
Young Won Lim
9/10/24

Packages (1A)

Young Won Lim
9/10/24

 Copyright (c) 2024 - 2015 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Packages 3 Young Won Lim
9/10/24

Modules and Packages

A module in Python is a single file
that contains Python code in the form of
functions, executable statements, variables, and classes.

A module acts as a self-contained unit of code
that can be imported and used in other programs or modules.

A package, on the other hand, is
a collection of modules organized in a directory.

Packages allow us to group multiple related modules together
under a common namespace,
making it easier to organize and structure our code base.

https://www.sitepoint.com/python-modules-packages/

Packages 4 Young Won Lim
9/10/24

Working with Modules

Modules can be imported and used
in other programs, modules, and packages.

They’re very beneficial in an application,
since they break down the application function
into smaller, manageable, and logical units.

We can put all the code in one file,
but then the code very quickly becomes unmaintainable and unreadable.

By using modules, we can break down the code
into units that are more manageable.

Breaking the code down into those modules
promotes organization, reusability, and maintainability.

https://www.sitepoint.com/python-modules-packages/

Packages 5 Young Won Lim
9/10/24

Creating a simple module

have a number of related functions, variables, and classes:
we could put them in one module, and give the module any name we want

To create a module in Python, open up an IDE or text editor,
create a file, and give it a descriptive name and a .py extension.

For this example, let’s call it sample.py and enter in the following code:

create a variable in the module
sample_variable = "This is a string variable in the sample.py module"

A function in the module
def say_hello(name):
 return f"Hello, {name} welcome to this simple module."

This is another function in the module
def add(a, b):
 return f"The sum of {a} + {b} is = {a+b}"

print(sample_variable)
print(say_hello("kabaki"))
print(add(2, 3))

https://www.sitepoint.com/python-modules-packages/

Packages 6 Young Won Lim
9/10/24

Creating a simple module

have a number of related functions, variables, and classes:
we could put them in one module, and give the module any name we want

To create a module in Python, open up an IDE or text editor,
create a file, and give it a descriptive name and a .py extension.

For this example, let’s call it sample.py and enter in the following code:

create a variable in the module
sample_variable = "This is a string variable in the sample.py module"

A function in the module
def say_hello(name):
 return f"Hello, {name} welcome to this simple module."

This is another function in the module
def add(a, b):
 return f"The sum of {a} + {b} is = {a+b}"

print(sample_variable)
print(say_hello("aaa"))
print(add(2, 3))

https://www.sitepoint.com/python-modules-packages/

Packages 7 Young Won Lim
9/10/24

Creating a simple module

The code above defines a module named sample.py.

It contains a variable named sample_variable
whose value is the string
"This is a string variable in the sample.py module".

This module also contains two function definitions.

When called, the say_hello() function takes in a name parameter,
and it returns a welcome message if we pass a name to it.

The add() function returns the sum of two numbers
that have been passed to it.

https://www.sitepoint.com/python-modules-packages/

Packages 8 Young Won Lim
9/10/24

Creating a simple module

To run

python sample.py

python3 sample.py

This will return the following output:

This is a string variable in the sample.py module
Hello, aaa welcome to this simple module.
The sum of 2 + 3 is = 5

For one-off module usage, we can run it as a standalone,
but most modules are made to be used in other modules
or other parts of a Python program.

So to use variables, functions, and classes
from one module in another module
we have to import the module.

https://www.sitepoint.com/python-modules-packages/

Packages 9 Young Won Lim
9/10/24

Using the import statement

We can use the import statement
to make the contents of one module available
for use in another module.

Consider our sample.py from above:

to use its contents in another module, we just import it:

another_module.py

import sample

print(sample.sample_variable)
print(sample.say_hello(“John”))
print(sample.add(2, 3))

The code above shows how to import the functions
from the sample.py module,
making them available for use in the another_module.py.

Note that, when we import a module,
we don’t include the .py extension;

Python automatically knows we’re importing a module.

https://www.sitepoint.com/python-modules-packages/

Packages 10 Young Won Lim
9/10/24

Using the from statement

We can also use the from keyword to import specific functions or variables. Say a module has a large
number of functions and variables defined in it and we don’t want to use all of them. We can specify the
functions or variables we want to use, using the from keyword:

another_module.py

from sample import add

print(add(10, 4))

The code above shows that we’ve specifically imported the add() function from the sample module.

