Sampling Basics (1B)

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Measuring Rotation Rate

Angular Speed (Frequency)

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

$$
+\omega_{0} \mathrm{rad} / 1 \mathrm{sec}-\omega_{0} \mathrm{rad} / 1 \mathrm{sec}
$$

$$
+\omega_{0}(\mathrm{rad} / \mathrm{sec}) \quad-\omega_{0}(\mathrm{rad} / \mathrm{sec})
$$

RPM

$$
\text { rpm }=\text { revolutions } / \text { minute }
$$

$$
1 \mathrm{rpm}=2 \pi \mathrm{rad} / 1 \mathrm{~min}
$$

$$
=2 \pi \mathrm{rad} / 60 \mathrm{sec}
$$

$$
=\frac{\pi}{30} \mathrm{rad} / \mathrm{sec}
$$

- Negative Angles

Angular Frequency and Sinusoid

Angular Speed and Frequency

$$
\omega=\frac{2 \pi}{T}=2 \pi f \quad \frac{1}{T}=f
$$

$T(\mathrm{sec})$	0.01 sec	0.1 sec	1 sec	10 sec	100 sec	
$f(\mathrm{~Hz})$	100 Hz	10 Hz	1 Hz	0.1 Hz	0.01 Hz	Frequency
ω $(\mathrm{rad} / \mathrm{sec})$	200π $(\mathrm{rad} / \mathrm{sec})$	20π $(\mathrm{rad} / \mathrm{sec})$	2π $(\mathrm{rad} / \mathrm{sec})$	0.2π $(\mathrm{rad} / \mathrm{sec})$	0.02π $(\mathrm{rad} / \mathrm{sec})$	Angular Speed $/$ Radian Frequency
$(\mathrm{rad} / \mathrm{sec})$	$=628$	$=62.8$	$=6.28$	$=0.628$	$=0.0628$	

Discrete Time Sequence

continuous-time signals

$x(t)=A \cos \left(\omega_{0} t\right)$

discrete-time sequence

Sampling Time

$$
T_{s}(=\tau)
$$

Sequence Time Length

$$
T=N \cdot T_{s}
$$

Sampling Frequency

$$
f_{s}=\frac{1}{T_{s}} \quad(\text { samples } / \mathrm{sec})
$$

Signal's Frequency

$$
\left.f_{0}=\frac{1}{T_{0}} \quad \text { (cycles } / \text { sec }\right)
$$

Sampling Continuous Time Signal

continuous-time signals

$$
\begin{aligned}
& \text { For } 1 \text { second } \\
& \frac{1}{T_{0}} \quad \text { (cycles / sec) } \\
& \text { For } 1 \text { cycle } \\
& 1 \text { (cycles) } / T_{0}(\mathbf{s e c})
\end{aligned}
$$

For 1 second
$\frac{1}{T_{s}} \quad$ (samples / sec)
For 1 sample
1 (samples) / $T_{s}(\mathrm{sec})$

Sampling Time

$$
T_{s}(=\tau)
$$

Sequence Time Length

$$
T=N \cdot T_{s}
$$

Sampling Frequency

$$
f_{s}=\frac{1}{T_{s}}(\text { samples } / \mathrm{sec})
$$

Signal's Frequency

$$
f_{0}=\frac{1}{T_{0}} \quad(\text { cycles } / \mathrm{sec})
$$

Angular Frequencies in Sampling

continuous-time signals

For 1 second
$\omega_{0}=2 \pi f_{0}(\mathrm{rad} / \mathrm{sec})$

2 cycles, 2 revolutions

For 1 revolution

$$
2 \pi(\mathrm{rad}) / T_{0}(\mathrm{sec})
$$

$$
x(t)=A \cos \left(\omega_{0} t\right)
$$

sampling sequence

For 1 second
$\omega_{s}=2 \pi f_{s}(\mathrm{rad} / \mathrm{sec})$

16π

For 1 revolution
$2 \pi(\mathrm{rad}) / T_{s}(\mathrm{sec})$
0.125 sec

Dimensionless Sequence

$$
x[n] \Longrightarrow \cdots, x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], \cdots
$$

 the same normalized frequency

Infinite number of continuous time signals

Sampling
\rightarrow

Sampling of Sinusoid Functions

$$
\begin{aligned}
x(t) & =A \cos (\omega t+\phi) \\
x[n] & =x\left(n T_{s}\right) \\
& =A \cos \left(\omega \cdot n T_{s}+\phi\right) \\
& =A \cos \left(\omega \cdot T_{s} n+\phi\right) \\
& =A \cos (\hat{\omega} \cdot n+\phi)
\end{aligned}
$$

