Applicative Methods (3B)

Copyright (c) 2016-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice.

The definition of Applicative

```
class (Functor f) => Applicative f where
    pure :: a -> fa
    (<*>) :: f(a -> b) -> fa -> fb
```

$$
\begin{aligned}
& f(a->b):: \text { a function wrapped in } f \\
& f a:: \text { a value wrapped in } f
\end{aligned}
$$

The class has a two methods :
pure brings arbitrary values into the functor
(<*>) takes a function wrapped in a functor f and a value wrapped in a functor f
and returns the result of the application
which is also wrapped in a functor f

The Maybe instance of Applicative

```
instance Applicative Maybe where
```

```
pure = Just
```

pure = Just
(Just f) <*> (Just x) = Just (f x)
(Just f) <*> (Just x) = Just (f x)
<*> _ = Nothing

```
    <*> _ = Nothing
```

pure wraps the value with Just;
(<*>) applies
the function wrapped in Just
to the value wrapped in Just if both exist, and results in Nothing otherwise.
https://en.wikibooks.org/wiki/Haskell/Applicative_functors

An Instance of the Applicative Typeclass

```
class (Functor f) => Applicative f where
    pure :: a -> fa
    (<*>) :: f (a -> b) -> f a -> f b
```

f: Functor, Applicative
instance Applicative Maybe where
pure = Just

Nothing <*> $=$ Nothing
(Just $\underline{\mathbf{f}}$) <*> something $=$ fmap $\underline{\mathbf{f}}$ something
\underline{f} : function in a context

(Functor f) => Applicative f

(Functor f) $=>$ Applicative f

fmap and <*>

a bonus law about the relation between fmap and (<*>):
fmap $\mathbf{f} \mathbf{x}=$ pure $\mathbf{f}<{ }^{*}>\mathbf{x} \quad-$ fmap

Applying a "pure" function with (<*>)
is equivalent to using fmap.
https://en.wikibooks.org/wiki/Haskell/Applicative_functors

Left associative <*>, fmap, and <\$>

g <\$> x <*> $y \ll>z$

```
pure g <*> x <*> y <*> z
```

```
pure g <*> x <*> y <*> z
```

 fmap \(\mathbf{g} \mathbf{x}\) <*> \(\mathbf{y}\) <*> \(\mathbf{z}\)
 fmap \(\mathbf{g} \mathbf{x}\) <*> \(\mathbf{y}\) <*> \(\mathbf{z}\)
 g <\$> X <*> y <*> z
$\mathrm{g}:: \mathbf{f}(\mathrm{a}->\mathrm{b}$-> c -> d)
$x:: f a$
$y:: f b$
$z:: f c$
infix operator <\$>
http://learnyouahaskell.com/functors-applicative-functors-and-monoids

fmap $g x=($ pure $g)<*>x$

pure = f

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Applicatives
 Methods (3B)

fa<*>fg

pure = f

http://learnyouahaskell.com/functors-applicative-functors-and-monoids

Applicatives
 Methods (3B)

Left associative <*> examples

```
ghci> pure (+) <*> Just 3 <*> Just 5
Just }
Just (+3) <*> Just 5
Just }
ghci> pure (+) <*> Just 3 <*> Nothing
Nothing
ghci> pure (+)<*> Nothing <*> Just 5
Nothing
pure (+) <*> Just 3 <*> Just 5
```


Infix Operators <*> vs <\$> - overview

```
h <*> x <*> y
h :: f(a -> b -> c)
x:: fa
y :: fb
```

function
function

```
```

```
g <$> x <*> y
```

```
```

g <\$> x <*> y

```
```

g :: (a -> b -> c)
x::fa
y::fb

```

\section*{Infix Operators <*> vs <\$> - a type view}
```

