Eulerian Cycle (2A)

Young Won Lim 5/25/18 Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

A **path** is a **trail** in which all **vertices** are <u>distinct</u>. (except possibly the first and last)

A trail is a walk in which all edges are distinct.

	Vertices	Edges	
Walk	may	may	(Closed/Open)
	repeat	repeat	
Trail	may	<u>cannot</u>	(Open)
	repeat	repeat	
Path	<u>cannot</u>	<u>cannot</u>	(Open)
	repeat	repeat	
Circuit	may	<u>cannot</u>	(Closed)
	repeat	repeat	
Cycle	<u>cannot</u>	<u>cannot</u>	(Closed)
	repeat	repeat	

https://en.wikipedia.org/wiki/Eulerian_path

Most literatures require that all of the **edges** and **vertices** of a **path** be <u>distinct</u> from one another.

But, some do <u>not require</u> this and instead use the term **simple path** to refer to a **path** which contains <u>no repeated</u> **vertices**.

4

A **simple cycle** may be defined as a **closed walk** with <u>no</u> <u>repetitions</u> of **vertices** and **edges** allowed, other than the <u>repetition</u> of the **starting** and **ending vertex**

There is considerable variation of terminology!!! Make sure which set of definitions are used...

https://en.wikipedia.org/wiki/Eulerian_path

Most literatures

trail circuit path cycle

narrow sense path & cycle

some other literatures

path		cycle	
	simple path	simple cycle	

wide sense path & cycle

Eulerian Cycles (2A)

path
$$v_{0,} e_{1,} v_{1,} e_{2,} \cdots, e_{k}, v_{k}$$

cycle $v_{0,} e_{1,} v_{1,} e_{2,} \cdots, e_{k}, v_{k}$ $(v_{0} = v_{k})$

path
$$v_{0,} e_{1,} v_{1,} e_{2,} \cdots, e_{k}, v_{k}$$
 $(v_{0} \neq v_{k})$
cycle $v_{0,} e_{1,} v_{1,} e_{2,} \cdots, e_{k}, v_{k}$ $(v_{0} = v_{k})$

р	ath	cycle	

Two different kinds

Euler Cycle

Some people reserve the terms **path** and **cycle** to mean <u>non-self-intersecting</u> path and cycle.

A (potentially) <u>self-intersecting</u> path is known as a **trail** or an **open walk**;

and a (potentially) <u>self-intersecting</u> cycle, a **circuit** or a **closed walk**.

This ambiguity can be avoided by using the terms **Eulerian trail** and **Eulerian circuit** when <u>self-intersection</u> is allowed no repeating vertices

repeating vertices

repeating vertices

repeating vertices

https://en.wikipedia.org/wiki/Eulerian_path

Degree of a vertex

the **degree** (or **valency**) of a vertex is the number of edges <u>incident</u> to the vertex, with loops counted twice.

The degree of a vertex v is denoted deg(v) the maximum degree of a graph G, denoted by $\Delta(G)$ the minimum degree of a graph, denoted by $\delta(G)$

 $\begin{array}{l} \Delta(G)=5\\ \delta(G)=0 \end{array}$

In a regular graph, all degrees are the same

https://en.wikipedia.org/wiki/Degree_(graph_theory)

a **regular graph** is a graph where each vertex has the <u>same number</u> of <u>neighbors</u>; i.e. every vertex has the <u>same degree</u> or valency.

https://en.wikipedia.org/wiki/Regular_graph

Eulerian Cycles (2A)

Handshake Lemma

The degree sum formula states that, given a graph G = (V, E)

$$\sum_{v\in V} \deg(v) = 2|E|$$
 .