Another benefit of using the from keyword is that we’ll run the imported function without namespacing it
or prefixing it with the name of its parent module. Instead, we’ll use the function like we’ve defined it in
the file where we’re using it. This leads to more concise and readable code.

https://www.sitepoint.com/python-modules-packages/

Packages 11 Young Won Lim
9/10/24

Using the as statement (1)

We can use as to provide an alias or an alternate name for the module.

At times, we may define module names that are quite long or unreadable. Python provides a way of
giving the module imports an alternate or alias, which we can use to refer to them in the modules we’re
importing them into. To do this, we’ll use the as keyword:

another_module.py

import sample as sp

result = sp.add(5, 5)
print(result)
print(sp.say_hello("Jason"))

This code shows an import of the sample module, where the module is being given an alternate name
sp. So using sp is just the same as calling sample. Therefore, using the alias, we have access to the
variables and functions, in the same way we could if we were using the original name.

https://www.sitepoint.com/python-modules-packages/

Packages 12 Young Won Lim
9/10/24

Using the as statement (2)

Using those three methods, we’re able to use the variables or functions from one module in another
module, enhancing the readability of our application where we don’t need to put the code in one file.

While naming our modules, it’s good practice to use lowercase letters and separate words with
underscores. For instance, if we have a module for handling database connections, we might name it
database_connection.py. To avoid naming conflicts, try to choose descriptive and unique names for
modules. If a module name might cause a name clash with a Python built-in keyword or module from a
third-party library, consider using a different name or adding a prefix that’s relevant to the project. Also,
remember that names are case-sensitive in Python, so make sure to use the correct module name
when importing.

Overall, using modules lets us create and organize our code in a readable and maintainable way. And
this is very useful — whether we’re working on a small script or a large application. Later, we’ll look at
some common Python standard library modules.

https://www.sitepoint.com/python-modules-packages/

Packages 13 Young Won Lim
9/10/24

Package

A package in Python is a way of organizing related modules into a directory. This provides a better way
of organizing code, enabling us to group modules that serve a common purpose or are part of the same
component.

Packages are particularly beneficial when structuring larger projects or libraries. For instance, consider
the case of a web application where we have code for different database models, views, and utilities.

It would make a lot of sense if we created a models package with different modules for the different
models in an application. Say our web app is a blogging application: possible models could be a users
model and a posts model; we would then create a module for user management, and a module for
posts management, and then put them in the models package.

It’s important to reiterate at this point that modules are individual files containing Python code: they help
put related functions, classes, and variables within a single file. In contrast, packages are directories
that contain multiple modules or subpackages. They provide a higher level of organization for our code,
by grouping related modules and enabling us to create more structured and maintainable projects.

https://www.sitepoint.com/python-modules-packages/

Packages 14 Young Won Lim
9/10/24

Building and managing packages

While packages organize related code modules in one directory, just putting the modules in a directory
doesn’t make it a package. For Python to identify a directory as a package or a subpackage, the
directory must contain a special file named __init__.py.

This file notifies Python that the directory containing it should be treated as a package or a subpackage.
This file could be empty, and most of the time it is, but it can also contain initialization code, and it plays
a vital role in Python’s package structure and import mechanisms. So using __init__.py tells Python that
we are intentionally creating a package, thereby helping it differentiate between a package and an
ordinary directory.

Packages can have a hierarchical structure, meaning we can create subpackages within our packages
to further organize our code. This enables finer and more controlled separation of components and
functionality. Consider the following example:

my_package/
├── __init__.py
├── module1.py
└── subpackage/
 ├── __init__.py
 ├── submodule1.py
 └── submodule2.py

This diagram shows my_package is the main package, and subpackage is a subpackage within it. Both
directories have an __init__.py file. Using this kind of structure helps us organize our code into a
meaningful hierarchy.

https://www.sitepoint.com/python-modules-packages/

Packages 15 Young Won Lim
9/10/24

Creating packages and sub-packages (1)

To create a package, we first create a directory that’s going to contain our modules. Then we create an
__init__.py file. Then we create our modules in it, along with any subpackages.

Say we’re building a calculator application: let’s create a package for various calculations, so create a
directory in our terminal or our IDE and name it calculator.

