Complex Functions (1C)

Copyright (c) 2013 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Visualizing Functions of a complex variable

$$
z=x+i y \quad f(z)=u(x, y)+i v(u, y)
$$

Complex Differentiable

z-differentiable
complex-differentiable

$$
\frac{d f}{d z}=\lim _{\Delta \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}
$$

z-derivative
complex-derivative

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

the limist exists
when it has the same value for any direction of approaching z_{0}
$f(z)=\bar{z}$ is not complex-differentiable at zero, because the value of $(f(z)-f(0)) /(z-0)$ is different depending on the approaching direction.

- along the real axis, the limit is 1 ,
- along the imaginary axis, the limit is -1 .
- other directions yield yet other limits.

- linear operator
- the product rule
- the quotient rule
- the chain rule

Complex Differentiable (z-differentiable)

$$
\begin{aligned}
f(z) & =\mathfrak{R}(z) \\
\frac{d f}{d z} & =\lim _{\Delta \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z} \\
& =\lim _{\Delta \rightarrow 0} \frac{\Re(z+\Delta z)-\Re(z)}{\Delta z} \\
& =\lim _{\Delta \rightarrow 0} \frac{\mathfrak{R}(\Delta z)}{\Delta z}
\end{aligned}
$$

$$
\begin{aligned}
& f(z)=z^{*} \\
& \begin{aligned}
& \frac{d f}{d z}=\lim _{\Delta \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z} \\
&=\lim _{\Delta \rightarrow 0} \frac{\left(z^{*}+\Delta z^{*}\right)-z^{*}}{\Delta z^{*}} \\
&=\frac{\lim _{\Delta \rightarrow 0} \Delta z^{*}}{\Delta z}=\frac{|a| e^{-i \theta}}{|a| e^{+i \theta}}=e^{-i 2 \theta} \\
& \text { real } \Delta z \quad \frac{d f}{d z}=+1 \\
& \theta=0
\end{aligned} \\
& \begin{array}{l}
\text { imaginary } \Delta z \quad \frac{d f}{d z}=-1 \\
\theta=\pi / 2
\end{array}
\end{aligned}
$$

Depends on an approaching path

continuous everywhere
differentiable nowhere
continuous everywhere
differentiable nowhere

Cauchy-Rieman Equations

Cauchy-Rieman Equations:

The necessary and sufficient condition

The necessary condition
if $f(z)$ is differentiable in a neighborhood of z
(if $d f / d z$ exists)

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

The sufficient condition
conjugate functions:
$u(x, y), v(x, y)$
Re and Im part of a
differentiable function $f(z)$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

$$
\begin{aligned}
& \text { if C-R eq holds } \\
& \text { in a neighborhood of } z=x+i y
\end{aligned}
$$

C-R Eq : the necessary condition

$$
\frac{d f}{d z}=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}
$$

$$
\frac{d f}{d z}=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}
$$

$$
\Delta z=\Delta x+i \cdot 0
$$

$$
\Delta z=0+i \cdot \Delta y
$$

$$
\mathfrak{R}\left(\frac{d f}{d z}\right)=\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x, y)-u(x, y)}{\Delta x}
$$

$$
\mathfrak{R}\left(\frac{d f}{d z}\right)=\lim _{\Delta y \rightarrow 0} \frac{u(x, y+\Delta y)-u(x, y)}{i \Delta y}
$$

$$
\mathfrak{J}\left(\frac{d f}{d z}\right)=\lim _{\Delta x \rightarrow 0} \frac{v(x+\Delta x, y)-v(x, y)}{\Delta x}
$$

$$
\mathfrak{J}\left(\frac{d f}{d z}\right)=\lim _{\Delta x \rightarrow 0} \frac{v(x, y+\Delta y)-v(x, y)}{i \Delta y}
$$

$$
\frac{d f}{d z}=\mathfrak{R}\left(\frac{d f}{d z}\right)+i \cdot \mathfrak{J}\left(\frac{d f}{d z}\right)=\frac{\partial u}{\partial x}+i \cdot \frac{\partial v}{\partial x}
$$

$$
\frac{d f}{d z}=\mathfrak{R}\left(\frac{d f}{d z}\right)+i \cdot \Im\left(\frac{d f}{d z}\right)=-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}
$$

the necessary conditions on $u(x, y)$ and $v(x, y)$ if $f(z)$ is differentiable in a neighborhood of z
if $d f / d z$ exists,
then this C-R equations necessarily hold.

