Capacitor in an AC circuit

Copyright (c) 2011 – 2017 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice and Octave.
This document was produced by using openomice and octave.

Capacitor Current

Positive ions and free electrons

Three States

Currents in the Fully Discharged State

Inter-State Current Flowing

Under Positively Charging

electron flow direction

Under Negatively Charging

electron flow direction

Young Won Lim

07/29/2017

Inter-State Current Flowing

Fully Discharged State

(+) current flow direction

electron flow direction

Initial large current

Under Positively Charging

(+) current flow direction

electron flow direction

Positively Charged State

Crowded → No more space

no current

Inter-State Current Flowing

Fully Discharged State

(-) current flow direction

electron flow direction

Initial large current

Under Negatively Charging

(-) current flow direction

electron flow direction

Negatively Charged State

Crowded → No more space

no current

An AC Voltage Source

An AC Voltage Source

A Cycle

State Transition Diagram

Current Flow

Continuous Charing and Discharging Operations

Incremental Voltage Increment → + Charging incrementally
Incremental Voltage Decrement → - Charging incrementally

Fully Discharged : Large Current

Incremental Voltage Increment

→ Continuous Charging

Incremental Voltage Decrement
→ Continuous Discharging


```
t = linspace(0, pi*2, 50);
t1 = t;
t2 = t + t(2);
y1 = \sin(t1);
y2 = \sin(t2) - \sin(t1);
stem(t1, y2)
hold on
plot(t1, y1)
```

$$\sin^{7}(nT) - \sin((n+1)T)$$


```
h = bar(t1, [y1' y2'],
"stacked")
set(h(1), "facecolor", "g");
set(h(2), "facecolor", "y");
hold on
plot(t1, y1)
axis([0 7 -1 1]);
```

$$\sin(nT) - \sin((n+1)T)$$

$$\frac{y[n]-y[n+1]}{T}$$

$$\propto \frac{dy}{dt}$$


```
h = bar(t1, [y1' y2'],
"stacked")
set(h(1), "facecolor", "g");
set(h(2), "facecolor", "y");
hold on
plot(t1, y1)
axis([0 pi]);
```

$$\sin(nT) - \sin((n+1)T)$$

Pulse

 i_c

$$i_C = C \frac{d v_C}{d t}$$

 i_c

C

C

i

$$a_1 > a_2 > a_3$$

$$e^{-\frac{t}{\tau}} = e^{-\frac{t}{RC}} = e^{-at}$$

$$\tau = RC = \frac{1}{a}$$

 i_c

$$\tau = RC$$

$$\tau = RC$$

$$e^{-\frac{t}{\tau}} = e^{-\frac{t}{RC}}$$

$$\tau = RC$$

$$e^{-\frac{t}{\tau}} = e^{-\frac{t}{RC}}$$

small τ

small C

large
$$\frac{1}{\omega C} \gg R$$

Fully Capacitative

large τ

large C

small
$$\frac{1}{\omega C} \ll R$$

Fully Resistive

$$\tau = RC$$

$$\tau = RC$$

$$e^{-\frac{t}{\tau}} = e^{-\frac{t}{RC}}$$

$$\tau = RC$$

$$e^{-\frac{t}{\tau}} = e^{-\frac{t}{RC}}$$

small
$$\tau$$

small C

large
$$\frac{1}{\omega C} \gg R$$

Fully Capacitative

large
$$\tau$$

large C

small
$$\frac{1}{\omega C} \ll R$$

Fully Resistive

Superposition - Small Time Constant

Small Time Constants

Superposition – Large Time Constant

Large Time Constants

$$\tau = RC$$

$$\tau = RC$$

$$e^{-\frac{t}{\tau}} = e^{-\frac{t}{RC}}$$

$$\tau = RC$$

$$\tau = RC$$

$$e^{-\frac{t}{\tau}} = e^{-\frac{t}{RC}}$$

small τ

small C

Capacitor - AC

large
$$\frac{1}{\omega C} \gg R$$

large C

small
$$\frac{1}{\omega C} \ll R$$

Plotting superposition results

```
clf
t = linspace(0, pi*2, 50);
tt = linspace(0, pi*2, 500);
N = length(t);
NN= length(tt);
t1 = t:
t2 = [t(2:N), t(N)];
y1 = \sin(t1);
y2 = \sin(t2) - \sin(t1);
yy = [y1; zeros(NN/N-1, N)];
yy2 = yy(:)';
a = 1/300:
yy3 = e.^{(-a*tt)};
yy3 = yy3 - [zeros(1, NN/N),
e.^{(-a*tt)}(1:NN):
```

```
svec = zeros(1, NN);
for i = 1:NN;
  tvec = zeros(1, NN);
  tvec = [zeros(1, i-1), yy3];
  tvec = yy2(i) * tvec(1:NN);
  svec = svec + tvec;
endfor
  yy4 = svec;
% yy4= conv(yy2, yy3);
y5 = yy4([1:NN/N:NN]);
yy5= yy4([1:NN]);
```

```
subplot(4, 1, 2);
stem(t1, y2)
subplot(4, 1, 1);
hold on
plot(t1, y1);
plot(tt, yy3);
subplot(4, 1, 3);
stem(t1, y5); hold on
plot(tt, yy5)
subplot(4, 1, 4);
plot(yy4);
```

Small Time Constant


```
yy = [y1;
zeros(NN/N-1, N)];
yy2= yy(:)';
a = 300;
yy3 = e.^{(-a*tt)};
yy3 = yy3 -
[zeros(1, NN/N),
e.^(-a*tt)](1:NN);
\tau = RC
small \tau
small C
large \frac{1}{\omega C}
```

Large Time Constant


```
yy = [y1;
zeros(NN/N-1, N)];
yy2= yy(:)';
a = 1/300;
yy3 = e.^{(-a*tt)};
yy3 = yy3 -
[zeros(1, NN/N),
e.^(-a*tt)](1:NN);
\tau = RC
large τ
large C
small \frac{1}{\omega C}
```


I leads V by 90°

V = 0

I: peak

OPEN

I = 0

V : peak

References

- [1] http://en.wikipedia.org/
- [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003