h <*> x <*> y
h :: f(a -> b -> c)
x:: fa
y :: f b

$$
\begin{aligned}
& \mathrm{h}:: \mathbf{f}(\mathrm{a}->\mathrm{b}->\mathrm{c}) \\
& \mathrm{x}:: \mathbf{f} \mathrm{a} \\
& \mathrm{~h}<*>\mathrm{x}:: \mathbf{f}(\mathrm{b} \mathrm{->c})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{h}:: \mathrm{f}(\mathrm{a}->\mathrm{b}->\mathrm{c}) \\
& \mathrm{x}:: \mathbf{f} \mathrm{a} \\
& \mathrm{~h}<*>\mathrm{x}:: \mathbf{f}(\mathrm{b}->\mathrm{c}) \\
& \mathrm{y}:: \mathbf{f} \mathrm{b} \\
& \mathrm{~h}<*>\mathrm{x} \text { <*> } \mathrm{y}:: \mathrm{f} \mathrm{C}
\end{aligned}
$$

```

\section*{g <\$> \(\mathrm{x}<\) *> y}
```

g :: (a -> b -> c)

```
g :: (a -> b -> c)
x::fa
x::fa
y :: fb
```

y :: fb

```
\[
\begin{aligned}
& \mathrm{g}::(\mathrm{a}->\mathrm{b}->\mathrm{c}) \\
& \mathrm{x}:: \mathbf{f a} \\
& \mathrm{g}<\$>\mathrm{x}:: \mathbf{f}(\mathrm{b}->\mathrm{c}) \\
& \mathrm{y}:: \mathbf{f} \mathrm{b} \\
& \mathrm{~g}<\$>\mathrm{x}<*>\mathrm{y}:: \mathrm{f} \mathrm{c}
\end{aligned}
\]

\section*{Infix Operators <*> vs <\$> - a curried function view}
```

h <*> x <*> y
h :: f(a -> b -> c)
x::fa
y :: fb

```
g <\$> \(x\) <*> \(y\)
g <\$> \(x\) <*> \(y\)
```

g :: (a -> b -> c)

```
g :: (a -> b -> c)
x:: fa
x:: fa
y:: fb
```

y:: fb

```


\section*{Infix Operators <*> vs <\$> examples}
```

h <*> x <*> y
Just (+) <*> Just 3 <*> Just 2
Just (+3) <*> Just 2
Just 5

```
```

g <\$> x <*> y

```
    (+) <\$> Just 3 <*> Just 2
    Just (+3) <*> Just 2
    Just 5


\section*{the minimal complete definition}
```

class (Functor f) => Applicative f where
pure :: a -> fa
(<*>) :: f(a -> b) -> fa -> fb

```
(<\$>) :: (Functor \(f\) ) \(=>(\mathrm{a}->\mathrm{b})->\mathrm{f} \mathrm{a}->\mathrm{f} \mathrm{b}\)
g <\$> \(\mathbf{x}=\) fmap \(\mathbf{g x}\)
the minimal complete definition

Not in the minimal complete definition
g :: a -> b, x :: fa
```

instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
(Just g) <*> something = fmap g something

```

\section*{The Applicative Typeclass}

\section*{Applicative is a superclass of Monad.}
every Monad is also a Functor and an Applicative
fmap, pure, (<*>) can all be used with monads.
a Monad instance
requires Functor and Applicative instances.
defines the types and roles of return and (>>)
fmap : defined in Functors
pure, (<*>): defined in Applicatives
return, (>>) : defined in Monads

\section*{(<\$>) vs (\$)}
(<\$>) infix operator
(<\$>) :: (Functor f) => (a -> b) -> fa -> f b
\(\mathbf{g}<\$>\mathbf{x}=\mathrm{fmap} \mathbf{g} \mathbf{x}\)

The \$ operator is for avoiding parentheses
putStrLn (show (1+1))
putStrLn \$ show (1+1)
putStrLn \$ show \$ \(1+1\) - right associative
(\$) calls the function which is its left-hand argument of \$ on the value which is its right-hand argument of \$

\section*{The Applicative Laws}
\[
\begin{aligned}
& \text { The identity law: pure id <*> v=v } \\
& \text { id :: a -> a v :: fa } \\
& \text { Interchange: } \\
& u:: f(a->b) \quad y:: a
\end{aligned}
\]

Composition: u<*> (v<*>w)=pure (.)<*> u<*>v<*>w w: fa v::f(a->b)u::f(b->c)

Left associative u <*> v <*> w = (u <*> v) <*> w
```

u :: f (c -> b -> a)
v:: fc
u <*> v :: f (b -> a)
w :: fb
u <*> v <*> w = fa

```

\section*{The Identity Law}
```