In the directory, create the __init__.py file, then create some modules. Let’s create three modules,
add.py, subtract.py, and multiply.py. In the end, we’ll have a directory structure similar to this:

calculator/
├── __init__.py
├── add.py
├── subtract.py
└── multiply.py

https://www.sitepoint.com/python-modules-packages/

Packages 16 Young Won Lim
9/10/24

Creating packages and sub-packages (2)

Let’s put some samples in those files. Open the add.py module and put in the following code:

add.py

def add(a, b):
 """
 Adds two numbers and returns the result.

 :param a: First number.
 :param b: Second number.
 :return: Sum of a and b.
 """
 return a + b

This creates a module for addition, separating it from other calculations. Let’s create one more module
for subtraction. Open the subtract.py file and put the following code in it:

subtract.py

def subtract(a, b):
 """
 Subtracts two numbers and returns the result.

 :param a: First number.
 :param b: Second number.
 :return: Difference of a and b.
 """
 return a - b

So in our application, if we wish to take advantage of the calculator modules, we’ll just import the
package. There are different ways to import from a package, so let’s look at them in the next section.

https://www.sitepoint.com/python-modules-packages/

Packages 17 Young Won Lim
9/10/24

Importing from packages - absolute import

Absolute imports are used to directly import modules or subpackages from the top-level package,
where we specify the full path to the module or package we want to import.

Here’s an example of importing the add module from the calculator package:

calculate.py

from calculator.add import add

result = add(5, 9)

print(result)

The above example shows an external module — calculate.py — that imports the add() function from
the add module using an absolute import by specifying the absolute path to the function.

https://www.sitepoint.com/python-modules-packages/

Packages 18 Young Won Lim
9/10/24

Importing from packages - relative import

Relative imports are used to import modules or packages relative to the current module’s position in the
package hierarchy. Relative imports are specified using dots (.) to indicate the level of relative
positioning.

In order to demonstrate relative imports, let’s create a subpackage in the calculator package, call the
subpackage multiply, then move the multiply.py module into that subpackage, so that we’ll have an
updated package structure like this:

calculator/
├── __init__.py
├── add.py
├── subtract.py
└── multiply/
 ├── __init__.py
 └── multiply.py

With this setup, we can now use relative imports to access the multiply module from other modules
within the calculator package or its subpackages. For instance, if we had a module inside the calculator
package that needs to import the multiply module, we could use the code below:

from .multiply import multiply

result = multiply(5, 9)
print(result)

Overall, relative imports are particularly useful for imports within a package and subpackage structure.
https://www.sitepoint.com/python-modules-packages/

Packages 19 Young Won Lim
9/10/24

Package (1)

modules are
files containing Python statements and definitions,
like function and class definitions.

to bundle multiple modules together,
create a package.

a package is
basically a directory
with several Python files (modules)
and a special file __init__.py

inside of the Python path,
every directory contains __init__.py,
will be treated as a package by Python.

https://python-course.eu/python-tutorial/packages.php

Packages 20 Young Won Lim
9/10/24

Submodules in a package

packages are a way of
structuring Python’s module namespace
by using "dotted module names".

A.B stands for
a submodule named B
in a package named A.

two different packages like P1 and P2
can both have modules with the same name,
let's say A, for example.

The submodule A of the package P1 and
the submodule A of the package P2 can be totally different.

P1.A
P2.A

A package is imported like a "normal" module.

https://python-course.eu/python-tutorial/packages.php

P1

A.py__init__.py

P2

A.py__init__.py

Packages 21 Young Won Lim
9/10/24

Creating a package

to create a package, we need a directory.

the name of this directory will be
the name of the package,

assume we want to create "simple_package" package

must create directory "simple_package"
and this directory needs to contain the "__init__.py" file

this file can be empty, or
can contain valid Python code.

this code will be executed
when a package is imported,

so it can be used to initialize a package,

e.g. to make sure that
some other modules are imported or
some values set.

https://python-course.eu/python-tutorial/packages.php

simple_package

__init__.py

Packages 22 Young Won Lim
9/10/24

Examples of creating a package (1)

put all of the Python files which will be the submodules
into the directory for a package.

