
ELF1 7D Virtual Memory

Young W. Lim

2021-02-01 Mon

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 1 / 99

Outline

1 Based on

2 Virtual memory
Background
Virtual memory
Kernal virtual / logical addresses
Kernel logical address
Kernel virtual address
User virtual address
Memory management unit
User space

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 2 / 99

Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 3 / 99

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 4 / 99

Logical addresses

logical address

generated by CPU while a program is running
since it does not exist physically,
it is also known as virtual address
used as a reference to access
the physical memory location by CPU

logical address space

the set of all logical addresses
generated by a program’s perspective.

https://www.geeksforgeeks.org/logical-and-physical-address-in-operating-system/

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 5 / 99

Physical addresses

physical address

identifies a physical location in a memory
the user never directly uses the physical address
but can access by the corresponding logical address.

physical address space

all physical addresses corresponding
to the logical addresses in a Logical address space

https://www.geeksforgeeks.org/logical-and-physical-address-in-operating-system/

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 6 / 99

Virtual addresses

virtual addresses

the address you use in your programs,
the address that your CPU use to fetch data,
is not real and gets translated via MMU
to its corresponding physical address

virtual address space

Linux running 32-bit has 4GB address space
each process has its own virtual address space

https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 7 / 99

Memory managemet unit

MMU (memory-management unit) hardware

maps logical address to its corresponding
physical address

OS along with MMU

the user program generates the logical address and
thinks that the program is running in this logical address
but to access physical memory for its execution,
this logical address must be mapped
to the physical address by MMU

https://www.geeksforgeeks.org/logical-and-physical-address-in-operating-system/

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 8 / 99

Logical vs virtual addresses (1)

Whenever your program executes, CPU generates
logical address for instructions which contains

(16-bit segment selector, 32-bit offset)

basically virtual (linear) address is generated
using logical address fields

https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 9 / 99

Logical vs virtual addresses (2)

segment selector (identifier) refers to

code segment
data segment
stack segment etc.

segment selector is 16-bit field

the first 13-bit is index
a pointer to the segment descriptor resides in GDT
1 bit TI field

TI = 1 Refer LDT (Local Descriptor Table)
TI = 0 Refer GDT (Global Descriptor Table)

https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 10 / 99

Logical vs virtual addresses (3)

Linux contains one GDT/LDT
(Global/Local Descriptor Table)

contains 8 byte descriptor of each segments and
holds the base (virtual) address of the segment.

So for for each logical address,
virtual address is calculated using the following steps.

https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 11 / 99

Logical vs virtual addresses (4)

1 examines the TI field of the segment selector
to determine which descriptor table stores the segment descriptor
TI field indicates that

the descriptor is in the GDT
the segmentation unit gets the base linear address of the GDT
from the gdtr register
the descriptor is in the active LDT
the segmentation unit gets the base linear address of that LDT
from the ldtr register

https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 12 / 99

Logical vs virtual addresses (5)

2 Computes the address of the segment descriptor
from the index field of the segment selector*
the index field is multiplied by 8 (the segment descriptor size),
and the result is added to the content of the gdtr or ldtr register.

3 adds the offset of the logical address
to the base field of the segment descriptor
thus obtaining the linear (virtual) address.

Now it is the job of paging unit
to translate physical address from virtual address.
https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 13 / 99

Logical vs virtual addresses (6)

normally every address issued (for x86 architecture)
is a logical address which is translated to a linear address
via the segment tables.
After the translation into linear address,
it is then translated to physical address via page table.

https://stackoverflow.com/questions/15851225/difference-between-physical-logical-virtual-memory-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 14 / 99

Segmentation and Paging (1)

structure of process address space
text : program instrucitons

execute-only, fixed size
data: variables (global, heap)

read/write, variable size
dynamic allocation by request

stack: activation records
read/write, variable size
automatic growth/shrinkage

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 15 / 99

Segmentation and Paging (2)

segmented address space

address space is a set of segments
segment ; a linearly addressed memory

typically contains logically related information
program code, data, stack

each segment has an identifier s, and a size n
s [0, S-1], S = number of segments

logical addresses are of form (s, i)
offset i within segments s, i must be less than n