The identity law
pure id <*> v = v
id :: a -> a
v :: fa

```
pure to inject values into the functor
in a default, featureless way,
so that the result is as close as possible to the plain value.
applying the pure id morphism does nothing, exactly like with the plain id function.

\section*{The Homomorphism Law}

The homomorphism law
pure \(\mathbf{g}\) <*> pure \(\mathbf{x}=\) pure \((\mathbf{g} \mathbf{x})\)
g :: a -> b x :: a
applying a "pure" function to a "pure" value is the same as applying the function to the value in the ordinary way and then using pure on the result. means pure preserves function application.
applying a non-effectful function \(\mathbf{g}\)
to a non-effectful argument \(\mathbf{x}\) in an effectful context pure
is the same as just applying the function \(\mathbf{g}\) to the argument \(\mathbf{x}\) and then injecting the result ( \(\mathbf{f} \mathbf{x}\) ) into the effectual context with pure.

\section*{The Interchange Law}
The interchange law
\(\mathbf{u}\) <*> pure \(\mathbf{y}=\) pure \((\$ \mathbf{y})\) <*> \(\mathbf{u}\)
\(u:: f(a->b) \quad y:: a\)
(\$y) is the function that supplies \(\mathbf{y}\)
as argument to another function
- a higher order function
applying a morphism u to a "pure" value pure y is the same as applying pure \((\$ \mathbf{y})\) to the morphism \(\mathbf{u}\)
when evaluating the application of an effectful function ( \(\mathbf{u}\) ) to a pure argument (pure \(\mathbf{y}\) ), the order doesn't matter - commutative.
```

Just (+3) <*> Just 2
Just (\$ 2) <*> Just (+3)

```
```

Function \$ Argument

```
Function $ Argument
    $ y
    $ y
    (y) as a single argument
```

 (y) as a single argument
    ```
```

u :: f (a -> b)
y :: a
u<*> pure y::fb pure y:: fa
pure (\$ y) <*> u :: flb pure (\$ y) :: f (a)

```

\section*{The Composition Law}

The composition law pure (.) <*> u <*> v<*> w=u <*> (v<*>w) w:: fa v:: f(a->b) u:: f(b->c)
pure (.) composes morphisms similarly to how (.) composes functions:
\[
\begin{array}{ll}
\mathbf{w}:: \mathbf{f} \mathbf{a} & -- \text { value } \\
\mathbf{v}:: \mathbf{f ( a - > ~ b )} & -- \text { func1 } \\
\mathbf{u}: \mathbf{f ( b} \mathbf{~ - >} \mathbf{c}) & -- \text { func2 }
\end{array}
\]
applying the composed mourphism
pure (.) <*> u <*> v to w
gives the same result ( \(\mathbf{u}<*>(\mathbf{v}<*>\mathbf{w})\) )
as applying \(\mathbf{u}\) to the result ( \(\mathbf{v}<*>\mathbf{w}\) )
v<*> w : : f b
u <*> (v <*> w) :: fc
of applying \(\mathbf{v}\) to \(\mathbf{w}\)
it is expressing a sort of associativity property of (<*>).

\section*{The Composition Law and Left Associativity}

The composition law
\[
\text { pure (.) <*> u <*> v <*> w = u <*> (v <*> w }) \text { w :: fa v :: f (a -> b) u :: f }(\mathrm{b}->\mathrm{c})
\]
\begin{tabular}{|c|c|c|c|c|}
\hline & & f ( \(\mathrm{b}->\mathrm{c}\) ) & \multicolumn{2}{|l|}{\(\mathrm{f}(\mathrm{a}->\mathrm{b})\)} \\
\hline pure (.) <*> pure g <*> pure h <*> pure x & ( \(\mathrm{g} \cdot \mathrm{h}\) ) x & pure \(\mathbf{g}\) & pure & \\
\hline ((pure (.) <*> pure g) <*> pure \(\mathbf{h}\) ) <*> pure x & 1 & & & \\
\hline \(=\) pure \(\mathbf{g}\) <*> (pure \(\mathbf{h}\) <*> pure \(\mathbf{x}\) ) & \(g(h x)\) & \[
\begin{aligned}
& \mathbf{u}=\text { pure } \\
& \mathbf{v}=\text { pure } \\
& \mathbf{w}=\text { pure }
\end{aligned}
\] & \[
\begin{aligned}
& b->c) \\
& a->b)
\end{aligned}
\] & \[
\begin{aligned}
& \mathbf{g}::(\mathrm{b}->\mathrm{c}) \\
& \mathbf{h}::(\mathrm{a}->\mathrm{b}) \\
& \mathbf{x}:: \mathrm{a}
\end{aligned}
\] \\
\hline
\end{tabular}

