FFTW

Copyright (c) 2013 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Representation of Problems

I/O dimension	$d=(n, i, o)$	(length, input stride, output stride)
I/O tensor	$t=\left(d_{1}, d_{2}, \cdots, d_{\rho}\right)$	A set of I/O dimensions
Rank	$\rho=\|t\|$	

$$
d=(n, i, o)
$$

DFT (1)

$$
\begin{aligned}
& Y[k]=\sum_{j=0}^{n-1} X[j] \omega_{n}^{j k} \quad \omega_{n}=e^{-j 2 \pi / n} \quad n=n_{1} n_{2} \quad 0 \leq k<n \quad 0 \leq j<n \\
& k=k_{1}+k_{2} n_{1} \quad 0 \leq k_{1}<n_{1} \quad 0 \leq k_{2}<n_{2} \\
& j=j_{1} n_{2}+j_{2} \quad 0 \leq j_{1}<n_{1} \quad 0 \leq j_{2}<n_{2} \\
& Y\left[k_{1}+k_{2} n_{1}\right]=\sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{1}=0}^{n_{1}-1} X\left[j_{1} n_{2}+j_{2}\right] \omega_{n_{1} n_{2}}^{\left(k_{1}+k_{2} n_{1}\right)\left(j_{1} n_{2}+j_{2}\right)} \\
& \left(k_{1}+k_{2} n_{1}\right)\left(j_{1} n_{2}+j_{2}\right)=k_{1} j_{1} n_{2}+k_{2} j_{1} n_{1} n_{2}+k_{1} j_{2}+k_{2} j_{2} n_{1}
\end{aligned}
$$

$$
\begin{aligned}
& =\omega_{n_{1}}^{k_{1} / \lambda} \cdot 1 \cdot \omega_{n}^{k_{n} / \lambda_{2}} \cdot \omega_{n_{2}}^{k_{2} / 2} \\
& Y\left[k_{1}+k_{2} n_{1}\right]=\sum_{j_{2}=0}^{n_{2}-1}\left[\left(\sum_{j_{1}=0}^{n_{1}-1} X\left[j_{1} n_{2}+j_{2}\right] \omega_{n_{1}}^{k_{1} j_{1}}\right) \omega_{n}^{k_{1} j_{2}}\right] \omega_{n_{2}}^{k_{2} j_{2}}
\end{aligned}
$$

$$
Y\left[k_{1}+k_{2} n_{1}\right]=\frac{\sum_{j_{2}=0}^{n_{2}-1}\left[\left[\left(\sum_{j_{1}=0}^{n_{1}-1} X\left[j_{1} n_{2}+j_{2}\right] \omega_{n_{1}}^{k_{1} j_{1}}\right)\right]\right.}{\left.\omega_{n}^{k_{1} j_{2}}\right] \omega_{n_{2}}^{k_{2} j_{2}}}
$$

Message Aggregation

References

[1] http://en.wikipedia.org/
[2] http://static.msi.umn.edu/tutorial/scicomp/general/MPI/mpi_coll_new.html
[3] https://computing.IInl.gov/tutorials/mpi/
[4] https://computing.Ilnl.gov/tutorials/mpi/
[5] Hager \& Wellein, Introduction to High Performance Computing for Scientists and Engineers
[6] http://www.mpi-forum.org/docs/mpi-11-html