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 16 / 99

Segmentation and Paging (3)

Address translation for segments

segment table contains, for each segment s

base, bound, permission, valid bit

logical to physical address translation

check if operation is permitted
check if i < s.bound
physical address = s.base + i

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 17 / 99

Segmentation and Paging (4)

Address translation example
32-bit logical address

10-bit segment s
22-bit offset i

segment table base register
segment table bound register
segment table entry

v, perm, base, bound

segtable[s].base + i

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 18 / 99

Segmentation and Paging (5)

advantaes of segmentation
each segment can be

located independently
separately protected
grow independently

seqments can be shared between processes

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 19 / 99

Segmentation and Paging (6)

problems of segmentation

variable allocation
difficult to find holes in physical memory
must use one of non-trivial placement algorithms

first fit, next fit, best fit, worst fit

external fragmentation

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 20 / 99

Segmentation and Paging (7)

paged address space

address space is linear sequence of pages
page

physical unit of information
fixed size

physicl memory is linear sequence of frames
a page fits exactly into a frame

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 21 / 99

Segmentation and Paging (8)

addressing
each page is identified by a page number 0 to N-1

N = number of pages in address space
N * page size = size of address space

logical addresses are of form (p, i)
offset i within page p
i is less than page size

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 22 / 99

Segmentation and Paging (9)

address translation for pages

page table contains, for each page p

frame number that corresponds to p
other - perms, valid bit, reference bit, modified bit

logical address (p, i) to physical address translation

check if operation is permitted
physical address = p.frame + i

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 23 / 99

Segmentation and Paging (10)

address translation example
32-bit logical address

22-bit page p
10-bit offset i

page table register
page table entry

v, r, m, perm, frame #

32-bit physical address

pagep[p].frame
i

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 24 / 99

Segmentation and Paging (11)

multi-level page tables

32-bit logical address

12-bit page dir d
10-bit page p
10-bit offset i

32-bit physical address

dir[d]->page[p].frame

-i

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 25 / 99

Segmentation and Paging (12)

segmentation vs. paging

segment is good logical unit of information

sharing, protection

page is good physical unit of information

simple memory management

bet of both

segmentation on top of paging

https://cseweb.ucsd.edu/classes/fa03/cse120/Lec08.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 26 / 99

high / low memory (1)

Low memory
Memory for which logical addresses exist in kernel space. On almost
every system you will likely encounter, all memory is low memory.
High memory
Memory for which logical addresses do not exist, because it is beyond
the address range set aside for kernel virtual addresses.

https://www.oreilly.com/library/view/linux-device-drivers/0596005903/ch15.html

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 27 / 99

kmap

-kmap returns a kernel virtual address for any page in the system. For
low-memory pages, it just returns the logical address of the page; for
high-memory pages, kmap creates a special mapping in a dedicated part of
the kernel address space. Mappings created with kmap should always be
freed with kunmap; a limited number of such mappings is available, so it is
better not to hold on to them for too long. kmap calls maintain a counter,
so if two or more functions both call kmap on the same page, the right
thing happens. Note also that kmap can sleep if no mappings are available.
https://www.oreilly.com/library/view/linux-device-drivers/0596005903/ch15.html

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 28 / 99

Virtual address and physical address (1)

Physical addresses are provided directly by the machine

one physical address space per machine
addresses typically range
from some minumum (sometimes0) to some maximum,
though some portions of this range are usually used
by the OS and/or devices,
but not available for user processes

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 29 / 99

Virtual address and physical address (2)

Virtual addresses (or logical addresses) are
addresses provided by the OS

one virtual address space per process
addresses typically start at zero, but not necessarily
space may consist of several segments