This statement (as well as the degree sum formula) is known as the **handshaking lemma**.

deg(a) = 1	
deg(b) = 3	
deg(c) = 3	
deg(d) = 2	
deg(e) = 5	
deg(f) = 2	
deg(g) = 0	E = 8
16	2 E = 16

https://en.wikipedia.org/wiki/Degree_(graph_theory)

Eulerian Cycles (2A)

Adding odd vertex

https://en.wikipedia.org/wiki/Eulerian_path

Eulerian Cycles (2A)

The number of odd vertices

Even vertices :
$$\{x_1, x_2, \dots, x_m\}$$
Odd vertices : $\{y_1, y_2, \dots, y_n\}$ $S = \underline{deg(x_1)} + \underline{deg(x_2)} + \dots + \underline{deg(x_m)}$ $T = \underline{deg(y_1)} + \underline{deg(y_2)} + \dots + \underline{deg(y_n)}$ $deg(x_i)$: even $T = \underline{odd} + \underline{odd} + \dots + \underline{odd}$ $S = \underline{even} + \underline{even} + \dots + \underline{even}$ $T = \underline{odd} + \underline{odd} + \dots + \underline{odd}$

in any graph, the number of vertices with <u>odd degree</u> is <u>even</u>.

# of odd vertices	Eulerian Path	Eulerian Cycle
0	No	Yes
2	Yes	No
4,6,8,	No	No
1,3,5,7,	No such graph	No such graph

References

Graph Search (6A)

Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

graph traversal (graph search) refers to the process of <u>visiting</u> (checking and/or updating) each **vertex** in a graph.

Such traversals are <u>classified</u> by the <u>order</u> in which the vertices are visited.

Tree traversal is a special case of graph traversal.

https://en.wikipedia.org/wiki/Graph_traversal

nłj

BIS

Stack

quene

BFS

A depth-first search (**DFS**) **DFS** is an algorithm for traversing a finite graph.

DFS visits the **child vertices** <u>before</u> visiting the **sibling vertices**;

that is, it traverses the **depth** of any particular path <u>before</u> exploring its **breadth**.

A **stack** (often the program's call stack via recursion) is generally used when implementing the algorithm.

poy

4

https://en.wikipedia.org/wiki/Graph traversal

Start

The algorithm begins with a chosen "**root**" vertex;

it then iteratively transitions from the **current** vertex to an **adjacent**, **unvisited** vertex, until it can <u>no longer</u> find an **unexplored vertex** to transition to from its current location.

The algorithm then **backtracks** along previously **visited vertices**, until it finds a vertex connected to yet more uncharted territory.

It will then proceed down the **new path** as it had before, **backtracking** as it encounters **dead-ends**, and ending only when the algorithm has backtracked past the original "root" vertex from the very first step.

https://en.wikipedia.org/wiki/Graph_traversal

 \rightarrow

A breadth-first search (**BFS**) is another technique for traversing a finite graph.

BFS visits the **neighbor** vertices before visiting the **child** vertices

a queue is used in the search process

This algorithm is often used to find the **shortest path** from one vertex to another.

https://en.wikipedia.org/wiki/Graph_traversal

Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

Breadth First Search Example

a e i s b f

5

https://en.wikipedia.org/wiki/Graph_traversal

General Graph Search Algorithm – 1

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

Possible duplication

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

Graph Search (6A)

Must check before expansion

https://en.wikiversity.org/wiki/Artificial_intelligence/Lecture_aid

Graph Search (6A)

General Graph Search Algorithm – 1

```
Search(Start, isGoal, Criteria)
insert(Start, Open);
repeat
if (empty(Open)) then return fail;
select node from Open using Criteria;
mark node as <u>visited</u>;
if (isGoal(node)) then return node;
for each child of node do
if (child <u>not</u> already <u>visited</u>)
then insert(child, Open);
```

Remedy 1: check if visited when selecting

Remedy 2: check redundant nodes

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

DFS-1 (Depth First Search)

Open list – use a stack Select with Criteria – **pop**

DFS (Start, isGoal)	
push(Start, Open);	// push
repeat	
if (empty(Open)) then return fail;	
node := pop(Open) ;	// рор
mark node as <u>visited;</u>	
if (isGoal (node)) then return node;	
for each child of node do	
if (child <u>not</u> already <u>visited</u>) then	
<pre>push(child, Open);</pre>	// push

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

DFS-1 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

DFS-1 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

BFS-1 (Breadth First Search)