Left associative
\[
\mathbf{u}<*>\mathbf{v} \ll^{*}>\mathbf{w}=(\mathbf{u}<*>v)<*>\mathbf{w}
\]
\[
u:: f(c->b->a) \quad v:: f c \quad w:: f b
\]
```

u :: f (c -> b -> a)
v :: f c
u <*> v :: f (b -> a)
w :: f b
u <*> v <*> w = fa

```
https://en.wikibooks.org/wiki/Haskell/Applicative_functors

\section*{liftA2}
liftA2 :: (a->b -> c) -> fa ->fb \(->\) f \(c\)
lift a binary function ( \(\mathbf{a}-\mathbf{>} \mathbf{b}->\mathbf{c}\) ) to actions.

Some functors support an implementation of liftA2 that is more efficient than the default one.
liftA2 may have an efficient implementation whereas fmap is an expensive operation,
sometimes better to use liftA2 than to use fmap over the structure and then use <*>.
\(\square\)
\[
(\text { pure } \mathbf{g})<*>x<*>y
\]

http://hackage.haskell.org/package/base-4.10.1.0/docs/Control-Applicative.html\#v:liftA2

\section*{Applicatives \\ Methods (3B)}

\section*{liftA2, <*>, fmap, <\$>}


\section*{pure \(\mathbf{g}\) <*> \(\mathbf{x}\) <*> \(\mathbf{y}\) equivalent}

liftA2 \(\mathbf{g x y}\)
```

liftA2 :: (a -> b -> c) -> fa -> f b -> f c
g :: a -> b -> c
x:: fa
y :: fb
liftA2 gxy :: fc

```
pure \(\mathbf{g}\) <*> \(\mathbf{x}\) <*> \(\mathbf{y}\)
g :: a -> b -> c
x:: fa
y :: fb
z: : fc
pure \(\mathbf{g}\) <*> x <*> y :: f c

\section*{liftA2 gxy}

g :: a -> b -> c
(pure \(\mathbf{g}\) <*> \(\mathbf{x}<{ }^{*}>y\)


\section*{Limitations of Functors}
```

($\mathbf{a}-\mathbf{>} \mathbf{b}->\mathbf{c}$) -> ($\mathbf{f} \mathbf{a}-\mathbf{f} \mathbf{b}->\mathbf{f} \mathbf{c}$) - let fmap2 Functor as an extension of fmap
fmap :: (a -> b) -> (f a -> f b)
fmap2 :: Functor f => (a -> b -> c) -> (f a -> f b -> f c)
fmap2 $\mathbf{h} \mathbf{f a} \mathbf{f b}=$ undefined
h :: a -> b->c
fa :: fa
fb :: fb
h :: a -> (b -> c)
fmap h :: fa->f(b->c)
fmap $\mathbf{h} \mathbf{f a}:: \mathbf{f}(\mathbf{b}->\mathbf{c}) \quad$ now $\mathrm{f}(\mathrm{b}->\mathrm{c})$ must be applied to f b

```
fmap gives us a way to apply functions (a -> b) to values (f a) inside a Functor context, but fmap cannot be used to apply a functions \(\mathbf{f}(\mathbf{b}->\mathbf{c})\) which are themselves in a Functor context to values \(\mathbf{f} \mathbf{b}\) in a Functor context.

