Capacitor in an AC circuit

Copyright (c) 2011-2017 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License"

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.

Everchanging signal pairs

Capacitor Current

Positive ions and free electrons

positive charge insulator

(positive ions) | negative charge |
| :---: |
| (free electrons) |

[[commons:User crap]] (original work by commons:User:Greg Robson)
https://upload.wikimedia.org/wikipedia/commons /thumb/f/f7/Electron_shell_029_Copper_-_no_label.svg/200px-
Ēlectron_shell_029_Copper_-_no_label.svg.png

Three States

positive charge
(positive ions)

Positively Charged State
fully charged \rightarrow no current
$\begin{array}{cc}\text { negative charge } \\ \text { (free electrons) } & \text { Negatively Charged State } \\ & \text { fully charged } \rightarrow \text { no current }\end{array}$

Fully Discharged State possible large current

Currents in the Fully Discharged State

Inter-State Current Flowing

Under Positively Charging

(+) current flow direction

electron flow
direction

Under Negatively Charging
(-) current flow direction

electron flow
direction

Inter-State Current Flowing

Fully Discharged State
(+) current flow direction

electron flow direction

Under Positively Charging
(+) current flow direction

electron flow direction

Positively Charged State

Crowded \rightarrow No more space
no current

Inter-State Current Flowing

Fully Discharged State
(-) current flow direction

electron flow direction

Under Negatively Charging
(-) current flow direction
electron flow direction

Negatively Charged State

Crowded \rightarrow No more space
no current

An AC Voltage Source

An AC Voltage Source

Fully Charged and Fully Discharged

A Cycle

State Transition Diagram

Current Flow

Continuous Charing and Discharging Operations

```
Incremental Voltage Increment }=>\mathrm{ + Charging incrementally
Incremental Voltage Decrement }=>\mathrm{ - Charging incrementally
```

+ charging incrementally	- charging incrementally	- charging incrementally	+ charging incrementally
+ charging incrementally	- discharging incrementally	- charging incrementally	+ discharging incrementally

Fully Discharged : Large Current

```
Incremental Voltage Increment }=>\mathrm{ Continuous Charging
Incremental Voltage Decrement }=>\mathrm{ Continuous Discharging
```


$y[n+1]-y[n]$

Fully Charged and Fully Discharged

Fully Charged and Fully Discharged

h = bar(t1, y2/t(2), "hist") set(h(1), "facecolor", "y"); hold on
plot(t1, y1)
axis([0 7 -1 1]);

$$
\frac{y[n]-y[n+1]}{T}
$$

$$
\propto \frac{d y}{d t}
$$

Fully Charged and Fully Discharged

Fully Charged and Fully Discharged

Pulse

v_{c}

$$
i_{C}=C \frac{d v_{C}}{d t}
$$

i_{c}

$$
\omega \uparrow \quad i_{c} \uparrow \quad x_{c} \downarrow
$$

i_{c}

i_{c}

Time Constants

i_{c}

Time Constants

i_{c}

$$
\begin{aligned}
& \tau_{1}<\tau_{2}<\tau_{3} \\
& a_{1}>a_{2}>a_{3}
\end{aligned}
$$

$$
e^{-\frac{t}{\tau}}=e^{-\frac{t}{R C}}=e^{-a t}
$$

$$
\tau=R C=\frac{1}{a}
$$

Time Constants

i_{c}

$$
\tau=R C
$$

$$
e^{-\frac{t}{\tau}}=e^{-\frac{t}{R C}}
$$

small τ
small C
large $\frac{1}{\omega C} \gg R$
Fully Capacitative

$$
\begin{aligned}
& \tau=R C \\
& e^{-\frac{t}{\tau}}=e^{-\frac{t}{R C}}
\end{aligned}
$$

large τ
large C
small $\frac{1}{\omega C} \ll R$
Fully Resistive

Time Constants

i_{c}

$\tau=R C$
$e^{-\frac{t}{\tau}}=e^{-\frac{t}{R C}}$
small τ
small C
large $\frac{1}{\omega C} \gg R$
Fully Capacitative

$$
\begin{aligned}
& \tau=R C \\
& e^{-\frac{t}{\tau}}=e^{-\frac{t}{R C}}
\end{aligned}
$$

large τ
large C
small $\frac{1}{\omega C} \ll R$
Fully Resistive

Superposition - Small Time Constant

Small Time Constants

$$
\begin{aligned}
& x^{L^{L T} r_{r}} \quad I^{I^{\prime \prime}} l_{11}
\end{aligned}
$$

Superposition - Large Time Constant

Large Time Constants

Time Constants

i_{c}

$$
\begin{aligned}
& \tau=R C \\
& e^{-\frac{t}{\tau}}=e^{-\frac{t}{R C}}
\end{aligned}
$$

small τ
small C
large $\frac{1}{\omega C} \gg R$

$$
\begin{aligned}
& \tau=R C \\
& e^{-\frac{t}{\tau}}=e^{-\frac{t}{R C}}
\end{aligned}
$$

large τ
large C
small $\frac{1}{\omega C} \ll R$

Plotting superposition results

```
clf
t = linspace(0, pi*2,50);
tt= linspace(0, pi*2, 500);
N = length(t);
NN= length(tt);
t1 = t;
t2 = [t(2:N), t(N)];
y1 = sin(t1);
y2 = sin(t2) - sin(t1);
yy = [y1; zeros(NN/N-1, N)];
yy2= yy(:)';
a = 1/300;
yy3= e.^(-a*tt);
yy3 =yy3 - [zeros(1, NN/N),
e.^(-a*tt)](1:NN);
```

```
svec = zeros(1, NN);
for i = 1:NN;
    tvec = zeros(1, NN);
    tvec = [zeros(1, i-1), yy3];
    tvec = yy2(i) * tvec(1:NN);
    svec = svec + tvec;
endfor
yy4 = svec;
% yy4= conv(yy2, yy3);
y5 = yy4([1:NN/N:NN]);
yy5= yy4([1:NN]);
```

subplot(4, 1, 2);
stem(t1, y2)
subplot(4, 1, 1);
hold on
plot(t1, y1);
plot(tt, yy3);
subplot(4, 1, 3);
stem(t1, y5); hold on plot(tt, yy5)
subplot(4, 1, 4);
plot(yy4);

Small Time Constant

Large Time Constant

yy = [y1;
zeros(NN/N-1, N)];
yy2= yy(:)';
a = 1/300;
yy3= e.^(-a*tt);
yy3 =yy3 -
[zeros(1, NN/N),
e. $\left.{ }^{\wedge}(-a * t t)\right](1: N N)$;
$\tau=R C$
$e^{-\frac{t}{\tau}}=e^{-\frac{t}{R C}}$
large τ
large C
small $\frac{1}{\omega C}$

Time Constants

Evercharging signal pairs

Everchanging signal pairs

$$
\begin{aligned}
& \text { 非非非 } \\
& \text { charge discharge }
\end{aligned}
$$

Everchanging signal pairs
非非非
charge discharge

charge
discharge

$$
\# \# \#+
$$

Everchanging signal pairs

가 가 가 가
charge
discharge

|l|llı..
discharge

41

Everchanging signal pairs

I leads V by 90°

Initial charge	Full charge
SHORT	OPEN
$V=0$	$V:$ peak

References

[1] http://en.wikipedia.org/
[2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003