Open list – use a FIFO Select with Criteria – **dequeue**

BFS(Start, isGoal)	
enqueue(Start, Open);	// enqueue
repeat	
if (empty(<mark>Open</mark>)) then return fail;	
node := dequeue(Open);	// dequeue
mark node as visited;	
if (isGoal(node)) then return node;	
for each child of node do	
if (child <u>not</u> already visited) then	
enqueue(child, Open);	// enqueue

https://courses.cs.washington.edu/courses/cse326/08wi/a/lectures/lecture13.pdf

BFS-1 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

BFS-1 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

Young Won Lim 5/24/18

General Graph Search Algorithm – 2

```
Initialize as follows:
    unmark all nodes in N;
    mark node s;
    pred(s) = 0; {that is, it has no predecessor}
    LIST = {s}
while LIST ≠ Ø do
    select a node i in LIST;
    if node j is incident to an admissible arc (i,j) then
        mark node j;
        pred(j) := i;
        add node j to the end of LIST;
    else
        delete node i from LIST
```


https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

Admissible arc

pred(j) is a node that precedes j on some path from s;

A node is either **marked** or **unmarked**.

Initially only node s is marked.

If a node is marked, it is reachable from node s.

An arc $(i,j) \in A$ is **admissible** if node i is <u>marked</u> and j is <u>not</u>.

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

LIST

Before a node is <u>added</u> into LIST, the node is **marked**

LIST contains only the marked nodes

thus, the <u>selected</u> node **i** is **marked** already

The node **j** incident to the **admissible** arc(**i**,**j**) must be **unmarked**

This node **j** is **marked** and <u>added</u> into LIST

In this way, LIST contains only **marked** and **non-repeating** nodes

Check before inserting

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

DFS-2

```
Initialize as follows:
    unmark all nodes in N;
    mark node s;
    pred(s) = 0; {that is, it has no predecessor}
    push s onto LIST
while LIST ≠ Ø do
    pop a node i from LIST;
    if node j is incident to an admissible arc (i,j) then
        mark node j;
        pred(j) := i;
        push(node j) onto LIST;
    else
        delete node i from LIST
```

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

DFS-2 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

DFS-2 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

BFS-2

```
Initialize as follows:
    unmark all nodes in N;
    mark node s;
    pred(s) = 0; {that is, it has no predecessor}
    enqueue s onto LIST
while LIST ≠ Ø do
    dequeue node i from LIST;
    if node j is incident to an admissible arc (i,j) then
        mark node j;
        pred(j) := i;
        enqueue node j onto LIST;
    else
        delete node i from LIST
```

https://ocw.mit.edu/courses/sloan-school-of-management/15-082j-network-optimization-fall-2010/lecture-notes/MIT15_082JF10_lec03.pdf

BFS-2 Example (1)

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

BFS-2 Example (2)

https://en.wikipedia.org/wiki/Graph_traversal

Graph Search (6A)

Young Won Lim 5/24/18

DFS Pseudocode

1 procedure DFS(G, v):

- 2 label v as explored
- 3 for all edges e in G.incidentEdges(v) do
- if edge e is unexplored then 4
- 5 w - G.adjacentVertex(v, e)
- 6 if vertex w is unexplored then 7
 - label e as a discovered edge
- 8 recursively call DFS(G, w)
- 9 else
- 10 label e as a back edge

https://en.wikipedia.org/wiki/Graph traversal

BFS Pseudocode

1 procedure BFS(G, v):

- 2 create a queue Q
- 3 enqueue v onto Q
- 4 mark v
- 5 while Q is not empty:
- 6 t ← Q.dequeue()
- 7 if t is what we are looking for:
- 8 return t
- 9 for all edges e in G.adjacentEdges(t) do
- 12 $o \leftarrow G.adjacentVertex(t, e)$
- if o is not marked:
- 14 mark o
- 15 enqueue o onto Q
- 16 return null

https://en.wikipedia.org/wiki/Graph_traversal

References

Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints.

it can be drawn in such a way that no edges cross each other. Such a drawing is called a **plane graph** or **planar embedding** of the graph. (**planar representation**)

A **plane graph** can be defined as a planar graph with a mapping from every <u>node</u> to a <u>point</u> on a <u>plane</u>, and from every <u>edge</u> to a <u>plane curve</u> on that plane, such that the extreme points of each curve are the points mapped from its <u>end</u> nodes, and all curves are <u>disjoint</u> except on their extreme points.

