Sampling Basics (1B)

- - •

Copyright (c) 2009 - 2013 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.

Measuring Rotation Rate

Angular Frequency and Sinusoid

4

Angular Speed and Frequency

$$\omega = \frac{2\pi}{T} = 2\pi f \qquad \qquad \frac{1}{T} = f$$

Discrete Time Sequence

discrete-time sequence

Sampling Time $T_s \ (= \tau)$

Sequence Time Length

 $T = N \cdot T_s$

Sampling Frequency

$$f_s = \frac{1}{T_s}$$
 (samples/sec)

Signal's Frequency

$$f_0 = \frac{1}{T_0}$$
 (cycles/sec)

Sampling Continuous Time Signal

Sampling Time $T_s \ (= \tau)$ Sequence Time Length $T = N \cdot T_s$ Sampling Frequency

$$f_s = \frac{1}{T_s}$$
 (samples / sec)

Signal's Frequency

$$f_0 = \frac{1}{T_0}$$
 (cycles / sec)

Angular Frequencies in Sampling

8

$$x[n] \implies \cdots, x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], \cdots$$

Sampling of Sinusoid Functions

Normalized Radian Frequency

Normalized Radian Frequency

can be viewed as "the <u>angular displacement</u> of a signal during the period of its <u>sample time</u> T_s "

- Negative Angles
 → folding
- Co-terminal Angles
 - \rightarrow periodic

Co-terminal Angles

Normalized Radian Frequency Example

Normalized Frequency

Normalized <u>Radian</u> Frequency

$$2\pi \frac{(rad)}{(cycle)} \cdot \frac{f_0}{f_s} \frac{(cycle | sec)}{(sample | sec)} \implies \frac{\omega_0}{f_s} (rad | sample) \qquad \hat{\omega} = \frac{\omega}{f_s} = 2\pi \frac{f}{f_s}$$
$$\hat{\omega} = \omega \cdot T_s = \frac{\omega}{1/T_s}$$

Normalized Frequency

Normalized Radian Frequency (4)

Negative Angular Speed Example

$$\begin{split} \omega_{s} &= 2\pi f_{s} (rad/sec) \\ 2\pi (rad) / T_{s} (sec) \end{split} \qquad A \cos (\omega_{1}t) = A \cos (+\frac{\omega_{s}}{2}t) \implies A \cos (+\pi n) \qquad \hat{\omega}_{1} = +\pi (rad) \\ A \cos (\omega_{1}t) = A \cos (-\frac{\omega_{s}}{2}t) \implies A \cos (-\pi n) \qquad \hat{\omega}_{2} = -\pi (rad) \\ \hat{\omega}_{i} &= \omega_{i} \cdot T_{s} (rad/sample) \end{aligned} \qquad A \cos (\omega_{s}t) = A \cos (+\frac{\omega_{s}}{4}t) \implies A \cos (+\frac{\pi}{2}n) \qquad \hat{\omega}_{3} = +\frac{\pi}{2} (rad) \\ A \cos (\omega_{4}t) = A \cos (-\frac{3\omega_{s}}{4}t) \implies A \cos (-\frac{3\pi}{2}n) \qquad \hat{\omega}_{4} = -\frac{3\pi}{4} (rad) \end{split}$$

Negative Angles

Co-terminal Angular Speed Example

$$\begin{split} \omega_{s} &= 2\pi f_{s} (rad/sec) & A \cos(\omega_{1}t) = A \cos(+\frac{\omega_{s}}{2}t) \implies A \cos(+\pi n) & \hat{\omega}_{1} = +\pi (rad) \\ 2\pi (rad) / T_{s} (sec) & A \cos(\omega_{2}t) = A \cos(+\frac{3\omega_{s}}{2}t) \implies A \cos(+\pi n) & \hat{\omega}_{2} = +\pi (rad) \\ \hat{\omega}_{i} &= \omega_{i} \cdot T_{s} (rad/sample) & A \cos(-\frac{\omega_{s}}{4}t) \implies A \cos(+\frac{\pi}{2}n) & \hat{\omega}_{3} = +\frac{\pi}{2} (rad) \\ A \cos(\omega_{4}t) &= A \cos(+\frac{5\omega_{s}}{4}t) \implies A \cos(+\frac{\pi}{2}n) & \hat{\omega}_{4} = +\frac{\pi}{2} (rad) \\ A \cos(\omega_{4}t) &= A \cos(+\frac{5\omega_{s}}{4}t) \implies A \cos(+\frac{\pi}{2}n) & \hat{\omega}_{4} = +\frac{\pi}{2} (rad) \end{split}$$

Co-terminal Angles (1)

1B Sampling Basics

Frequency and Digital Frequency

1B Sampling Basics

Co-terminal Angles

Co-terminal Angles

The same angular positions after each sample time.

1B Sampling Basics

Positive & Negative Angles (1)

Positive Angle									
$+\pi$	<	$\boldsymbol{\hat{\omega}}_1$	<	2 J	τ				
<u>Negative</u> Angle									
$-\pi$	<	$\hat{\omega}_1$	- 2	2π	<				

Normalized Radian Frequency

Positive & Negative Angles (2)

Negative Angle									
_	2π	<	$\hat{\omega}_2$	<	_	π			
Positive Angle									
0	<	2π	: + ć	$\hat{\upsilon}_2$	<	π			

Normalized Radian Frequency

Periodicity and Folding

1B Sampling Basics

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
- [3] A "graphical interpretation" of the DFT and FFT, by Steve Mann