FFTW
Copyright (c) 2013 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice and Octave.
Representation of Problems

I/O dimension \(d = (n, i, o) \) (length, input stride, output stride)

I/O tensor \(t = (d_1, d_2, \ldots, d_\rho) \) A set of I/O dimensions

Rank \(\rho = |t| \)

\[d = (n, i, o) \]
\[Y[k] = \sum_{j=0}^{n-1} X[j] \omega_n^j \quad \omega_n = e^{-j2\pi/n} \quad n = n_1n_2 \quad 0 \leq k < n \quad 0 \leq j < n \]

\[k = k_1 + k_2n_1 \quad 0 \leq k_1 < n_1 \quad 0 \leq k_2 < n_2 \]

\[j = j_1n_2 + j_2 \quad 0 \leq j_1 < n_1 \quad 0 \leq j_2 < n_2 \]

\[Y[k_1 + k_2n_1] = \sum_{j_2=0}^{n_2-1} \sum_{j_1=0}^{n_1-1} X[j_1n_2 + j_2] \omega_{n_1n_2}^{(k_1 + k_2n_1)(j_1n_2 + j_2)} \]

\[(k_1 + k_2n_1)(j_1n_2 + j_2) = k_1j_1n_2 + k_2j_1n_1n_2 + k_1j_2 + k_2j_2n_1 \]

\[\omega_{n_1n_2}^{(k_1 + k_2n_1)(j_1n_2 + j_2)} = \omega_{n_1n_2}^{k_1j_1n_2} \cdot \omega_{n_1n_2}^{k_2j_1n_1n_2} \cdot \omega_{n_1n_2}^{k_1j_2} \cdot \omega_{n_1n_2}^{k_2j_2n_1} \]

\[= \omega_{n_1}^{k_1j_1} \cdot \omega_{n_2}^{k_1j_2} \cdot \omega_{n_1}^{k_2j_2} \cdot \omega_{n_2}^{k_2j_2} \]

\[Y[k_1 + k_2n_1] = \sum_{j_2=0}^{n_2-1} \left[\left(\sum_{j_1=0}^{n_1-1} X[j_1n_2 + j_2] \omega_{n_1}^{k_1j_1} \right) \omega_{n_2}^{k_1j_2} \right] \omega_{n_2}^{k_2j_2} \]
DFT (2)

\[Y[k_1 + k_2 n_1] = \sum_{j_2=0}^{n_2-1} \left[\sum_{j_1=0}^{n_1-1} X[j_1 n_2 + j_2] \omega_{n_1}^{k_1 j_1} \omega_{n_2}^{k_1 j_2} \right] \]

n_2 DFT of size n_1 \hspace{1cm} n_1 DFT of size n_2
Message Aggregation
References