Planar Graph Examples

4

Planar Representation

Non-planar Graph K_{3,3}

no where v_6

Non-planar

Discrete Mathematics, Rosen

Planar Graph (7A)

6

Young Won Lim 5/25/18

Non-planar graph examples

Homeomorphic

All these graphs are <u>similar</u> in determining whether they are planar or not

Subdivision and Smoothing

Homeomorphism

two graphs G_1 and G_2 are **homeomorphic** if there is a graph **isomorphism** from some **subdivision** of G_1 to some **subdivision** of G_2 homeo (identity, sameness) iso (equal)

https://en.wikipedia.org/wiki/Planar_graph

Homeomorphism Examples

https://en.wikipedia.org/wiki/Planar_graph

Embedding on a surface

subdividing a graph preserves planarity.

Kuratowski's theorem states that

a finite graph is **planar** if and only if it contains **no** subgraph **homeomorphic** to K_5 (complete graph on five vertices) or $K_{3,3}$ (complete bipartite graph on six vertices, three of which connect to each of the other three).

In fact, a graph homeomorphic to K_5 or $K_{3,3}$ is called a Kuratowski subgraph.

A finite graph is planar if and only if it does <u>not</u> contain a **subgraph** that is a **subdivision** of the complete graph K_5 or the complete bipartite graph K_{33} (utility graph).

A subdivision of a graph results from inserting vertices into edges (changing an edge •——• to •—•) zero or more times.

 K_5 or $K_{3,3}$ subgraph. However, it contains a subdivision of $K_{3,3}$ and is therefore non-planar.

Kuratowski's Theorem

A subdivision of $K_{3,3}$

Euler's formula states that if a **finite**, **connected**, **planar graph** is drawn in the plane without any edge intersections, and **v** is the number of **vertices**, **e** is the number of **edges** and **f** is the number of **faces** (regions bounded by edges, including the outer, infinitely large region), then

v – e + f = 2

Euler's Formula Examples

In a finite, connected, simple, planar graph,

any **face** (except possibly the outer one) is bounded by <u>at least three</u> **edges** and

every edge touches at most two faces;

using Euler's formula, one can then show that these graphs are **sparse** in the sense that if $v \ge 3$:

e ≤ 3 v − 6

Corollary 1 Examples

In a finite, connected, simple, planar graph,

Every vertex has a **degree** not exceeding **5**.

deg(v) ≤ 5

Corollary 2 Examples

the dual graph of a plane graph G is a graph that has a **vertex** for each **face** of G.

The dual graph has an **edge** whenever two **faces** of G are <u>separated</u> from each other by an **edge**,

and a **self-loop** when the <u>same</u> **face** appears on <u>both</u> <u>sides</u> of an **edge**.

each **edge e** of G has a corresponding <u>dual</u> <u>edge</u>, whose <u>endpoints</u> are the <u>dual</u> <u>vertices</u> corresponding to the **faces** on <u>either</u> <u>side</u> of **e**.

Dipoles and Cycles

Self-loop in a dual graph

a **self-loop** when the <u>same</u> **face** appears on <u>both</u> <u>sides</u> of an **edge**.

https://www.math.hmc.edu/~kindred/cuc-only/math104/lectures/lect17-slides-handout.pdf

Hamiltonian Cycles (3A)

Young Won Lim 5/25/18

Vertices of G*	Faces of G
Edges of G*	Edges of G
Multigraph	Dual of a plane graph
Loops of G*	Cut edge of G
Multiple edges of G*	distinct faces of G with multiple
	common boundary edges

https://en.wikipedia.org/wiki/Hamiltonian_path

a **cut** is a **partition** of the **vertices** of a graph into two disjoint **subsets**.

Any **cut** determines a **cut-set** the **set** of **edges** that have one endpoint in <u>each</u> <u>subset</u> of the partition.

