Conformal Mapping (6A)

Copyright (c) 2013 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Visualizing Functions of a complex variable

$$
z=x+i y \quad f(z)=u(x, y)+i v(u, y)
$$

Isocontour

$$
\begin{gathered}
\nabla u=\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \quad \nabla v=\left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right) \\
\nabla u \cdot \nabla v=\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \cdot\left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right) \\
=\left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial v}{\partial y}\right)
\end{gathered}
$$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \quad \square \begin{aligned}
& \text { orthogonal } \\
& \text { isocontours }
\end{aligned}
$$

the gradient of $u(x, y)$: the gradient of $v(x, y)$: orthogonal to its isocontour

$$
\nabla u=\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \quad \nabla v=\left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right)
$$

the isocontours of $u(x, y)$ and $v(x, y)$ are orthogonal to each other whenever they cross with each other

$$
\begin{aligned}
& \nabla u \cdot \nabla v=\left(\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}-\frac{\partial v}{\partial x} \frac{\partial u}{\partial x}\right)=0 \\
& \nabla u \cdot \nabla v=0 \quad \nabla u \perp \nabla v
\end{aligned}
$$

Angle Preserving Mappings

$d z_{1}=\left|d z_{1}\right| e^{j \theta_{1}}$
$d z_{2}=\left|d z_{2}\right| e^{j \theta_{2}}$
$\frac{d z_{2}}{d z_{1}}=\frac{\left|d z_{2}\right|}{\left|d z_{1}\right|} e^{j\left(\theta_{2}-\theta_{1}\right)}$

$d w_{1}, d w_{2}$ at first order
$f^{\prime}(z) d z_{1}=d w_{1}$
$f^{\prime}(z) d z_{2}=d w_{2}$
$\arg \left(\frac{d w_{2}}{d w_{1}}\right)=\arg \left(\frac{d z_{2}}{d z_{1}}\right)=\theta$
all angles are preserved
by the mapping $w=f(z)$
except where $f^{\prime}(z)=0$ and $d w_{1}=d w_{2}=0$ at first order.

$$
f(z+\Delta z)-f(z) \approx f^{\prime}(z) \Delta z
$$

$$
\begin{aligned}
& \mathrm{dw}_{1}, \mathrm{dw}_{2} \text { at first order } \\
& f(z+\Delta z)-f(z)=f^{\prime}(z) \Delta z
\end{aligned}
$$

$$
\begin{aligned}
& f\left(z+z_{1}\right)-f(z)=w+d w_{1}-w \\
& f\left(z+z_{2}\right)-f(z)=w+d w_{2}-w
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{z})=0 \text { and } \\
& \mathrm{d} \mathrm{w}_{1}=\mathrm{d} \mathrm{w}_{2}=0 \text { at first order. } \\
& 0 \cdot d z_{1}=d w_{1}=0 \\
& 0 \cdot d z_{2}=d w_{2}=0 \\
& \arg \left(\frac{d w_{2}}{d w_{1}}\right) \text { undefined } \\
& \quad \text { regardless of } \theta=\arg \left(\frac{d z_{2}}{d z_{1}}\right)
\end{aligned}
$$

Angle Preserving Mappings

```
f'(z) = 0
f'(z) \not=0
dw
```

at such points, angles are doubled

$$
\begin{aligned}
& \frac{f^{\prime \prime}(z)}{2} d z_{1}^{2}=d w_{1} \\
& \frac{f^{\prime \prime}(z)}{2} d z_{2}^{2}=d w_{2} \\
& \frac{d z_{2}}{d z_{1}}=\left(\frac{d z_{2}}{d z_{1}}\right)^{2}=\left(\frac{\left|z_{2}\right|}{\left|z_{1}\right|}\right)^{2} e^{j 2\left(\theta_{2}-\theta_{1}\right)}=2 \theta
\end{aligned}
$$

$$
\begin{aligned}
& f(z)=z^{2} \\
& f^{\prime}(z)=2 z \\
& f^{\prime \prime}(z)=2 \\
& \\
& z=r e^{i \theta} \\
& z^{2}=r^{2} e^{i 2 \theta}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(z)=0 \\
& f^{\prime \prime}(z)=0 \\
& f^{(3)}(z) \neq 0 \\
& d w_{1} \text { and } d w_{2} \text { at third order } \\
& \text { at such points, } \\
& \text { angles are trippled }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{f^{(3)}(z)}{3!} d z_{1}^{3}=d w_{1} \\
& \frac{f^{(3)}(z)}{3!} d z_{2}^{2}=d w_{2} \\
& \frac{d z_{2}}{d z_{1}}=\left(\frac{d z_{2}}{d z_{1}}\right)^{3}=\left(\frac{\left|z_{2}\right|}{\left|z_{1}\right|}\right)^{3} e^{j 3\left(\theta_{2}-\theta_{1}\right)}=3 \theta
\end{aligned}
$$