create two simple files a.py and b.py

a.py: submodule a

def bar():
 print("Hello, function 'bar' from module 'a' calling")

b.py: submodule b

def foo():
 print("Hello, function 'foo' from module 'b' calling")

an empty file with the name __init__.py
inside of simple_package directory

__init__.py:

empty file

https://python-course.eu/python-tutorial/packages.php

simple_package

a.py b.py

__init__.py

Packages 23 Young Won Lim
9/10/24

Examples of creating a package (2)

import simple_package from the interactive Python shell,

assuming that the directory simple_package is

either in the directory from which you call the shell or

that it is contained in the search path or

environment variable "PYTHONPATH" (from your operating system):

https://python-course.eu/python-tutorial/packages.php

simple_package

a.py b.py

__init__.py

Packages 24 Young Won Lim
9/10/24

Examples of creating a package (3)

import simple_package
simple_package/a

NameError Traceback (most recent call last)
<ipython-input-3-347df8a711cc> in <module>
----> 1 simple_package/a
NameError: name 'a' is not defined

simple_package/b

NameError Traceback (most recent call last)
<ipython-input-4-e71d2904d2bd> in <module>
----> 1 simple_package/b
NameError: name 'b' is not defined

https://python-course.eu/python-tutorial/packages.php

simple_package

a.py b.py

__init__.py

Packages 25 Young Won Lim
9/10/24

Examples of creating a package (4)

the package simple_package has been loaded
but neither the module "a" nor the module "b" has been loaded

can't access neither "a" nor "b"
by solely importing simple_package.

must import the modules a and b as follows

from simple_package import a, b

a.bar()
b.foo()

Hello, function 'bar' from module 'a' calling
Hello, function 'foo' from module 'b' calling

https://python-course.eu/python-tutorial/packages.php

simple_package

a.py b.py

__init__.py

Packages 26 Young Won Lim
9/10/24

Examples of creating a package (5)

to automatically load these modules.

add the following lines to the file __init__.py:

import simple_package.a
import simple_package.b

Then

import simple_package
simple_package.a.bar()
simple_package.b.foo()

Hello, function 'bar' from module 'a' calling
Hello, function 'foo' from module 'b' calling

https://python-course.eu/python-tutorial/packages.php

simple_package

a.py b.py

__init__.py

Packages 27 Young Won Lim
9/10/24

sound

Package Examples (1)

sound
|-- effects
| |-- __init__.py
| |-- echo.py
| |-- reverse.py
| `-- surround.py
|-- filters
| |-- __init__.py
| |-- equalizer.py
| |-- karaoke.py
| `-- vocoder.py
|-- formats
| |-- __init__.py
| |-- aiffread.py
| |-- aiffwrite.py
| |-- auread.py
| |-- auwrite.py
| |-- wavread.py
| `-- wavwrite.py
`-- __init__.py

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

Packages 28 Young Won Lim
9/10/24

sound1

Package Examples sound1

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

import sound1
print(sound1) … OK
print(sound1.effects) … Error

import sound1.effects
print(sound1.effects) … OK

Packages 29 Young Won Lim
9/10/24

sound2

Package Examples sound2

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

import sound2
print(sound2) … OK
print(sound2.effects) … OK

import sound2.effects

Packages 30 Young Won Lim
9/10/24

sound3

Package Examples sound3

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

import sound3
print(sound3) … OK
print(sound3.effects) … OK

from . import effects

Packages 31 Young Won Lim
9/10/24

sound4

Package Examples sound4

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

import sound4
print(sound4) … OK
print(sound4.effects) … OK
print(sound4.formats)… OK

from . import effects

from .. import formats

Packages 32 Young Won Lim
9/10/24

sound5

Package Examples sound5

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

import sound5
print(sound5) … OK
print(sound5.effects) … OK
print(sound5.formats)… OK
sound5.filters.karaoke.func1()… OK

from . import effects

from .. import formats

from ..filters import karaoke

Packages 33 Young Won Lim
9/10/24

sound6

Package Examples sound6

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

foobar.py empty file

from sound6 import *
sound6 package is getting imported!

for mod in ['foobar', 'effects', 'filters', 'formats']:
 print(mod, mod in dir())

foobar False
effects False
filters False
formats False

Packages 34 Young Won Lim
9/10/24

sound7

Package Examples sound7

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects

__init__.py

echo.py
reverse.py
surround.py

formats

__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

from sound7 import *
sound7 package is getting imported!

