as an **equation operation**.

- swap the locations of two equations in the list of equations.
- Image: multiply each term of an equation by a nonzero quantity.
- multiply each term of one equation by some quantity, and add these terms to a second equation, on both sides of the equality. leave the first equation the same after this operation, but replace the second equation by the new one.

Equation Operations Preserve Solution Sets

Equation Operations

If we <u>apply</u> one of the three equation operations to a system of linear equations, then the <u>original</u> <u>system</u> and the <u>transformed</u> <u>system</u> are equivalent.

Three Equations and One Solution (1)

Three Equations and One Solution (2)

Three Equations and One Solution (3)

which can be written more clearly						
$\begin{array}{cccc} x_1 & +2x_2 & +2x_3 \\ & x_2 & +x_3 \\ & & x_3 \end{array}$	3 = 4 = 1 = 4					
thus, the solution is $(x_1, x_2, x_3) = (2, -3, 4)$						

Three Equations and Infinitely Many Solutions (1)

solve the following by a sequence of equation operations

$$1x_1 + 2x_2 + 0x_3 + 1x_4 = 7$$

$$1x_1 + 1x_2 + 1x_3 - 1x_4 = 3$$

$$3x_1 + 1x_2 + 5x_3 - 7x_4 = 1$$
1. $-1 \cdot eq1 + eq2 \rightarrow eq2$

$$-1 \cdot (1, 2, 0, 1, 7) + (1, 1, 1, -1, 3) \rightarrow (0, -1, 1, -2, -4)$$

$$1x_1 + 2x_2 + 0x_3 + 1x_4 = 7$$

$$0x_1 - 1x_2 + 1x_3 - 2x_4 = -4$$

$$3x_1 + 1x_2 + 5x_3 - 7x_4 = 1$$
2. $-3 \cdot eq1 + eq3 \rightarrow eq3$

$$-3 \cdot (1, 2, 0, 1, 7) + (3, 1, 5, -7, 1) \rightarrow (0, -5, 5, -10, -20)$$

$$1x_1 + 2x_2 + 0x_3 + 1x_4 = 7$$

$$0x_1 - 1x_2 + 1x_3 - 2x_4 = -4$$

$$0x_1 - 5x_2 + 5x_3 - 10x_4 = -20$$

Three Equations and Infinitely Many Solutions (2)

$$3. -5 \cdot eq^{2} + eq^{3} \rightarrow eq^{3}$$

$$-5 \cdot (0, -1, 1, -2, -4) + (0, -5, 5, -10, -20) \rightarrow (0, 0, 0, 0, 0)$$

$$1x_{1} + 2x_{2} + 0x_{3} + 1x_{4} = 7$$

$$0x_{1} - 1x_{2} + 1x_{3} - 2x_{4} = -4$$

$$0x_{1} + 0x_{2} + 0x_{3} + 0x_{4} = 0$$

$$4. -1 \cdot eq^{2} \rightarrow eq^{2}$$

$$-1 \cdot (0, -1, 1, -2, -4) \rightarrow (0, 1, -1, 2, 4)$$

$$1x_{1} + 2x_{2} + 0x_{3} + 1x_{4} = 7$$

$$0x_{1} + 1x_{2} - 1x_{3} + 2x_{4} = 4$$

$$0x_{1} + 0x_{2} + 0x_{3} + 0x_{4} = 0$$

Three Equations and Infinitely Many Solutions (3)

5.
$$-2 \cdot eq^2 + eq^1 \rightarrow eq^1$$

 $-2 \cdot (0, 1, -1, 2, 4) + (1, 2, 0, 1, 7) \rightarrow (1, 0, 2, -3, -1)$
 $1x_1 + 0x_2 + 2x_3 - 3x_4 = -1$
 $0x_1 + 1x_2 - 1x_3 + 2x_4 = 4$
 $0x_1 + 0x_2 + 0x_3 + 0x_4 = 0$
which can be written more clearly
 $x_1 + 2x_3 - 3x_4 = -1$
 $x_2 - x_2 + 2x_3 = 4$
 $0 = 0$

Three Equations and Infinitely Many Solutions (4)

Three Equations and Infinitely Many Solutions (5)

• with
$$x_3 = a$$
 and $x_4 = b$
 $x_1 + 2x_3 - 3x_4 = -1$
 $x_2 - x_2 + 2x_3 = 4$
 $0 = 0$
• $x_1 + 2a - 3b = -1$
 $x_1 = -1 - 2a + 3b$
• $x_2 - a + 2b = -4$
 $x_2 = 4 + a - 2b$

Three Equations and Infinitely Many Solutions (5)

伺 ト イヨト イヨト

Three Equations and Infinitely Many Solutions (5)

Non-zero scalar (1)

- If we were to allow a zero scalar to multiply an equation then that equation would be transformed to the equation 0 = 0,
- 0 = 0 is true for any possible values of the variables.
- Any restrictions on the solution set imposed by the original equation would be lost.
- However, in the third operation,
 - it is allowed to choose a zero scalar,
 - multiply an equation by this scalar
 - and add the transformed equation to a second equation
 - (leaving the first unchanged).
 - The result Nothing changed
 - The second equation is the same as it was before.

Non-zero scalar (2)

- So the theorem is true in this case, the two systems are equivalent.
- But in practice, this would be a silly thing to actually ever do!
- We still allow it though, in order to keep our theorem as general as possible.
- Notice the location in the proof of Theorem EOPSS where the expression 1α appears this explains the prohibition on $\alpha=0$ in the second equation operation.

Young W Lim Systems of Linear Equations

イロト イヨト イヨト イヨト

2