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 30 / 99

Virtual address and physical address (3)

address translation (or address binding) means
mapping virtual addresses to physical addresses

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 31 / 99

Virtual address and physical address (4)

size of each section except stack is specified in ELF file
sections which are initialized from the ELF file

code (i.e., .text)
read-only data
initialized data segments

other remaining sections are initially zero-filled
sections have their own specified alignment
segments are page aligned
3 segments = (.text + .rodata), (.data + .sbss + .bss), (stack)
not all programs contain this many segments and sections

https://www.student.cs.uwaterloo.ca/~cs350/F07/notes/mem.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 32 / 99

Single address space (1)

simple systems
sharing the same memory space

memory and peripherals
all processes and OS

no memory proctection

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 33 / 99

Single address space (2)

CPUs with single address space

8086 - 80286
ARM Cortex-M
8 / 16-bit PIC
AVR
most 8- and 16-bit systems

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 34 / 99

Single address space (3)

portable c programs expect flat memory
multiple memory access methods limit portability

management is tricky
need to know / detect total RAM
need to keep processes separated

no protection

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 35 / 99

Virtual memory (1)

a system that uses an address mapping
maps virtual address space to physical address space

to physical RAM
to hardware devices

PCI devices
GPU RAM
On-SOC IP blocks

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 36 / 99

Virtual memory (2)

Advantages

each process can have a different memory mapping
one process’ RAM is invisible to other processes
built in memory protection
kernel RAM is invisiable to user space processes
memory can be moved
memory can be swapped to disk

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 37 / 99

Virtual memory (3)

Advantages (continued)

hardware device memory can be mapped
into process’ address space
requires the kernel to perform the mapping
physical RAM can be mapped
into multiple processes at once
shared memory
memory regions can have access permissions
read / write / execute

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 38 / 99

Virtual memory (4)

Physical addresses
addresses used by the hardware (DMA, peripherals)
Virtual addresses
addresses used by software

RISC: load/store instructions
CISC: any instruction accessing memory

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 39 / 99

Virtual memory (5)

mapping is performed in hardware
no performance penalty
for accessing already mapped RAM regions
permissions are handled without penalty
the same instructions are used
to access RAM and mapped hardware
software will only use virtual addreses
in its normal operation

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 40 / 99

MMU (Memory Management Unit) (1)

MMU is the hardware responsible for
implementing virtual memory
sits between the CPU core and memory
usually the part of the physical CPU
on ARM, it’s part of the licensed core
separate from the RAM controller
DDR controller is a separate IP block

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 41 / 99

MMU (Memory Management Unit) (2)

transparently handels all memory accesses
from load / store instructions
maps memory acceses using virtual addresses
to system RAM and peripheral hardware
handles permissions
generates an exception (page fault)
on an invalid access

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 42 / 99

TLB (Translation Lookaside Buffer)

TLB is consulted by the MMU
when CPU accesses a virtual address
if the virtual address is in the TLB,
the MMU can look up the physical address
if the virtual address is not in the TLB,
the MMU will generate a page fault exception
and interrupt the CPU
if the virtual address is in the TLB,
but the permissions are insufficient,
the MMU will generate a page fault

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 43 / 99

Page faults

a page fault is a CPU exception
generated when software attempts
to use an invalide virtual address

the virtual address is not mapped for the process requesting it
the processes has insufficient permissions for the address
the virtual address is valide, but swapped out

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 44 / 99

Kernel virtual address (1)

in linux, the kernel uses virtual addresses
as user space processes do
this is not true of all OS’s

virtual address space is split
1 the upper part is used for the kernel
2 the lower part is used for user space
3 32-bit linux have the split address 0xc0000000

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 45 / 99

Kernel virtual address (2)

By default, the kernel uses the top 1GB
of virtual address space
each user space process gets the lower 3GB
of virtual address space