These edges are said to **cross** the cut.

In a connected graph, each **cut-set** determines a <u>unique</u> **cut**, and in some cases cuts are identified with their **cut-sets** rather than with their **vertex** partitions.

https://en.wikipedia.org/wiki/Cut_(graph_theory)

A cut is minimum if the size or weight of the cut is not larger than the size of any other cut.

the size of this cut is 2, and there is no cut of size 1 because the graph is bridgeless.

https://en.wikipedia.org/wiki/Cut_(graph_theory)
A cut is maximum if the size of the cut is not smaller than the size of any other cut.

the size of the cut is equal to 5, and there is no cut of size 6, or |E| (the number of edges), because the graph is not bipartite (there is an odd cycle).

https://en.wikipedia.org/wiki/Cut_(graph_theory)

The concept of duality applies as well to **infinite graphs** embedded in the plane as it does to **finite graphs**.

When all faces are bounded regions surrounded by a cycle of the graph, an **infinite planar** graph embedding can also be viewed as a **tessellation** of the plane, a covering of the plane by closed disks (the **tiles** of the **tessellation**) whose interiors (the **faces** of the **embedding**) are disjoint open disks.

https://en.wikipedia.org/wiki/Dual_graph

Dual Logic Graph

30

Hamiltonian Cycles (3A)

Young Won Lim 5/25/18

Stick Layout

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Hamiltonian Cycles (3A)

31

CMOS Transistors and Stick Layout

https://en.wikipedia.org/wiki/CMOS

Single-Strip Stick Graph and Logic Graph

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Stick Graph and Logic Diagram

34

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Stick Graph and Logic Diagram

Eulerian Trail

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Eulerian Circuit

References

Graph Coloring (9A)

Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Graph Coloring

graph coloring is a special case of graph labeling;

it is an assignment of labels (colors) to elements of a graph subject to certain constraints.

a vertex coloring

V

is a way of coloring the vertices of a graph such that no two <u>adjacent</u> vertices share the same color

an edge coloring

assigns a color to each edge so that no two <u>adjacent</u> edges share the same color

a face coloring of a planar graph

assigns a color to each face or region so that no two faces that <u>share a boundary</u> have the same color.

4

https://en.wikipedia.org/wiki/Graph_coloring

planar gray

Graph Coloring Relations

an **edge coloring** of a graph is just a **vertex coloring** of its **line graph**,

a **face coloring** of a plane graph is just a **vertex coloring** of its **dual graph**.

However, non-vertex coloring problems are often stated and studied as is.

a graph coloring means almost always a **vertex coloring**.

Since a vertex with a loop could never be properly colored, a **loopless** graph is generally assumed.

https://en.wikipedia.org/wiki/Graph_coloring

k-coloring a coloring using <u>at most</u> **k colors**

chromatic number, $\chi(G)$ the smallest number of colors needed to color a graph G

A graph that can be assigned a (proper) **k-coloring** is **k-colorable**

A graph whose **chromatic number** is <u>exactly</u> **k** is **k-chromatic**

https://en.wikipedia.org/wiki/Graph_coloring

A subset of vertices assigned to the same color is called a **color class**,

every such class forms an independent set.

a **k-coloring** is the same as a **partition** of the vertex set into **k** <u>independent</u> <u>sets</u>,

the terms **k-partite** and **k-colorable** have the same meaning.

Petersen graph with 3 colors, the minimum number possible.

https://en.wikipedia.org/wiki/Graph_coloring

a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U and V such that every edge connects a vertex in U to one in V.

Vertex sets U and V are usually called the parts of the graph.

Equivalently, a bipartite graph is a graph that does <u>not</u> contain any **odd-length cycles**.

https://en.wikipedia.org/wiki/Bipartite_graph

The two sets U and V may be thought of as a coloring of the graph with **two colors**:

if one colors all nodes in U blue, and all nodes in V green, each edge has endpoints of differing colors, as is required in the graph coloring problem.