\section*{pure, fmap, and liftA2}
```

class Functor f => Applicative f where
pure :: a -> fa
(<*>) :: f (a -> b) -> fa -> f b

```
\begin{tabular}{|c|c|c|}
\hline pure & :: a -> fa & - fmap0 \(\rightarrow\) pure \\
\hline fmap & :: (a-> b) -> fa -> f b & - fmap1 \(\rightarrow\) fmap \\
\hline fmap2 & :: (a-> b -> c) -> fa-> fb -> f c & - fmap2 \(\rightarrow\) liftA2 \\
\hline
\end{tabular}
liftA2 :: Applicative \(f=>(a->b->c)->f a->f b->f c\)
liftA2 \(\mathbf{h} \mathbf{f a} \mathbf{f b}=(\mathbf{h}\) `fmap` fa) <*> fb
liftA2 \(\mathbf{h} \mathbf{f a} \mathbf{f b}=\mathbf{h}<\mathbf{\$} \mathbf{f a}\) <*> \(\mathbf{f b}\)
(<\$>) :: Functor f => (a -> b) -> fa-> f b
(<\$>) = fmap
liftA2 :: Applicative f \(=>(a->b->c->d)->f a->f b->f c->f d\)
liftA3 \(h\) fa fb fc \(=((h<\$>f a)<*>f b)<*>f c\)

\section*{liftA2 examples}
liftA2 :: Applicative f => (a->b -> c) -> fa->fb \(->\) f \(c\)
liftA2 (+) (Just 5) (Just 6) = Just 11
liftA2 \(\mathbf{h} \mathbf{f a} \mathbf{f b}=(\mathbf{h}\) `fmap` \(\mathbf{f a}\) ) <*> \(\mathbf{f b}\)
liftA2 \(\mathbf{h} \mathbf{f a} \mathbf{f b}=\mathbf{h}<\$>\mathbf{f a}<*>f b\)
fmap (+) (Just 5) = Just (+5)
(+) <\$> (Just 5) = Just (+5)
<*> :: Applicative f => f (a->b) -> fa -> fb
(Just (+5)) <*> (Just 6) = Just 11
let v1 = 10 (Just (+5))
let v2 = IO (Just 6)
liftA2 (<*>) v1 v2 = IO (Just 11)

\section*{<*> or liftA2 implementations}
liftA2 :: (a -> b -> c) -> fa -> f b -> f c

A minimal complete definition :
either one of the two
```

1) pure and <*>
2) pure and liftA2
```
1) pure \(g<*>x<*>y\)
2) liftA2 \(g x y\)

If it defines both, then they must behave the same as their default definitions:

\section*{\((<*\rangle)=\) liftA2 id}
liftA2 id \(x y=i d<\$>x\) <*> \(y=x<*>y\)
liftA2 id \(x y=x<*>y\)

\begin{tabular}{|c|c|c|c|}
\hline liftA2 \(\mathrm{gxy}=\mathrm{g}<\) \$>x<*>y & \(\mathrm{g}:: \mathrm{a}->\mathrm{b}->\mathrm{c}\) & \(x:: ~ f a\) &  \\
\hline liftA2 g"x y = g" <\$> c** \(^{\text {c }}\) y & g" \(::(\mathrm{b}->\mathrm{c})->\mathrm{b}->\mathrm{c}\) & \(x:: \mathbf{f}(\mathrm{b}->\mathbf{c}\) & \(y: \mathrm{f}^{\text {b }}\) \\
\hline liftA2 id \(x y=\) id < \$> \(x\) <*> \(y=x\) <*> \(y\) &  & \(x:: f(b->c)\) &  \\
\hline
\end{tabular}
\((<*>)=\) liftA2 id

\section*{g" :: (b->c) -> b->c}

g :: a -> b -> c
view the function
as having one input only
g' :: a -> (b -> c
consider the case
when \(\mathbf{a}\) is ( \(\mathbf{b}->\mathbf{c}\) )
id :: (b -> c) -> (b -> c)
g" :: (b -> c) -> (b -> c)

\section*{Results and effects in a scope}

Actually, using the liftA commands
we can pull results of applicative functors
into a scope where we can talk
exclusively about functor results c
and not about effects.
f c
Note that functor results can also be functions. c
This scope is simply a function,
which contains the code that we used in the non-functorial setting.

http://hackage.haskell.org/package/base-4.10.1.0/docs/Control-Applicative.html\#v:liftA2