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 46 / 99

Virtual addresses - linux (1)

kernel address space is the area
above CONFIG_PAGE_OFFSET

for 32-bit, this is configurable at kernel build time

the kernel can be given a different amount
of address space as desired

for 64-bit, the split varies by architecture
but it is high enough

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 47 / 99

Virtual addresses - linux (2)

three kinds of virtual addresses in Linux
Kernel

Kernel Logical Address
Kernel Virtual Address

User Space

User Virtual Address

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 48 / 99

Kernel virtual / logical addresses (1)

the kernel maps most of the kernel virtual address space
to perform 1:1 mapping with an offset of
the top part of physical memory (3GB - 4GB)

slightly less then for 1Gb for 32bit x86
can be different for other processors or configurations

for kernel code on x86 address 0xc00000001
is mapped to physical address 0x1.
This is called logical mapping

a 1:1 mapping (with an offset) that allows the kernel
to access most of the physical memory of the machine.

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 49 / 99

Kernel virtual / logical addresses (2)

in the following cases, the kernel keeps a region
at the top of its virtual address space
where it maps a "random" page

when we have more then 1Gb physical memory on a 32bit machine,
when we want to reference non-contiguous
physical memory blocks as contiguous
when we want to map memory mapped IO regions

this mapping does not follow the 1:1 pattern of
the logical mapping area.

This is called the virtual mapping.

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 50 / 99

Kernel virtual / logical addresses (3)

on many platforms (x86 is an example),
both the logical and virtual mapping are done
using the same hardware mechanism
(TLB controlling virtual memory).

In many cases, the logical mapping is actually done
using virtual memory facility of the processor,
(this can be a little confusing)

The difference is in which mapping scheme is used:

1:1 for logical
random for virtual (paging)

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 51 / 99

Kernel virtual / logical addresses (4)

3 kinds of addressing

1 Logical Addressing : Address is formed by base and offset
This is nothing but segmented addressing,
where the address (or offset) in the program is always used
with the base value in the segment descriptor

1 Linear Addressing : also called virtual address
Here virtual adresses are contigous,
but the physical address are not contiguous
Paging is used to implement this.

1 Physical Addressing : the actual address on the Main Memory

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 52 / 99

Kernel virtual / logical addresses (5)

in linux, the kernel memory (in address space) is
beyond 3 GB, i.e. 0xc000000.
the addresses used by Kernel are not physical addresses

to map the virtual address from 3GB to 4GB
it uses PAGE_OFFSET.

no page translation is involved.
contiguous address
except 896 MB on x86.

beyond the address space from 3GB to 4GB,
paging is used for translation.

vmalloc returns these addresses

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 53 / 99

Kernel virtual / logical addresses (6)

when virtual memory is referred
in context of user space,
then it is through paging

if kernel memory is mentioned
then it is the address mapped

by PAGE_OFFSET (kernel logical address)
by vmalloc (kernel vitual address)

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 54 / 99

Kernel virtual / logical addresses (7)

PAGE_OFFSET in x86 is 0XC0000000,
(1100_0000_0000_0000_0000_0000_0000_0000)
or 3 gigabytes (3 ∗ 230)

this is where the 3G/1G split is defined.

every address above PAGE_OFFSET
is the kernel virtual address

any address below PAGE_OFFSET
is a user space address

https://linux-mm.org/VirtualMemory

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 55 / 99

Kernel virtual / logical addresses (8)

to get kernel memory in byte-sized chunks.

kmalloc()
virtually contiguous
physically contiguous
vmalloc()
virtually contiguous
not necessarily physically contiguous

https://stackoverflow.com/questions/116343/what-is-the-difference-between-vmalloc-and-kmalloc

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 56 / 99

Kernel virtual / logical addresses (9)