0.25 cycle / sample

Normalized Radian Frequency

continuous-time signals
$x(t)$
Angular Frequency
$\omega(\mathrm{rad} / \mathrm{sec})$

Sampling

$$
t \rightarrow n T_{s}
$$

Sampling

$$
\times T_{s}
$$

discrete-time sequence

$$
x[n]=x\left(n T_{s}\right)
$$

Normalized Radian Frequency
$\hat{\omega}=\omega \cdot T_{s}(\mathrm{rad} /$ sample $)$

Angular Speed X Sampling Time

Normalized Radian Frequency
can be viewed as
"the angular displacement of a signal during the period of its sample time $T_{s}{ }^{\prime \prime}$

- Negative Angles
\rightarrow folding
- Co-terminal Angles
\rightarrow periodic

Co-terminal Angles

Normalized Radian Frequency Example

Normalized Frequency

Normalized Radian Frequency

$2 \pi \frac{(\text { rad })}{(\text { cycle })} \cdot \frac{f_{0}}{\frac{(\text { cycle } / \mathrm{sec})}{f_{s}}} \frac{(\text { sample/sec })}{} \Rightarrow \frac{\omega_{0}}{f_{s}}($ rad $/$ sample $)$

$$
\begin{aligned}
& \hat{\omega}=\frac{\omega}{f_{s}}=2 \pi \frac{f}{f_{s}} \\
& \hat{\omega}=\omega \cdot T_{s}=\frac{\omega}{1 / T_{s}}
\end{aligned}
$$

Normalized Frequency

$$
\frac{f_{0}}{f_{s}} \frac{(\text { cycle / sec })}{(\text { sample / sec })}
$$

$\Rightarrow \quad \frac{f_{0}}{f_{s}}$ (cycle / sample)

Normalized Radian Frequency (4)

Consider $f \in\left(-\frac{f_{s}}{2}, \quad+\frac{f_{s}}{2}\right)$
$\frac{f}{f_{s}} \in\left(-\frac{1}{2}, \quad+\frac{1}{2}\right)$
$\hat{\omega} \in(-\pi, \quad+\pi)$

Linear Frequency

$$
\hat{\omega}=+\pi(\mathrm{rad} / \text { sample })
$$

Normalized Radian Frequency

$\hat{\omega}=-\pi(\mathrm{rad} /$ sample $)$

Negative Angular Speed Example

$$
\begin{aligned}
& \omega_{s}=2 \pi f_{s}(\mathrm{rad} / \mathrm{sec}) \quad A \cos \left(\omega_{1} t\right)=A \cos \left(+\frac{\omega_{s}}{2} t\right) \Rightarrow A \cos (+\pi n) \quad \hat{\omega}_{1}=+\pi(\mathrm{rad}) \\
& 2 \pi(\mathrm{rad}) / T_{s}(\mathrm{sec}) \quad A \cos \left(\omega_{2} t\right)=A \cos \left(-\frac{\omega_{s}}{2} t\right) \Rightarrow A \cos (-\pi n) \quad \hat{\omega}_{2}=-\pi(\mathrm{rad}) \\
& \hat{\omega}_{i}=\omega_{i} \cdot T_{s}(\mathrm{rad} / \text { sample }) \\
& \text { Negative Angles } \\
& A \cos \left(\omega_{3} t\right)=A \cos \left(+\frac{\omega_{s}}{4} t\right) \quad A \cos \left(+\frac{\pi}{2} n\right) \quad \hat{\omega}_{3}=+\frac{\pi}{2}(\mathrm{rad}) \\
& A \cos \left(\omega_{4} t\right)=A \cos \left(-\frac{3 \omega_{s}}{4} t\right) \square A \cos \left(\frac{-3 \pi}{2} n\right) \quad \hat{\omega}_{4}=-\frac{3 \pi}{4}(\mathrm{rad})
\end{aligned}
$$

