
Young Won Lim
8/16/18

MonadReader Transformer (12A)

Young Won Lim
8/16/18

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

MonadReader
Transformer (12A) 3 Young Won Lim

8/16/18

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

MonadReader
Transformer (12A) 4 Young Won Lim

8/16/18

MonadReader Transformer

Implementing ReaderThttps://carlo-hamalainen.net/2014/03/05/note-to-self-reader-monad-transformer/
https://github.com/carlohamalainen/playground/blob/master/haskell/transformers/MyOwnReaderT.lhs

https://carlo-hamalainen.net/2014/03/05/note-to-self-reader-monad-transformer/

MonadReader
Transformer (12A) 5 Young Won Lim

8/16/18

sudo apt-get install cabal-install

cabal update

cabal install mtl

ghci -package such-and-such

ghc-pkg list | grep such-and-such.

ghci -hide-package <package> flag on the command line

ghc-pkg hide <package> to hide the package by default

ghc-pkg --user hide <package> home directory packages

https://wiki.haskell.org/Monad_Transformers_Explained

Installing mtl

MonadReader
Transformer (12A) 6 Young Won Lim

8/16/18

Each monad in the mtl is defined in terms of a type class.

Reader is an instance of MonadReader,

ReaderT is also an instance of MonadReader

anything that wraps a MonadReader is

also set up to be a MonadReader

asks and local functions will work without any (manual) lifting.

Other mtl monads behave in a similar way.

https://wiki.haskell.org/Monad_Transformers_Explained

Auto-lifting in mtl MonadReader

Reader Monad (11A) 7 Young Won Lim
8/16/18

class Monad m => MonadReader r m | m -> r where

(ask | reader), local

ask :: m r

ask = reader id

local :: (r -> r) -> m a -> m a

reader :: (r -> a) -> m a

reader f = do

 r <- ask

 return (f r)

asks :: MonadReader r m => (r -> a) -> m a

asks = reader

http://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Reader.html

MonadReader Class Definition

cf)
instance (Monad m) => Monad (ReaderT r m) where

See examples in
Control.Monad.Reader.

Note, the partially applied function
type (->) r is a simple reader monad.

Reader Monad (11A) 8 Young Won Lim
8/16/18

class Monad m => MonadReader r m | m -> r where

(ask | reader), local

ask :: m r -- retrieves the monad environment.

local :: (r -> r) -- the select function to modify the environment.

 -> m a -- reader to run in the modified environment.

 -> m a -- executes a computation in a modified environment.

reader :: (r -> a) -- the selector function to apply to the environment.

 -> m a -- retrieves a function of the current environment.

http://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Reader.html

MonadReader Class Methods

ask :: m r

local :: (r -> r) -> m a -> m a

reader :: (r -> a) -> m a

modify

apply

MonadReader
Transformer (12A) 9 Young Won Lim

8/16/18

import Control.Monad.Reader

liftReaderT :: m a -> ReaderT r m a
liftReaderT m = ReaderT (const m)

eg2 :: ReaderT Int IO String
eg2 = do

 e <- ask :: ReaderT Int IO Int
 liftReaderT $ print $ "in eg2 the env is: " ++ (show e)
 return $ "returned value: " ++ show e

*Main> runReaderT eg2 100
"in eg2 the env is: 100"
"returned value: 100"

https://gist.github.com/davidallsopp/9aaf8568349e6b8643d4

MonadReader Example

MonadReader
Transformer (12A) 10 Young Won Lim

8/16/18

module ReaderMonad where
import Control.Monad.Reader

stuff :: Reader Int String
stuff = do
 s <- ask
 return (show s ++ " green bottles")

main :: IO ()
main = print $ runReader stuff 99

type IntRead = Reader Int

stuff2 :: IntRead String
stuff2 = asks show

-- stuff2 = do asks $ \s -> (show s ++ " green bottles")

https://gist.github.com/davidallsopp/9aaf8568349e6b8643d4

MonadReader Example

MonadReader
Transformer (12A) 11 Young Won Lim

8/16/18

-- what's the point of Reader, since we could just pass

-- the parameters to the stuff function?

-- Reader is used instead of global state, for "constants" etc

-- to avoid polluting every single function with params

-- (which it might only pass on to other functions,

-- and not even use itself)

-- You still have to modify all these functions to use Reader, though

-- Can use 'asks' as well as 'ask' to avoid all the do-block boilerplate

-- and may create an alias for the reader if it's used in lots of places

-- see http://lambdaman.blogspot.co.uk/2007/10/monadreader.html

-- See http://stackoverflow.com/questions/14178889/reader-monad-purpose

https://gist.github.com/davidallsopp/9aaf8568349e6b8643d4

MonadReader Example

MonadReader
Transformer (12A) 12 Young Won Lim

8/16/18

data Reader env a

instance Monad (Reader env) -- Reader is a monad

ask :: Reader env env -- get its environment

runReader :: Reader env a -> env -> a -- to run the monad

https://stackoverflow.com/questions/14178889/what-is-the-purpose-of-the-reader-monad

MonadReader

MonadReader
Transformer (12A) 13 Young Won Lim

8/16/18

data Reader env a

instance Monad (Reader env) -- Reader is a monad

ask :: Reader env env -- get its environment

runReader :: Reader env a -> env -> a -- to run the monad

the reader monad is good for passing (implicit) configuration

information through a computation.