On a 32-bit system, kmalloc()

returns the kernel logical address (it is a virtual address)
the direct mapping (constant offset)
a contiguous physical chunk of RAM.
suitable for DMA where we give only

vmalloc()

returns the kernel virtual address
paging (not direct mapping)
not necessarily a contiguous chunk of RAM
Useful for large memory allocation and
in cases where non-contiguous physicl memory is allowed

https://stackoverflow.com/questions/116343/what-is-the-difference-between-vmalloc-and-kmalloc

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 57 / 99

Kernel virtual / logical addresses (10)

kernel logical addresses use
normal CPU memory access functions.
On 32-bit systems,
only 4GB of kernel logical address space exists,
even if more physical memory than that is in use.
logical address space supported by physical memory
can be allocated with kmalloc()

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 58 / 99

Kernel virtual / logical addresses (11)

kernel virtual addresses do not necessarily have
corresponding logical addresses.
You can allocate physical memory with vmalloc and
get back a virtual address that has
no corresponding logical address
(on 32-bit systems with PAE, for example).
use kmap() to assign a logical address
to that virtual address.

https://stackoverflow.com/questions/8708463/difference-between-kernel-virtual-address-and-kernel-logical-address

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 59 / 99

Kernel logical addresses (1)

normal address space of the kernel
kmalloc()

virtual addresses are a fixed offset
from their physical addresses
virtual 0xc0000000 → physical 0x00000000
easy conversion between physical and virtual addresses

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 60 / 99

Kernel logical addresses (2)

kernel logical addreses can be converted to and from
physical addresses using these macros
__pa(x)
__va(x)

for small memory systems (less than 1G of RAM)
kernel logical address space starts at PAGE_OFFSET
and goes through the end of physical memory

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 61 / 99

Kernel logical addresses (3)

kernel logical address space includes

memory allocated with kmalloc()
and most other allocation methods
kernel stacks per process

kernel logical memory can never
be swapped out

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 62 / 99

Kernel logical addresses (4)

kernel logical addresses use a fixed mapping
between physical and virtual address space
this means virtually contiguous regions
are by nature also physically contiguous
this combined with inability to be swapped out,
makes them suitable for DMA transfers

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 63 / 99

Kernel logical addresses (5)

for 32-bit large memory systems (> 1GB RAM)
not all of the physical RAM can be mapped
into the kernel’s address space
kernel address space is the top 1GB of
virtual address space, by default
upto 104 MB is reserved at the top of
the kernel memory space
for non-contiguous allocation
vmalloc()

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 64 / 99

Kernel logical addresses (6)

in a large memory case,
only the bottom part of physical RAM
is mapped directly into
kernel logical address space
only the bottom part of physical RAM has
a kernel logical address
this case is never applied to 64-bit systems

there is always enough kernel address space
to accommodate all the RAM

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 65 / 99

Low and High Memory

low memory

physical memory which has a kernel logical address
physically contiguous

high memory

physical memory beyond -~896MB
has no logical address
not physically contiguous when used in the kernel
only on 32-bit

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 66 / 99

Kernel virtual addresses (1)

kernel virtual addresses are
above the kernel logical address mapping

kernel virtual addresses - vmalloc()
kernel logical addresses - kmalloc()

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 67 / 99

Kernel virtual addresses (2)

kernel virtual addresses are used for

non-contiguous memory mappings

often for large buffers which could potentially
be too large to find contiguous memory
vmalloc()

memory-mapped I/O

map peripheral devices into kernel
PCI, SoC IP blocks
ioremap(), kmap()

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 68 / 99

Kernel virtual addresses (3)

the important difference is that memory
in the kernel virtual address area (vmalloc() area)
is non-contiguous physically
this makes it easier to allocate, especially
for large buffers on small memory systems
this makes it unsuitable for DMA

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 69 / 99

Kernel virtual addresses (4)

in a large memory situation,
the kernel virtual address area is smaller,
because there is more physical memory
an interesting case, where more memory means
less space for kernel virtual addresses
in 64-bit, of course, this doesn’t happen,
as PAGE_OFFSET is large, and
there is much more virtual address space