$$
\begin{gathered}
f(z)=z^{3} \\
f^{\prime}(z)=3 z^{2} \\
f^{\prime \prime \prime}(z)=6 z \\
f^{(3)}(z)=6 \\
z=r e^{i \theta} \\
z^{3}=r^{3} e^{i 3 \theta}
\end{gathered}
$$

all angles are preserved by the mapping $w=f(z)$ except where $f^{\prime}(z)=0$ and
$d w_{1}=d w_{2}=0$
at first order.

Critical Points and Conformal Mapping

A type of a critical point

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{z})=0 \text { and } \\
& \mathrm{d} \mathrm{w}_{1}=\mathrm{d} \mathrm{w}_{2}=0 \text { at first order. } \\
& \begin{array}{l}
0 \cdot d z_{1}=d w_{1}=0 \\
0 \cdot d z_{2}=d w_{2}=0
\end{array} \\
& \arg \left(\frac{d w_{2}}{d w_{1}}\right) \text { undefined } \\
& \quad \text { regardless of } \theta=\arg \left(\frac{d z_{2}}{d z_{1}}\right)
\end{aligned}
$$

Except a critical point

At a critical point,

$\nabla \mathrm{u}=0$, then $\nabla \mathrm{v}=\nabla \perp \mathrm{u}=0$
the vectors do not define tangent directions
the orthogonality of the level curves
does not necessarily hold at critical points.

$$
f^{\prime}(z)=0
$$

the critical points of u
$=$ the critical points of v
$=$ the critical points of $f(z)$
$=$ points where its complex derivative vanishes: $\mathbf{f}^{\prime}(\mathbf{z})=\mathbf{0}$.

Conformal Condition

For every point z where f is holomorphic and $\mathbf{f}^{\prime}(\mathbf{z}) \neq \mathbf{0}$, the mapping $z \rightarrow w=f(z)$ is conformal, i.e., it preserves angles.

```
The phrase "holomorphic at a point z0" means
not just differentiable at z0,
but differentiable everywhere
within some neighborhood of z0.
The existence of a complex derivative
in a neighborhood is a very strong condition,
for it implies that any holomorphic function is
actually infinitely differentiable and
equal to its own Taylor series.
```

tangent vectors $d z$ to each curve at z_{0}
are transformed into vectors $d w$ at $w_{0}=f\left(z_{0}\right)$ which are

- magnified by factor $\left|\mathbf{f}^{\prime}\left(\mathbf{z}_{\mathbf{0}}\right)\right|$
- rotated through angle $\psi 0=\arg \left\{f^{\prime}\left(z_{0}\right)\right\}$
\Rightarrow angles between curves remain the same (conformal mapping)

Critical Points

tangent vectors $d z$ to each curve at z_{0}
are transformed into vectors $d w$ at $w_{0}=f\left(z_{0}\right)$ which are

- magnified by factor $\left|f^{\prime}\left(z_{0}\right)\right|$
- rotated through angle $\psi 0=\arg \left\{f^{\prime}\left(z_{0}\right)\right\}$
\Rightarrow angles between curves remain the same (conformal mapping)

Conformal Mapping

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

Riemann Surface

A one-dimensional complex manifold.
can be thought of as "deformed versions" of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or a couple of sheets glued together.

References

[1] http://en.wikipedia.org/
[2] http://planetmath.org/
[3] M.L. Boas, "Mathematical Methods in the Physical Sciences"
[4] E. Kreyszig, "Advanced Engineering Mathematics"
[5] D. G. Zill, W. S. Wright, "Advanced Engineering Mathematics"
[6] T. J. Cavicchi, "Digital Signal Processing"
[7] F. Waleffe, Math 321 Notes, UW 2012/12/11
[8] J. Nearing, University of Miami
[9] http://scipp.ucsc.edu/~haber/ph116A/ComplexFunBranchTheory.pdf
[10] http://www.math.umn.edu/~olver/pd_/cm.pdf
[11] http://wwwthphys.physics.ox.ac.uk/people/FrancescoHautmann/ComplexVariable/ s1_12_sl3p.pdf