for mod in ['foobar', 'effects', 'filters', 'formats']:
 print(mod, mod in dir())

foobar True
effects True
filters True
formats True

 __all__ = ["effects", "filters", "formats", "foobar"]

foobar.py empty file

sound6 package
effects package
filters package
formats package
foobar module

Packages 35 Young Won Lim
9/10/24

sound7

Package Examples sound8

https://python-course.eu/python-tutorial/packages.php

filters

__init__.py

equalizer.py
karaoke.py
vocoder.py

effects
__init__.py

echo.py
reverse.py
surround.py

formats
__init__.py

aiffread.py
aifwrite.py
auread.py

aurwrite.py
wavred.py
wavwrite.py

__init__.py

from sound8 import *
sound8 package is getting imported!

from sound8.effects import *
xxx package is getting imported!

from sound8.filters import *
xxx package is getting imported!

from sound8.formats import *
xxx package is getting imported!

 __all__ = ["echo", "reverse", "surround"]

__all__ = ["aiffread", "aifwrite", "auread",
 "aurwrite", "wavred", "wavwrite"]

__all__ = ["equalizer", "karaoke", "vocoder", "__init__"]

foobar.py empty file

 __all__ = ["effects", "filters", "formats", "foobar"]

Packages 36 Young Won Lim
9/10/24

Package sound1 (1)

__init__.py
print("sound1 package is getting imported!")

effects/__init__.py
print("effects package is getting imported!")

effects/echo.py
def func1():
 print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
 print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
 print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")

formats/aiffread.py
def func1():
 print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
 print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
 print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
 print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
 print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
 print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
 print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
 print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
 print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

sound
|-- effects
|-- filters
|-- formats
|-- __init__.py

If we import the package sound1
by using the statement import sound1,
Only the package sound1 is imported
but none of the subpackages
will be imported
effects, filters and formats

because the file __init__.py
doesn't contain any code
for importing subpackages:

import sound1
print(sound1) … OK
print(sound1.effects) … Error

Packages 37 Young Won Lim
9/10/24

Package sound1 (2)

import sound1
print(sound1)
print(sound1.effects)

OUTPUT:

<module 'sound1' from '/data/Dropbox (Bodenseo)/
Bodenseo Team Folder/melisa/notebooks_en/
sound1/__init__.py'>

AttributeError Traceback (most recent call last)
<ipython-input-2-0b6d7fed3b24> in <module>
 3 print(sound1)
 4
----> 5 print(sound1.effects)
AttributeError: module 'sound1' has no attribute 'effects'

https://python-course.eu/python-tutorial/packages.php

If you also want to use the package effects,
you have to import it explicitly with import sound.effects:

import sound1.effects
print(sound1.effects)

<module 'sound1.effects' from '/data/Dropbox (Bodenseo)/
Bodenseo Team Folder/melisa/notebooks_en/
sound1/effects/__init__.py'>

It is possible to have the submodule importing done automatically
when importing the sound1 module.

We will change now to sound2 to demonstrate how to do this.

We use the same files as in sound1,
but we will add the code line import sound2.effects
into the file __init__.py of the directory sound2.

"""An empty sound package
This is the sound package, providing hardly anything!"""
import sound2.effects
print("sound2.effects package is getting imported!")
)

 print(sound1)

 print(sound1.effects)

Packages 38 Young Won Lim
9/10/24

Package sound2

__init__.py
print("sound2 package is getting imported!")
import sound2.effects

effects/__init__.py
print("effects package is getting imported!")

effects/echo.py
def func1():
 print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
 print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
 print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")

formats/aiffread.py
def func1():
 print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
 print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
 print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
 print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
 print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
 print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
 print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
 print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
 print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

import sound2.effects
in __init__.py of the package sound2

when the package sound2 is imported,
the subpackage effects will also
be automatically loaded:

import sound2
sound2 package is getting imported!
effects package is getting imported!

sound
|-- effects
|-- filters
|-- formats
|-- __init__.py

Packages 39 Young Won Lim
9/10/24

Package sound3

__init__.py
print("sound3 package is getting imported!")
from . import effects

effects/__init__.py
print("effects package is getting imported!")

effects/echo.py
def func1():
 print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
 print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
 print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")

formats/aiffread.py
def func1():
 print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
 print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
 print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
 print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
 print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
 print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
 print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
 print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
 print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