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 70 / 99

User virtual addresses (1)

represent memory used by user space programs

the most of the memory on most systems
where the most of the compilation is

all addresses below PAGE_OFFSET

each process has its own mapping

threads share a mapping
complex behavior with clone(2)

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 71 / 99

User virtual addresses (2)

kernel logical addresses use a fixed mapping
user space processes make full use of the MMU

only the used portions of RAM are mapped
memory is not contiguous
memory may be swapped out
memory can be moved

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 72 / 99

User virtual addresses (3)

since user virtual addresses are not guaranteed
to be swapped in, or even allocated at all,

user buffers are not suitable for use
by the kernel (or for DMA), by default

each process has its own memory map
struct mm pointers in task_struct

at context switch time, the memory map is changed
this is part of the overhead

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 73 / 99

Memory management unit (1)

the MMU manages virtual address mappings

maps virtual addresses to physical addresses

the MMU operates on basic units of memory : pages

page size varies by architecture
some architectures have configurable page sizes

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 74 / 99

Memory management unit (2)

common page sizes

ARM - 4k
ARM64 - 4k or 64k
MIPS - widely configurable
x86 - 4k

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 75 / 99

Memory management unit (3)

a page is

a unit of memory size
aligned at the page size
abstract

a page frame refers to

a physical memory block
which is page sized and page aligned
physical

the pfn (page frame number) is often
used to refer to physical page frames
in the kernel

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 76 / 99

Memory management unit (4)

the MMU operates on pages
the MMU maps physical frames to virtual addresses
a memory map for a process contains many mappings
a mapping often covers multiple pages
the TLB holds each mapping

virtual address
physical address
permissions

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 77 / 99

Page faults

when a process acceses a region of memorythat is not mapped,
the MMU will generate a page fault exception

the kernel handles page fault exceptions regularly
as part of its memory management design

TLB can contain only the part of the required maps for a process
page faults at context switch time
lazy allocation

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 78 / 99

Basic TLB mappings (1)

user virtual address space
mapped pages unmapped space

physical address space
allocated frames

TLB mapings
TLB entries (page, page frame)
virtually contiguous regions
not physically contiguous

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 79 / 99

Basic TLB mappings (2)

mappings to virtually contiguous regions
do not have to be physically contiguous
easy memory allocation
almost all user space code does not need
physically contiguous memory

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 80 / 99

Multiple processes

each process has its own set of mappings
the same virtual addresses in two different processes
will likely be used to map different physical addresses

(page, page frame1) for process 1
(page, page frame2) for process 2

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 81 / 99

Shared memory (1)

shared memory is easily implemented with an MMU
simply map the same physical frame
into two different processes
the virtual addresses need not be the same

for pointers to values inside a shared memory region
the virtual addresses must be the same

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 82 / 99

Shared memory (2)

the shared memory region can be mapped to
different virtual addresses in each process

the mmap() system call allows the user space process
to request a specific virtual address
to map the shared memory region

if the kernel cannot grant a mapping at this address,
mmap() returns with failure

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 83 / 99

Lazy allocation (1)

the kernel does not allocate pages immeidately
that are requested by a process
the kernel will wait until those pages are actually used

lazy allocation to optimize a performance

if the requested pages may not be actually used,
then the allocation will never happen

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 84 / 99

Lazy allocation (2)

when memory is requested for allocation,
the kernel simply creates
a record of the request in its page tables
and then returns (quickly) to the process,
without updating the TLB

when that newly-allocated memory is actually accessed,
the CPU will generate a page fault,
because the CPU doesn’t know about the mapping
(no entry in the TLB)