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

C-R Eq : the sufficient condition (1)

$$
\begin{aligned}
& \Delta z=\alpha+i \beta \quad \Delta x=\alpha \quad \Delta y=\beta \\
& f(z+\Delta z)=u(x+\alpha, y+\beta)+i v(x+\alpha, y+\beta) \\
& -f(z)=-u(x, y) \quad-i v(x, y)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d f}{d z} & =\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z} \\
\mathfrak{R}\left(\frac{d f}{d z}\right) & =\lim _{\Delta z \rightarrow 0} \frac{u(x+\alpha, y+\beta)-u(x, y)}{\alpha+i \beta} \\
\mathfrak{J}\left(\frac{d f}{d z}\right) & =\lim _{\Delta z \rightarrow 0} \frac{v(x+\alpha, y+\beta)-v(x, y)}{\alpha+i \beta}
\end{aligned}
$$

$$
\begin{aligned}
& f(z+\Delta z)-f(z) \\
& =[u(x+\alpha, y+\beta)-u(x, y)] \\
& +i[v(x+\alpha, y+\beta)-v(x, y)]
\end{aligned}
$$

$$
\begin{aligned}
& f(z+\Delta z)-f(z)= \\
& \quad=\left[\alpha \frac{\partial u}{\partial x}+\beta \frac{\partial u}{\partial y}+o(\Delta z)\right]+i\left[\alpha \frac{\partial v}{\partial x}+\beta \frac{\partial v}{\partial y}+o(\Delta z)\right] \\
& \quad=\alpha\left[\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right]+\beta\left[\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right]+o(\Delta z)
\end{aligned}
$$

$$
\begin{aligned}
& u(x+\alpha, y+\beta)-u(x, y)=\alpha \frac{\partial u}{\partial x}+\beta \frac{\partial u}{\partial y}+o(\Delta z) \\
& v(x+\alpha, y+\beta)-v(x, y)=\alpha \frac{\partial v}{\partial x}+\beta \frac{\partial v}{\partial y}+o(\Delta z)
\end{aligned}
$$

o(a) : a remainder that goes to zero faster than a (little oh of a)

O(a) : a remainder that goes to zero as fast as a (big Oh of a)

C-R Eq : the sufficient condition (2)

$$
\begin{aligned}
& f(z+\Delta z)-f(z)= \\
& \quad=\alpha\left[\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right]+\beta\left[\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right]+o(\Delta z) \\
& \quad \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \\
& \quad=\alpha\left[\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right]+i \beta\left[\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right]+o(\Delta z) \\
& \quad=[\alpha+i \beta]\left[\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right]+o(\Delta z) \\
& \quad\left[\begin{array}{ll}
\partial x
\end{array}\right] \\
& \frac{d f}{d z}=\lim _{\Delta z \rightarrow 0}\left[\frac{\alpha}{\alpha+\alpha+i \beta}\right]\left[\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right]=\left[\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right]
\end{aligned}
$$

$$
\begin{aligned}
& f(z+\Delta z)-f(z)= \\
& \quad=\alpha\left[\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right]+\beta\left[\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right]+o(\Delta z)
\end{aligned}
$$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

$$
=\alpha\left[\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}\right]+i \beta\left[-i \frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}\right]+o(\Delta z)
$$

$$
=[\alpha+i \beta]\left[\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}\right]+o(\Delta z)
$$