Any time you have a "constant" in a computation

that you need at various points,

but really you would like to be able

to perform the same computation with different values,

then you should use a reader monad.

https://stackoverflow.com/questions/14178889/what-is-the-purpose-of-the-reader-monad

MonadReader Purpose

MonadReader
Transformer (12A) 14 Young Won Lim

8/16/18

pricing an asset can do without any monads.
To deal with multiple currencies, on the fly conversion
between currencies is needed.

type CurrencyDict = Map CurrencyName Dollars
currencyDict :: CurrencyDict

You can then call this dictionary in your code....but that won't work!
The currency dictionary is immutable and so has to be the same
not only for the life of your program, but from the time it gets compiled!

computePrice :: Reader CurrencyDict Dollars
computePrice
 = do currencyDict <- ask
 -- insert computation here

https://stackoverflow.com/questions/14178889/what-is-the-purpose-of-the-reader-monad

MonadReader Purpose

MonadReader
Transformer (12A) 15 Young Won Lim

8/16/18

type CurrencyDict = Map CurrencyName Dollars
currencyDict :: CurrencyDict
currencyDict :: Map CurrencyName Dollars -- Map k e

computePrice :: Reader CurrencyDict Dollars
computePrice
 = do currencyDict <- ask
 -- insert computation here

(Ord k, Read k, Read e) => Read (Map k e)

computePrice :: Reader CurrencyDict Dollars
computePrice :: Reader Map CurrencyName Dollars Dollars

https://stackoverflow.com/questions/14178889/what-is-the-purpose-of-the-reader-monad

MonadReader Purpose

MonadReader
Transformer (12A) 16 Young Won Lim

8/16/18

newtype Reader env a = Reader {runReader :: env -> a}

Reader is just a fancy name for functions!
We have already defined runReader
every Monad is also a Functor:

instance Functor (Reader env) where
 fmap f (Reader g) = Reader $ f . g

instance Monad (Reader env) where
 return x = Reader (_ -> x)
 (Reader f) >>= g = Reader $ \x -> runReader (g (f x)) x

ask = Reader $ \x -> x

local f (Reader g) = Reader $ \x -> runReader g (f x)

https://stackoverflow.com/questions/14178889/what-is-the-purpose-of-the-reader-monad

MonadReader Purpose

MonadReader
Transformer (12A) 17 Young Won Lim

8/16/18

Okay, so the reader monad is just a function.
Why have Reader at all? Good question. Actually, you don't need it!

instance Functor ((->) env) where
 fmap = (.)

instance Monad ((->) env) where
 return = const
 f >>= g = \x -> g (f x) x

These are even simpler. What is more, ask is just id and local
is just function composition in the other order!

https://stackoverflow.com/questions/14178889/what-is-the-purpose-of-the-reader-monad

MonadReader Purpose

MonadReader
Transformer (12A) 18 Young Won Lim

8/16/18

 Expression = a Reader
 Free variables = uses of ask
 Evaluation environment = Reader execution environment.
 Binding constructs = local

https://stackoverflow.com/questions/14178889/what-is-the-purpose-of-the-reader-monad

MonadReader Purpose

MonadReader
Transformer (12A) 19 Young Won Lim

8/16/18

example :: String
example = runReader computation "Hello"
 where
 computation :: Reader String String
 computation = do
 greeting <- ask
 return $ greeting ++ ", Haskell"

main = putStrLn example

 Hello, Haskell

https://passy.svbtle.com/dont-fear-the-reader

MonadReader Purpose

MonadReader
Transformer (12A) 20 Young Won Lim

8/16/18

example1 :: String -> String
example1 context = runReader (computation “Tom”) context
 where
 computation :: String -> Reader String String
 computation name = do
 greeting <- ask
 return $ greeting ++ name

main :: IO ()
main = putStrLn example1 “Hello”

 Hello, Tom

https://passy.svbtle.com/dont-fear-the-reader

MonadReader Purpose

MonadReader
Transformer (12A) 21 Young Won Lim

8/16/18

example2 :: String -> String
example2 context = runReader (greet “James” >== end) context
 where
 greet :: String -> Reader String String
 greet name = do
 greeting <- ask
 return $ greeting ++ “, “ ++ name

 end :: String -> Reader String String
 end input = do
 isHello <- asks (== “Hello”)

 return $ input ++ if isHello then “!” else “.”

main :: IO ()
main = putStrLn example2 “Hello”