\section*{liftA3 - a non-functorial expression}

Consider the non-functorial expression:
x: : x
\(g:: x->y\)
h :: y -> y -> z
let \(y=g x\)
in \(h y y\)
generalization
fx : : f \(x\)
\(f g:: f(x->y)\)
fh :: f(y -> y -> z)


\section*{liftA3 - using <*> only}
let \(\mathrm{fy}=\mathrm{fg}<{ }^{<}>\mathrm{fx}\)
in fh <*> fy <*> fy
if fy writes something to the terminal then fh <*> fy <*> fy writes twice.

this runs the effect of fy twice.
How the effect is run only once and the result is used twice?
\(\rightarrow\) utilize liftA3

https://wiki.haskell.org/Applicative_functor

\section*{Applicatives \\ Methods (3B)}

\section*{liftA3 - using three input function}
```

liftA3 :: Applicative f => (a -> b -> c -> d) -> fa -> fb -> fc c> fd
liftA3 h fa fb fc = ((h <\$> fa) <*> fb) <*> fc

```
liftA3
(lx gh le let \(y=g x\) in \(h y y)\)
    fx fg fh

http://hackage.haskell.org/package/base-4.10.1.0/docs/Control-Applicative.html\#v:liftA2

\section*{liftA3 - effects, results and scopes}

Actually, using the liftA commands
we can pull results of applicative functors
into a scope where we can talk
```

y from fy

```
y -> y -> z
exclusively about functor results
\(y\)
and not about effects. fy
Note that functor results can also be functions.
This scope is simply a function,
```

y

```
y ->y ->z
which contains the code that we used in the non-functorial setting.
```

liftA3
(lx g h -> let y = gxin h y y)
fx fg fh

```

The order of effects is entirely determined by the order of arguments to liftA3

\section*{liftA2 (<*>)}
liftA2 (<*>) can be used to compose applicative functors.
It's easy to see how to use it from its type:

0 :: (Applicative f, Applicative f1) \(=>\quad \mathrm{f}(\mathrm{f} 1(\mathbf{a}->\mathbf{b}))\)-> f(f1 a) -> f(f1 b)
o = liftA2 (<*>)

\section*{liftA2 (<*>) for composite applicative functors}

0 :: (Applicative f, Applicative f1) =>
f(f1 (a -> b)) -> f(f1 a) -> f(f1 b)
\(0=\) liftA2 (<*>)
f1 (a-> b) <*> f1 \(\mathbf{a}<*>\) f1 \(b\)
liftA2 \(\mathbf{g x y}\)

liftA2 (<*>) can be used to compose applicative functors.

https://stackoverflow.com/questions/12587195/examples-of-haskell-applicative-transformers

\section*{liftA2 (<*>) Examples (1)}

https://stackoverflow.com/questions/12587195/examples-of-haskell-applicative-transformers

\section*{liftA2 (<*>) Examples (2)}
if \(f\) is Maybe and \(f 1\) is [] we get:
[Just (+1),Just (+6)] `o` [Just 1, Just 6]
[Just 2, Just 7, Just 7, Just 12]

\section*{[Just (+1),Just (+6)] [Just 1, Just 6]}
```

Just (+1) [Just 1, Just 6]
Just (+6) [Just 1, Just 6]

```
liftA2 (<*>) [Just (+1),Just (+6)] [Just 1, Just 6]
[Just (+1) <*> Just 1, Just (+1) <*> Just 6, Just (+6) <*> Just 1, Just (+6) <*> Just 6]
[Just 2, Just 7, Just 7, Just 12]

\section*{liftA2 (<*>) [Just (+1),Just (+6)][Just 1, Just 6]}

https://stackoverflow.com/questions/12587195/examples-of-haskell-applicative-transformers

\section*{liftA2 (:)}
```

liftA2 (:) "abc" ["pqr", "xyz"]
["apqr","axyz","bpqr","bxyz","cpqr","cxyz"]

```

\section*{liftA2 (:) "abc" ["pqr", "xyz"]}


\section*{liftA2 (:)}
```

(liftA2 . liftA2) (:) (Just "abc") (Just ["pqr", "xyz"])
Just ["apqr","axyz","bpqr","bxyz","cpqr","cxyz"]

```
(liftA2 . liftA2) (:) "abc" ["pqr", "xyz"]


\section*{References}
[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf```