$$
\frac{d f}{d z}=\lim _{\Delta z \rightarrow 0}\left[\frac{\alpha+i \beta}{\alpha+i \beta}\right]\left[\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}\right]=\left[\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}\right]
$$

conjugate functions: $u(x, y), v(x, y)$ Re and Im part of
a differentiable function $f(z)$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

the limit is independent of a path

A Holomorphic Function

a complex-valued function of one or more complex variables that is complex differentiable in a neighborhood of every point in its domain.
from the Greek ǒ λ os (holos) meaning "entire", and $\mu о \rho \varphi \grave{~(m o r p h e ̄) ~ m e a n i n g ~ " f o r m " ~ o r ~ " a p p e a r a n c e " . ~}$

sometimes referred to as regular functions or as conformal maps.

A holomorphic function whose domain is the whole complex plane is called an entire function.

Cauchy's Formula

```
f(z) is The existence of a
Holomorphic
```

The existence of a complex derivative in a neighborhood
infinitely differentiable and equal to its own Taylor series.

Complex Analytic Function

Holomorphic

| holomorphic
 on U | complex differentiable
 at every point z0
 in an open set U |
| :--- | :--- | :--- |
| | not just complex differentiable at zo |
| holomorphic
 at $z 0$ | $=$but complex differentiable everywhere
 within some neighborhood of z0
 in the complex plane. |

$f(z)$ is
 holomorphic

u and v have first partial derivatives with respect to x and y, and satisfy the Cauchy-Riemann equations:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Holomorphic and Analytic

holomorphic functions

```
a complex-valued function of one or more
complex variables that is complex differentiable in a neighborhood of every point in its domain.
```


analytic function

any function (real, complex, or of more general type) that can be written as a convergent power series in a neighborhood of every point in its domain.

The term analytic function is often used interchangeably with "holomorphic function",
a function that is locally given by a convergent power series.
infinitely differentiable

Real \& Complex Analytic Functions

analytic its Taylor series about $x 0$ converges to the function in a neighborhood of every point $x 0$ in its domain.

infinitely differentiable

smooth but not analytic
real function $f(x)=0 \quad(x \leq 0)$

infinitely differentiable, but
Taylor series not equal at $x=0$ and $x>0$
one of the most dramatic differences between real-variable and complex-variable analysis.

This cannot occur with complex differentiable functions
all holomorphic functions are analytic

Complex Holomorphic \& Analytic Functions

a complex-valued function f of a complex variable z :
is said to be holomorphic at a point a
if it is complex differentiable at every point
within some open disk centered at a, and
is said to be analytic at a
if in some open disk centered at a
it can be expanded as a convergent power series
all holomorphic functions are analytic

```
complex
holomorphic
functions
```


complex

 analytic functions
Complex Analytic Functions

$f(z)$ is

Analytic (Holomorphic)
$f(z)$ is differentiable
in a neighborhood of z (if $d f / d z$ exists)
$f(z)$ is differentiable
$\frac{\text { in a neighborhood of } z}{\text { (if } d f / d z \text { exists) }}$

Cauchy's Integration Formula I

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

```
then f(z) can be
```

then f(z) can be
represented by a
represented by a
contour integral

```
contour integral
```

then $f(z)$ is infinitely differentiable in that neighborhood.

Generalized
Cauchy's
Formula

Cauchy's Integral Formula

Cauchy's Integration Formula I

Suppose U is an open subset of the complex plane C,
$f: U \rightarrow C$ is a holomorphic function and
the closed $\operatorname{disk} D=\{z:|z-z 0| \leq r\}$
is completely contained in U.
Let Y be the circle forming the boundary of D.
Then for every a in the interior of D :

$$
f(a)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(z)}{(z-a)} d z
$$

The proof of this formula uses the Cauchy integral theorem and similarly only requires f to be complex differentiable.