Instead of using an absolute path we
could have imported the effects package
relative to the sound2 package.

import sound2.effects # absolute path

from . import effects # relative path

import sound3
sound3 package is getting imported!
effects package is getting imported!

sound
|-- effects
|-- filters
|-- formats
|-- __init__.py

Packages 40 Young Won Lim
9/10/24

Package sound4

__init__.py
print("sound4 package is getting imported!")
from . import effects

effects/__init__.py
print("effects package is getting imported!")
from .. import formats

effects/__init__.py
print("effects package is getting imported!")

effects/echo.py
def func1():
 print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
 print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
 print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")

formats/aiffread.py
def func1():
 print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
 print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
 print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
 print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
 print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
 print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
 print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
 print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
 print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

import sound4
sound4 package is getting imported!
effects package is getting imported!
formats package is getting imported!

in the __init__.py file of sound4 directory

from . import effects

in the __init__.py file of effects directory

from .. import formats

sound
|-- effects
|-- filters
|-- formats
|-- __init__.py

Packages 41 Young Won Lim
9/10/24

Package sound5

__init__.py
print("sound5 package is getting imported!")
from . import effects

effects/__init__.py
print("effects package is getting imported!")
from .. import formats

effects/echo.py
def func1():
 print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
 print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
 print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")
from ..filters import karaoke

formats/aiffread.py
def func1():
 print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
 print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
 print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
 print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
 print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
 print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
 print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
 print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
 print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

sound
|-- effects
|-- filters
|-- formats
|-- __init__.py

import karaoke module
from filters package
when we import the effects package.

from ..filters import karaoke
into the __init__.py file of formats directory

can access the functions of karaoke :

sound5.filters.karaoke.func1()

Function func1 has been called!

Packages 42 Young Won Lim
9/10/24

Package sound6 (1)

__init__.py
print("sound5 package is getting imported!")

foobar.py
empty file

effects/__init__.py
print("effects package is getting imported!")

effects/echo.py
def func1():
 print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
 print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
 print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")

formats/aiffread.py
def func1():
 print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
 print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
 print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
 print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
 print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
 print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
 print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
 print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
 print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

sound
|-- effects
|-- filters
|-- formats
|-- __init__.py
|-- foobar.py

from sound6 import *
sound6 package is getting imported!

for mod in
 ['foobar', 'effects', 'filters', 'formats']:
 print(mod, mod in dir())

foobar False
effects False
filters False
formats False

Packages 43 Young Won Lim
9/10/24

Package sound6 (2)

add a module (file) foobar (filename: foobar.py)
to the sound directory.

want to import all the submodules and subpackages
of the package sound6.

from sound6 import *

sound6 package is getting imported!

Yet, if we check with the dir function, we see that
neither the module foobar nor the subpackages
effects, filters and formats have been imported:

for mod in ['foobar', 'effects', 'filters', 'formats']:
 print(mod, mod in dir())

foobar False
effects False
filters False
formats False

https://python-course.eu/python-tutorial/packages.php

sound7
|-- effects
|-- filters
|-- formats
|-- __init__.py
|-- foobar.py

Packages 44 Young Won Lim
9/10/24

Package sound7 (1)

__init__.py
print("sound5 package is getting imported!")
 __all__ = ["formats", "filters", "effects",
 "foobar"]

foobar.py
empty file

effects/__init__.py
print("effects package is getting imported!")

effects/echo.py
def func1():
 print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
 print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
 print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")

formats/aiffread.py
def func1():
 print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
 print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
 print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
 print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
 print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
 print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")

filters/equalizer.py
def func1():
 print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
 print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
 print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

sound7
|-- effects
|-- filters
|-- formats
|-- __init__.py
|-- foobar.py

from sound7 import * … OK

from sound8.effects import * … not OK

Packages 45 Young Won Lim
9/10/24

Package sound7 (2)

explicit index for the subpackages and modules
of a package, which should be imported.

define a list named __all__.
to the __init__.py file of the sound directory.

: the list of module and package names to be imported
when from package import * is encountered.

