First Order Logic - Semantics (3A)

Copyright (c) 2016-2017 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License". version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice

Based on

Contemporary Artificial Intelligence, R.E. Neapolitan \& X. Jiang
Logic and Its Applications, Burkey \& Foxley

A Signature and a Language

First specify a signature

Constant Symbols
Predicate Symbols
Function Symbols

$$
\begin{aligned}
& \left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{\mathrm{n}}\right\}=\mathrm{D} \\
& \left\{\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots \mathbf{P}_{\mathrm{m}}\right\} \\
& \left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \ldots \mathbf{f}_{1}\right\}
\end{aligned}
$$

Determines the language

Given a language
A model is specified
A domain of discourse
a set of entities
An interpretation
constant assignments
function assignments
truth value assignments

$$
\left\{\text { entity }_{1}, \text { entity }_{2}, \ldots \text { entity }_{n}\right\}
$$

$\left\{\mathrm{c}_{1}, \mathrm{C}_{2}, \ldots \mathrm{c}_{\mathrm{n}}\right\}=\mathrm{D}$
$\mathbf{f}_{1}(), \mathbf{f}_{2}(), \ldots \mathbf{f}_{1}()$
$\mathbf{P}_{1}(), \mathbf{P}_{2}(), \ldots \mathbf{P}_{\mathbf{m}}()$

Model - domain of discourse

1. a nonempty set D of entities called a domain of discourse

- this domain is a set
- each element in the set : entity
- each constant symbol : one entity in the domain

```
If we considering all individuals in a class,
The constant symbols might be
    'Mary', - an entity
    'Fred', - an entity
    'John', - an entity
    `Tom' - an entity
```


Model - interpretation

2. an interpretation
(a) an entity in D is assigned to each of the constant symbols.

Normally, every entity is assigned to a constant symbol.
(b) for each function,
an entity is assigned to each possible input of entities to the function
(c) the predicate 'True' is always assigned the value T

The predicate 'False' is always assigned the value F
(d) for every other predicate,
the value T or F is assigned
to each possible input of entities to the predicate

Interpretation

$$
\left\{\text { entity }_{1}, \text { entity }_{2}, \ldots \text { entity }_{n}\right\}
$$

Constant assignments

$$
\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{n}\right\}=\mathrm{D}
$$

Function assignments

Truth value assignments

always return T / F

Interpretation

Propositional Logic

	A	B	
Interpretation \mathbf{I}_{1}	T	T	
Interpretation \mathbf{I}_{2}	T	F	
Interpretation I_{3}	F	T	
Interpretation I_{4}	F	F	

First Order Logic

	P1()	P2()	S1	S2
Interpretation I_{1}	T	T		
Interpretation I_{2}	T	F		
Interpretation I_{3}	F	T		
Interpretation I_{4}	F	F		

$\left\{\right.$ entity $_{1}$, entity $_{2}, \ldots$ entity $\left._{n}\right\}$

$$
\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{n}\right\}=\mathrm{D}
$$

Each possible input of entities

Arity one: $\quad C(n, 1)$
Arity two: $\quad \mathrm{C}(\mathrm{n}, 2)$
Arity three: $\quad C(n, 3)$

$$
\left\{\text { entity }_{1}, \text { entity }_{2}, \ldots \text { entity }_{n}\right\}
$$

$$
\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{n}\right\}=\mathrm{D}
$$

Arity one functions \& predicates:

Interpretation

Constant assignments
(a) an entity \rightarrow the constant symbols.

Function assignments
(b) an entity \rightarrow each possible input of entities to the function

Truth value assignments
(c) the value $\mathrm{T} \rightarrow$ the predicate 'True'
the value $F \rightarrow$ the predicate 'False'
(d) for every other predicate,
the value T or F is assigned \rightarrow every other predicate to each possible input of entities to the predicate

Signature Model Examples A - (1)

Signature

1. constant symbols $=\{$ Mary, Fred, Sam \}
2. predicate symbols $=\{$ married, young $\}$
married(x, y) : arity two
young(x) : arity one

Model

1. domain of discourse D : the set of three particular individuals

- this domain is a set
- each element in the set : entity (= individuals)
- each constant symbol : one entity in the domain (= one individual)

2. interpretation
(a) a different individual is assigned to each of the constant symbols
(a) an entity in D is assigned to each of the constant symbols. Normally, every entity is assigned to a constant symbol.