Cauchy's Integration Formula II

Since the reciprocal of the denominator of the integrand
in Cauchy's integral formula can be expanded as a power series in the variable ($a-z 0$), it follows that holomorphic functions are analytic.
In particular fis actually infinitely differentiable

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{(z-a)^{n+1}} d z
$$

Cauchy's Integral Theorem

If two different paths connect the same two points, and a function is holomorphic everywhere
"in between" the two paths,
then the two path integrals of the function will be the same.

$$
\oint_{C} f(z) d z=0
$$

The theorem is usually formulated
for closed paths as follows:
let U be an open subset of C which is simply connected,
let $\mathrm{f}: \mathrm{U} \rightarrow \mathrm{C}$ be a holomorphic function, and
let Y be a rectifiable path in U
whose start point is equal to its end point.

Laplace's Equation

$f(z)$ is

Analytic
(Holomorphic)
$f(z)$ is differentiable in a neighborhood of z (if $d f / d z$ exists)

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

$$
\begin{aligned}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} & \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \\
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} v}{\partial x \partial y} & \frac{\partial^{2} u}{\partial y^{2}}=-\frac{\partial^{2} v}{\partial x \partial y}
\end{aligned}
$$

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Harmonic

a harmonic function is
a twice continuously differentiable function $f: U \rightarrow R$ (where U is an open subset of R^{n}) which satisfies Laplace's equation, i.e.

The solutions of Laplace's equation are the harmonic functions,

The general theory of solutions to Laplace's equation is known as potential theory.

Laplace's equation

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}+\cdots \frac{\partial^{2} f}{\partial x_{n}^{2}}=0 \\
& \nabla^{2} f=0
\end{aligned}
$$

the study of oscillations of more general physical objects than strings leads to partial differential equations that are variations of the wave equation.

Harmonic functions then encode the relative amplitudes at different places in the object for each mode of vibration.
fromhttp://math.stackexchange.com/questions/12 3620/why-are-harmonic-functions-called-harmonicfunctions

Poisson's equation

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}+\cdots \frac{\partial^{2} f}{\partial x_{n}^{2}}=g\left(x_{1,}, x_{2}, \cdots, x_{n}\right) \\
& \nabla^{2} f=g
\end{aligned}
$$

Harmonic

Solutions of Laplace's equation are called harmonic functions;
they are all analytic within the domain where the equation is satisfied.

If any two functions are solutions to Laplace's equation (or any linear homogeneous differential equation), their sum (or any linear combination) is also a solution.
the principle of superposition
solutions to complex problems
can be constructed by summing simple solutions

Laplace's Equation on an annulus (inner radius $r=2$ and outer radius $R=4$) with Dirichlet Boundary Conditions:
$u(r=2)=0$ and $u(R=4)=4 \sin \left(5^{*} \theta\right)$

Cauchy-Rieman Equation

$f(z)$ is
Holomorphic

$$
\begin{aligned}
& \begin{array}{l}
u(x, y), v(x, y) \\
\text { continuous and } \\
\text { differentiable and }
\end{array}
\end{aligned} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

$f(z)$ is
Holomorphic
$f(z) \& g(z)$ are Holomorphic
$f(z)$ is
Holomorphic \& real value
$f(z)$ is
Holomorphic
$\&|f(z)|$ const
$f(z)$ is continuous

$c_{1} f(z)+c_{2} g(z)$	are
$f(z) g(z)$	continuous
$f(z) \circ g(z)$	

$f(z)$ is constant
$f(z)$ is constant

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[4] E. Kreyszig, "Advanced Engineering Mathematics"
[5] D. G. Zill, W. S. Wright, "Advanced Engineering Mathematics"
[6] T. J. Cavicchi, "Digital Signal Processing"
[7] F. Waleffe, Math 321 Notes, UW 2012/12/11
[8] J. Nearing, University of Miami
[9] http://scipp.ucsc.edu/~haber/ph116A/ComplexFunBranchTheory.pdf
[10] http://www.math.umn.edu/~olver/pd_/cm.pdf
[11] http://wwwthphys.physics.ox.ac.uk/people/FrancescoHautmann/ComplexVariable/ s1_12_sl3p.pdf