Co-terminal Angular Speed Example

Co-terminal Angles (1)

For 1 sample

$$
2 \pi(\mathrm{rad}) / T_{s}(\mathrm{sec})
$$

$$
\begin{aligned}
\hat{\omega} & =\omega \cdot T_{s}(\text { rad } / \text { sample }) \\
& =\omega / f_{s}(\text { rad } / \text { sample })
\end{aligned}
$$

For T_{s} second

$\hat{\omega}=\omega \cdot T_{s}(\mathrm{rad} /$ sample $)$

$$
\begin{gathered}
f_{0} \\
\omega_{0}=2 \pi f_{0} \\
\hat{\omega}_{0}(\text { rad } / \text { sample })
\end{gathered}
$$

$$
\begin{gathered}
f_{0}+f_{s} \\
\omega_{1}=2 \pi\left(f_{0}+f_{s}\right) \\
\hat{\omega}_{0}+2 \pi(\mathrm{rad} / \text { sample })
\end{gathered}
$$

$$
\begin{gathered}
f_{0}+2 f_{s} \\
\omega_{2}=2 \pi\left(f_{0}+2 f_{s}\right) \\
\hat{\omega}_{0}+4 \pi(\text { rad } / \text { sample })
\end{gathered}
$$

Frequency and Digital Frequency

Co-terminal Angles

For 1 sample

$$
2 \pi(\mathrm{rad}) / T_{s}(\mathrm{sec})
$$

$$
\begin{aligned}
\hat{\omega} & =\omega \cdot T_{s}(\text { rad } / \text { sample }) \\
& =\omega / f_{s}(\text { rad } / \text { sample })
\end{aligned}
$$

For T_{s} second

$\hat{\omega}=\omega \cdot T_{s}(\mathrm{rad} /$ sample $)$

$$
\begin{gathered}
f_{0} \\
\omega_{0}=2 \pi f_{0} \\
\hat{\omega}_{0}(\text { rad } / \text { sample })
\end{gathered}
$$

$$
\begin{gathered}
f_{0}+f_{s} \\
\omega_{1}=2 \pi\left(f_{0}+f_{s}\right) \\
\hat{\omega}_{0}+2 \pi(\mathrm{rad} / \text { sample })
\end{gathered}
$$

$$
\begin{gathered}
f_{0}+2 f_{s} \\
\omega_{2}=2 \pi\left(f_{0}+2 f_{s}\right) \\
\hat{\omega}_{0}+4 \pi(\text { rad } / \text { sample })
\end{gathered}
$$

Co-terminal Angles

The same angular positions after each sample time.

Positive \& Negative Angles (1)

$$
\begin{array}{cc}
+ & \text { Positive Normalized Rad Freq } \\
\hat{\omega}_{p}-\hat{\omega}_{n}=2 \pi & \hat{\omega}_{p}=2 \pi+\hat{\omega}_{n} \\
& + \\
& - \\
& \text { Negative Normalized Rad Freq } \\
& \hat{\omega}_{n}=\hat{\omega}_{p}-2 \pi \\
& - \\
& +
\end{array}
$$

Normalized Radian Frequency
Positive Angle
$+\pi<\hat{\omega}_{1}<2 \pi$
Negative Angle
$-\pi<\hat{\omega}_{1}-2 \pi<0$

Positive \& Negative Angles (2)

$$
-f_{s}<f_{2}<-\frac{f_{s}}{2}
$$

$+\quad-$
$\hat{\omega}_{p}-\hat{\omega}_{n}=2 \pi$

Positive Normalized Rad Freq

$$
\begin{array}{r}
\hat{\omega}_{p}=2 \pi+\hat{\omega}_{n} \\
+ \\
-
\end{array}
$$

Negative Normalized Rad Freq

$$
\begin{gathered}
\hat{\omega}_{n}=\hat{\omega}_{p}-2 \pi \\
-\quad+
\end{gathered}
$$

Normalized Radian Frequency
Negative Angle
$-2 \pi<\hat{\omega}_{2}<-\pi$
Positive Angle
$0<2 \pi+\hat{\omega}_{2}<\pi$

Periodicity and Folding

Co-terminal Angles \rightarrow Periodic

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003
[3] A "graphical interpretation" of the DFT and FFT, by Steve Mann