Signature Model Examples A - (2)

(b) for each function,
an entity is assigned to each possible input of entities to the function
(c) the predicate 'True' is always assigned the value T

The predicate 'False' is always assigned the value F
(d) the truth value assignments for every predicate

```
young(Mary) = F, young(Fred) = F, young(Sam) = T
(d) for every other predicate,
    the value T or F is assigned
    to each possible input of entities to the predicate
    (Mary, Mary), (Mary, Fred), (Mary, Sam)
    (Fred, Mary), (Fred, Fred), (Fred, Sam)
    (Sam, Mary), (Sam, Fred), (Sam, Sam)
```

married(Mary, Mary) = F, married(Mary, Fred) = T, married(Mary, Sam) = F
$\operatorname{married}($ Fred, Mary $)=$ T, married(Fred, Fred) $=$ F, married(Fred, Sam) $=$ F
$\operatorname{married}($ Sam, Mary $)=F, \operatorname{married}(S a m$, Fred $)=F, \operatorname{married}(S a m$, Sam $)=F$

Signature Model Examples B - (1)

Signature

1. constant symbols $=\{$ Fred, Mary, Sam \}
2. predicate symbols $=\{$ love $\} \quad$ love (x, y) : arity two
3. function symbols $=\{$ mother $\} \quad$ mother (x) : arity one

Model

1. domain of discourse D : the set of three particular individuals
2. interpretation
(a) a different individual is assigned to each of the constant symbols
(b) the truth value assignments for every predicate
love(Fred, Fred) $=$ F, love(Fred, Mary $)=$ F, love(Fred, Ann) $=$ F
love(Mary, Fred) = T, love(Mary, Mary) = F, love(Mary, Ann) = T love(Ann, Fred) $=\mathrm{T}$, love(Ann, Mary) $=\mathrm{T}$, love(Ann, Ann) $=\mathrm{F}$
(c) the function assignments
mother(Fred) $=$ Mary, mother(Mary) $=$ Ann, mother $($ Ann $)=-($ no assignment $)$

Signature Model Examples B - (2)

2. interpretation
(a) a different individual is assigned to each of the constant symbols
(a) an entity in D is assigned to each of the constant symbols. Normally, every entity is assigned to a constant symbol.
(b) the truth value assignments
(b) for each function,
an entity is assigned to each possible input of entities to the function
love $($ Fred, Fred $)=$ F, love(Fred, Mary $)=$ F, love $($ Fred, Ann $)=F$
love(Mary, Fred) = T, love(Mary, Mary) = F, love(Mary, Ann) = T
love(Ann, Fred) $=\mathrm{T}$, love(Ann, Mary) $=\mathrm{T}$, love(Ann, Ann) $=\mathrm{F}$
(c) the function assignments
(d) for every other predicate,
the value T or F is assigned
to each possible input of entities to the predicate
mother $($ Fred $)=$ Mary, mother(Mary $)=$ Ann, mother $($ Ann $)=-($ no assignment $)$

The truth value of sentences

The truth values of all sentences are assigned :

1. the truth values for sentences developed with the symbols $\neg, \Lambda, \vee, \Rightarrow, \Leftrightarrow$ are assigned as in propositional logic.
2. the truth values for two terms connected by the = symbol is \mathbf{T} if both terms refer to the same entity; otherwise it is \mathbf{F}
3. the truth values for $\forall x p(x)$ has value \mathbf{T} if $p(x)$ has value \mathbf{T} for every assignment to x of an entity in the domain D; otherwise it has value F
4. the truth values for $\exists x p(x)$ has value \mathbf{T} if $p(x)$ has value \mathbf{T} for at least one assignment to x of an entity in the domain D; otherwise it has value \mathbf{F}
5. the operator precedence is as follows $\neg,=, \wedge, \vee, \Rightarrow, \Leftrightarrow$
6. the quantifiers have precedence over the operators
7. parentheses change the order of the precedence

Terms

Terms

1. Variables. Any variable is a term.
2. Functions. Any expression $f\left(t_{1}, \ldots, t_{n}\right)$ of n arguments is a term where each argument t is a term and f is a function symbol of valence n In particular, symbols denoting individual constants are 0 -ary function symbols, and are thus terms.

Only expressions which can be obtained
by finitely many applications of rules 1 and 2 are terms.
no expression involving a predicate symbol is a term.

Formulas

Formulas (wffs)

Predicate symbols. If P is an n-ary predicate symbol and t_{1}, \ldots, t_{n} are terms then $\mathrm{P}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right)$ is a formula.

Equality. If the equality symbol is considered part of logic, and t_{1} and t_{2} are terms, then $\mathrm{t}_{1}=\mathrm{t}_{2}$ is a formula.

Negation. If φ is a formula, then $\neg \varphi$ is a formula.
Binary connectives. If φ and ψ are formulas, then $(\varphi \rightarrow \psi)$ is a formula.
Similar rules apply to other binary logical connectives.
Quantifiers. If φ is a formula and x is a variable, then $\forall \mathrm{x} \varphi$ (for all x , holds) and $\exists x \varphi$ (there exists \times such that φ) are formulas.

Only expressions which can be obtained by finitely many applications of rules $1-5$ are formulas.
The formulas obtained from the first two rules are said to be atomic formulas.

Atoms and Compound Formulas

a formula that contains no logical connectives
a formula that has no strict subformulas

Atoms:

the simplest well-formed formulas of the logic.

Compound formulas :

formed by combining the atomic formulas using the logical connectives.

Atomic Formula

for propositional logic
the atomic formulas are the propositional variables
for predicate logic
the atoms are predicate symbols together with their arguments, each argument being a term.