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 85 / 99

Lazy allocation (3)

in the page fault handler,
the kernel uses its page tables
to determine that the mapping is valid
(from the kernel’s point of view)
yet unmapped in the TLB

the kernel will allocate a physical page frame
and update the TLB with the new mapping

the kernel returns from the exception handler and
user space program can resume

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 86 / 99

Lazy allocation (4)

in a lazy allocation case, the user space program
is never aware that the page fault happened

the page fault can only be detected
at the time that was lost to handle it

for processses that are time-sensitive
pages can be pre-faulted, or simply touched,
at the start of execution

see also mlock() and mlockall()

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 87 / 99

Page tables (1)

the entries in the TLB are a limited resource
far more mappings can be made than can exist
in the TLB at one time
the kernel must keep track of all of the mappings
at all times
the krenel stores all these informations
in the page tables
stuct_mm and vm_area_struct

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 88 / 99

Page tables (2)

since the TLB can only hold a limited subset of
the total mappings for a process,
some valid mappings will not have TLB entries
when these addresses are touched
the CPU will generate a page fault
because the CPU has no knowledge of the mapping
only the kernel does

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 89 / 99

Page tables (3)

the page fault handler will

find the appropriate mapping for the offending addresses
in the krenel’s page tables
select and remove an existing TLB entry
create a TLB entry for the page
containing the address
return to the user space process

observe the similarities to lazy allocation handling

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 90 / 99

Swapping (1)

when memory utilization is high,
the kernel may swap some frames to disk
to free up RAM

the MMU makes this possible

the kernel may copy a frame to disk and
remove its TLB entry
the frame may be reused by another process

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 91 / 99

Swapping (2)

when the frame is needed again,
the CPU will generate a page fault
because the address is not in the TLB

at a page fault time, the kernel can

put the process to sleep
copy the frame from the disk
into an unused frame in RAM
fix the page table entry
wake the process

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 92 / 99

Swapping (3)

note that when the page is restored to RAM,
it is not necessarily restored to the same physical frame
where it originally was located (before being swapped out)

the MMU will use the same virtual address though,
so the user space program will not know the difference

this is why user space memory cannot
typically be used for DMA

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 93 / 99

User space

there are several ways to allocate memory
from user space

ignoring the familiar *alloc() functions,
which sit on top of platform methods

mmap() can be used directly to allocate
and map pages
brk() / sbrk() can be used to increase
the heap size

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 94 / 99

mmap()

mmap() is the standard way to allocate
large amounts of memory from user space
while mmap() is often used for files,
the MAP_ANONYMOUS flag causes mmap()
to allocate normal memory for the process
the MAP_SHARED flag can make the allocated pages
sharable with other processes

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 95 / 99

brk() / sbrk() (1)

brk() sets the top of the program break
this is the top of the data segment
but inspecton of kernel/sys.c shows
it separates from the data segment
this in effect increases the size of the heap
sbrk() increases the program break
rather than setting it directly

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 96 / 99

brk() / sbrk() (2)

lazy allocation
see mm/mmap.c for do_brk()
do_brk() is implemented similar to ~mmap()

modify the page tables for the new area
wait for the page fault
optionally, do_brk() can pre-fault the new area
and allocate it
see mlock(2) to control this behavior

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 97 / 99

High level implementation

malloc() and calloc() will use
either brk() or mmap()
depending on the requested allocation size

small allocations use brk()
large allocaion use mmap()
see mallopt(3) and the M_MMAP_THRESHOD parameter
to control this behavio

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 98 / 99

Stack

Stack expansion
if a process accesses memory beyond its stack,
the CPU will trigger a page fault
the page fault handler detects
the address is just beyond the stack, and
allocates a new page to extend the stack
the new page will not be physically contiguous
with the rest of the stack
see __do_page_fault() in /arch/arm/mm/fault.c

https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.pdf

Young W. Lim ELF1 7D Virtual Memory 2021-02-01 Mon 99 / 99

	Based on
	Virtual memory
	Background
	Virtual memory
	Kernal virtual / logical addresses
	Kernel logical address
	Kernel virtual address
	User virtual address
	Memory management unit
	User space