 __all__ = ["formats", "filters", "effects", "foobar"]

from sound7 import *

sound7 package is getting imported!
formats package is getting imported!
filters package is getting imported!
effects package is getting imported!
foobar module is getting imported

https://python-course.eu/python-tutorial/packages.php

check with dir again:

for mod in ['foobar', 'effects', 'filters', 'formats']:
 print(mod, mod in dir())

foobar True
effects True
filters True
formats True

if we use * in a subpackage effects

from sound.effects import *
sound7 package is getting imported!
effects package is getting imported!

dir()
['__builtins__', '__doc__', '__loader__', '__name__',
'__package__', '__spec__']

Like expected the modules inside of effects
have not been imported automatically.

sound7
|-- effects
|-- filters
|-- formats
|-- __init__.py
|-- foobar.py

Packages 46 Young Won Lim
9/10/24

Package sound8 (1)

__init__.py
print("sound5 package is getting imported!")
 __all__ = ["formats", "filters", "effects",
 "foobar"]

foobar.py
empty file

effects/__init__.py
print("effects package is getting imported!")
 __all__ = ["echo", "surround", "reverse"]

effects/echo.py
def func1():
 print("Function func1 has been called!")
print("Module echo.py has been loaded!")

effects/reverse.py
def func1():
 print("Function func1 has been called!")
print("Module reverse.py has been loaded!")

effects/surround.py
def func1():
 print("Function func1 has been called!")

https://python-course.eu/python-tutorial/packages.php

formats/__init__.py
print("formats package is getting imported!")
__all__ = ["aiffread", "aiffwrite", "auread",
 "auwrite", "wavread", "wavwrite"]

formats/aiffread.py
def func1():
 print("Function func1 has been called!")
print("Module aiffread.py has been loaded!")

formats/aiffwrite.py
def func1():
 print("Function func1 has been called!")
print("Module aiffwrite.py has been loaded!")

formats/auread.py
def func1():
 print("Function func1 has been called!")
print("Module auread.py has been loaded!")

formats/auwrite.py
def func1():
 print("Function func1 has been called!")
print("Module auwrite.py has been loaded!")

formats/wavread.py
def func1():
 print("Function func1 has been called!")
print("Module wavread.py has been loaded!")

formats/wavwrite.py
def func1():
 print("Function func1 has been called!")
print("Module wavwrite.py has been loaded!")

filters/__init__.py
print("filters package is getting imported!")
__all__ = ["equalizer", "__init__", "karaoke",
 "vocoder"]

filters/equalizer.py
def func1():
 print("Function func1 has been called!")
print("Module equalizer.py has been loaded!")

filters/karaoke.py
def func1():
 print("Function func1 has been called!")
print("Module karaoke.py has been loaded!")

filters/vocoder.py
def func1():
 print("Function func1 has been called!")
print("Module vocoder.py has been loaded!")

sound8
|-- effects
|-- filters
|-- formats
|-- __init__.py
|-- foobar.py

from sound8 import * … OK

from sound8.effects import * … OK

from sound8.filters import * … OK

from sound8.formats import * … OK

Packages 47 Young Won Lim
9/10/24

Package sound8 (2)

https://python-course.eu/python-tutorial/packages.php

__all__ list in the __init__ file of each sub-package

__all__ = ["equalizer", "__init__", "karaoke", "vocoder"]
__all__ = ["aiffread", "aiffwrite", "auread", "auwrite",

 "wavread", "wavwrite"]
__all__ = ["echo", "surround", "reverse"]

from sound8 import *

sound8 package is getting imported!
formats package is getting imported!
filters package is getting imported!
effects package is getting imported!
foobar module is getting imported

from sound8.effects import *

Module echo.py has been loaded!
Module surround.py has been loaded!
Module reverse.py has been loaded!

from sound8.filters import *

Module equalizer.py has been loaded!
Module karaoke.py has been loaded!
Module vocoder.py has been loaded!

from sound8.formats import *

Module aiffread.py has been loaded!
Module aiffwrite.py has been loaded!
Module auread.py has been loaded!
Module auwrite.py has been loaded!
Module wavread.py has been loaded!
Module wavwrite.py has been loaded!

Although certain modules are designed
to export only names that follow certain patterns
when you use import , it is still considered bad practice.

The recommended way is to import specific modules
from a package instead of using *

Packages 48 Young Won Lim
9/10/24

Package sound6 (3)

https://python-course.eu/python-tutorial/packages.php

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