In model theory
atomic formula are merely strings of symbols with a given signature which may or may not be satisfiable with respect to a given model

Formulas and Sentences

An formula

- A atomic formula
- The operator \neg followed by a formula
- Two formulas separated by $\Lambda, \vee, \Rightarrow, \Leftrightarrow$
- A quantifier following by a variable followed by a formula

A sentence

- A formula with no free variables

$\forall x \operatorname{love}(x, y)$	$:$ free variable y	: not a sentence
$\forall x \operatorname{tall}(x)$: no free variable	: a sentence

Finding the truth value

Find the truth values of all sentences

1. $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$
2. = symbol
3. $\forall x p(x)$
4. $\exists x p(x)$
5. the operator precedence is as follows $\neg,=, \wedge, \vee, \Rightarrow, \Leftrightarrow$

6 . the quantifiers (\forall, \exists) have precedence over the operators
7. parentheses change the order of the precedence

Truth values of sentences

Propositional Logic

	A	B	
Interpretation I_{1}	T	T	
Interpretation I_{2}	T	F	
Interpretation I_{3}	F	T	
Interpretation I_{4}	F	F	

First Order Logic

	P1()	P2()	S1	S2
Interpretation I_{1}	T	T		
Interpretation I_{2}	T	F		
Interpretation I_{3}	F	T		
Interpretation I_{4}	F	F		

1. $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$
2. = symbol
3. $\forall x p(x)$
4. $\exists x p(x)$
5. operator precedence
6. quantifiers (\forall, \exists) high recedence
7. parentheses change the order

An formula

- A atomic formula
- The operator \neg followed by a formula
- Two formulas separated by Λ, V, $\Rightarrow, \Leftrightarrow$
- A quantifier following by a variable followed by a formula

A sentence

- A formula with no free variables
First Order Logic (3A) 23

Sentence Examples (1)

Signature

Constant Symbols = \{Socrates, Plato, Zeus, Fido $\}$
Predicate Symbols = \{human, mortal, legs $\}$ all arity one

Model

D: the set of these four particular individuals

Interpretation

(a) a different individual is assigned to each of the constant symbols
(b) the truth value assignment
human(Socrates) $=\mathrm{T}$, human(Plato) $=\mathrm{T}$, human(Zeus) $=\mathrm{F}$, human(Fido) $=\mathrm{F}$
mortal(Socrates) $=$ T, mortal(Plato) $=\mathrm{T}$, mortal(Zeus) $=$ F, mortal(Fido) $=\mathrm{T}$
legs(Socrates)=T, legs(Plato)=T, legs(Zeus)=T, legs(Fido)=T

Sentence Examples (2)

Sentence 1: human(Zeus) \wedge human(Fido) vhuman(Socrates) $=T$
Sentence 2: human(Zeus) \wedge (human(Fido) v human(Socrates)) $=F$
Sentence 3: $\forall x$ human $(x)=F$
human(Zeus) $=F$, human(Fido) $=F$
Sentence 4: $\forall x$ mortal $(x)=F$
mortal(Zeus)=F
Sentence 5: $\forall x \operatorname{legs}(x)=T$
legs(Socrates) $=\mathrm{T}$, legs(Plato) $=\mathrm{T}$, legs(Zeus) $=\mathrm{T}$, legs(Fido)=T
Sentence 6: $\exists x$ human $(x)=T$
human(Socrates) $=T$, human(Plato) $=T$

Sentence 7: $\forall x$ (human $(x) \Rightarrow \operatorname{mortal}(x))=T$

Sentence Examples (3)

Sentence 7: $\forall x(\operatorname{human}(x) \Rightarrow \operatorname{mortal}(x))=T$
human(Socrates) $=\mathrm{T}$, mortal(Socrates) $=\mathrm{T}$,
human(Plato) $=\mathrm{T}, \quad$ mortal(Plato) $=\mathrm{T}$,
human(Zeus)=F, mortal(Zeus)=F,
human(Fido)=F
mortal(Fido) $=\mathbf{T}$
$\mathrm{T} \Rightarrow \mathrm{T}: \mathrm{T}$
$\mathrm{T} \Rightarrow \mathrm{T}: \mathrm{T}$
$F \Rightarrow F: T$
$\mathrm{F} \Rightarrow \mathrm{T}: \mathrm{T}$

References

[1] en.wikipedia.org
[2] en.wiktionary.org
[3] U. Endriss, "Lecture Notes : Introduction to Prolog Programming"
[4] http://www.learnprolognow.org/ Learn Prolog Now!
[5] http://www.csupomona.edu/~jrfisher/www/prolog_tutorial
[6] www.cse.unsw.edu.au/~billw/cs9414/notes/prolog/intro.html
[7] www.cse.unsw.edu.au/~billw/dictionaries/prolog/negation.html
[8] http://ilppp.cs.lth.se/, P. Nugues,` An Intro to Lang Processing with Perl and Prolog