 Hello, James

https://passy.svbtle.com/dont-fear-the-reader

MonadReader Purpose

MonadReader
Transformer (12A) 22 Young Won Lim

8/16/18

newtype Reader r a = Reader { runReader :: r -> a }

instance Monad (Reader r) where
 return a = Reader $ _ -> a
 m >>= k = Reader $ \r -> runReader (k $ runReader m r) r

asks :: (r -> a) -> Reader r a
asks f = Reader f

ask :: Reader a a
ask = Reader id

https://passy.svbtle.com/dont-fear-the-reader

MonadReader Purpose

MonadReader
Transformer (12A) 23 Young Won Lim

8/16/18

import Data.Map (Map, (!))
import qualified Data.Map as Map

main = do
 let m0 = Map.empty
 let m1 = Map.insert "k1" 7 m0
 let m = Map.insert "k2" 13 m1
 putStrLn $ "map: " ++ show m

 let v1 = m ! "k1"
 putStrLn $ "v1: " ++ show v1
 putStrLn $ "len: " ++ show (Map.size m)
 let m' = Map.delete "k2" m
 putStrLn $ "map: " ++ show m'
 let prs = Map.lookup "k2" m'
 putStrLn $ "prs: " ++ show prs
 let n = Map.fromList [("foo", 1), ("bar", 2)]
 putStrLn $ "map: " ++ show n

https://lotz84.github.io/haskellbyexample/ex/maps

Data Map (dictionary) Example

$ runhaskell maps.hs

map: fromList [("k1",7),("k2",13)]

v1: 7
len: 2

map: fromList [("k1",7)]

prs: Nothing

map: fromList [("bar",2),("foo",1)]

MonadReader
Transformer (12A) 24 Young Won Lim

8/16/18

 import Prelude hiding (lookup)
 import Data.Map

 employeeDept = fromList([("John","Sales"), ("Bob","IT")])
 deptCountry = fromList([("IT","USA"), ("Sales","France")])
 countryCurrency = fromList([("USA", "Dollar"), ("France", "Euro")])

 employeeCurrency :: String -> Maybe String
 employeeCurrency name = do
 dept <- lookup name employeeDept
 country <- lookup dept deptCountry
 lookup country countryCurrency

 main = do
 putStrLn $ "John's currency: " ++ (show (employeeCurrency "John"))
 putStrLn $ "Pete's currency: " ++ (show (employeeCurrency "Pete"))

 John's currency: Just "Euro"
 Pete's currency: Nothing

https://hackage.haskell.org/package/containers-0.4.2.0/docs/Data-Map.html

Data Map (dictionary) Example

MonadReader
Transformer (12A) 25 Young Won Lim

8/16/18

 type Bindings = Map String Int;

-- Returns True if the "count" variable contains correct bindings size.
isCountCorrect :: Bindings -> Bool
isCountCorrect bindings = runReader calc_isCountCorrect bindings

-- The Reader monad, which implements this complicated check.
calc_isCountCorrect :: Reader Bindings Bool
calc_isCountCorrect = do
 count <- asks (lookupVar "count")
 bindings <- ask
 return (count == (Map.size bindings))

-- The selector function to use with 'asks'.
-- Returns value of the variable with specified name.
lookupVar :: String -> Bindings -> Int
lookupVar name bindings = maybe 0 id (Map.lookup name bindings)

sampleBindings = Map.fromList [("count",3), ("1",1), ("b",2)]

main = do
 putStr $ "Count is correct for bindings " ++ (show sampleBindings) ++ ": ";
 putStrLn $ show (isCountCorrect sampleBindings);https://hackage.haskell.org/package/containers-0.4.2.0/docs/Data-Map.html

Data Map (dictionary) Example

MonadReader
Transformer (12A) 26 Young Won Lim

8/16/18

calculateContentLen :: Reader String Int
calculateContentLen = do
 content <- ask
 return (length content);

-- Calls calculateContentLen after adding a prefix to the Reader content.
calculateModifiedContentLen :: Reader String Int
calculateModifiedContentLen = local ("Prefix " ++) calculateContentLen

main = do
 let s = "12345";
 let modifiedLen = runReader calculateModifiedContentLen s
 let len = runReader calculateContentLen s
 putStrLn $ "Modified 's' length: " ++ (show modifiedLen)
 putStrLn $ "Original 's' length: " ++ (show len)

https://hackage.haskell.org/package/containers-0.4.2.0/docs/Data-Map.html

Data Map (dictionary) Example

MonadReader
Transformer (12A) 27 Young Won Lim

8/16/18

-- The Reader/IO combined monad, where Reader stores a string.
printReaderContent :: ReaderT String IO ()
printReaderContent = do
 content <- ask
 liftIO $ putStrLn ("The Reader Content: " ++ content)

main = do
 runReaderT printReaderContent "Some Content"

https://hackage.haskell.org/package/containers-0.4.2.0/docs/Data-Map.html

Data Map (dictionary) Example

Young Won Lim
8/16/18

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