In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a triangle: 3 colors

https://en.wikipedia.org/wiki/Bipartite_graph

Graph Coloring (9A)

Bipartite Graph : degree sequence

References

Tree Traversal (1A)

Copyright (c) 2015 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Depth First Search Pre-Order In-order Post-Order **Breadth First Search**

Recursive Algorithms

inorder(node)
if (node = null)
 return
inorder(node.left)
visit(node)
inorder(node.right)

postorder(node)
if (node = null)
 return
postorder(node.left)
postorder(node.right)
visit(node)

4

https://en.wikipedia.org/wiki/Tree_traversal

Iterative Algorithms

iterativePreorder(node)

if (node = null) return s ← empty stack s.**push**(node)

while (not s.isEmpty())
node ← s.pop()
visit(node)
// right child is pushed first
// so that left is processed first
if (node.right ≠ null)
s.push(node.right)
if (node.left ≠ null)
s.push(node.left)

https://en.wikipedia.org/wiki/Tree_traversal

iterativeInorder(node) s ← empty stack

iterativePostorder(node)
s ← empty stack
lastNodeVisited ← null

while (not s.isEmpty() or node ≠ null)
if (node ≠ null)
s.push(node)
node ← node.left
else
peekNode ← s.peek()
// if right child exists and traversing
// node from left child, then move right
if (peekNode.right ≠ null and
lastNodeVisited ≠ peekNode.right)
node ← peekNode.right

else

visit(peekNode)
lastNodeVisited ← s.pop()

Infix, Prefix, Postfix Notations

Infix Notation	Prefix Notation	Postfix Notation
A + B	+ A B	A B +
(A + B) * C	* + A B C	A B + C *
A * (B + C)	* A + B C	A B C + *
A / B + C / D	+/AB/CD	AB/CD/+
((A + B) * C) – D	- * + A B C D	A B + C * D –

https://www.tutorialspoint.com/data_structures_algorithms/expression_parsing.html

6

Infix, Prefix, Postfix Notations and Binary Trees

Infix Notation	Prefix Notation	Postfix Notation
A + B	+ A B	A B +
(A + B) * C	* + A B C	A B + C *
A * (B + C)	* A + B C	A B C + *
A / B + C / D	+/AB/CD	AB/CD/+
((A + B) * C) – D	– * + A B C D	A B + C * D –

Tree Traversal (1A)

In-Order, Pre-Order, Post-Order Binary Tree Traversals

Depth First Search Pre-Order In-order Post-Order

Breadth First Search

Pre-Order Binary Tree Traversals

(a*(b-c))+(d/e)

a * b – c + d / e	Infix notation
+ * a – b c / d e	Prefix notation
a b c – * d e / +	Postfix notation

In-Order Binary Tree Traversals

(a*(b-c))+(d/e)

a * b – c + d / e	Infix notation
+ * a – b c / d e	Prefix notation
a b c – * d e / +	Postfix notation

Post-Order Binary Tree Traversals

(a*(b-c))+(d/e)

a * b – c +

+ * a – b c

a b c – * d

d/e	Infix notation
/de	Prefix notation
e / +	Postfix notation

Tree Traversal

Depth First Search Pre-Order In-order Post-Order

Breadth First Search

https://en.wikipedia.org/wiki/Morphism

Tree Traversal (1A)

pre-order function
 Check if the current node is empty / null.
 <u>Display</u> the data part of the root (or current node).
 Traverse the left subtree by recursively calling the pre-order function.
 Traverse the right subtree by recursively calling the pre-order function.

Tree Traversal (1A)

In-Order

in-order function
Check if the current node is empty / null.
Traverse the left subtree by recursively calling the in-order function.
<u>Display</u> the data part of the root (or current node).
Traverse the right subtree by recursively calling the in-order function.

post-order function

Check if the current node is empty / null.

Traverse the left subtree by recursively calling the **post-order** function.

Traverse the right subtree by recursively calling the **post-order** function.

Display the data part of the root (or current node).

ACEDBHIGH pre-order

Recursive Algorithms

preorder(node)
if (node = null)
 return
visit(node)
preorder(node.left)
preorder(node.right)

inorder(node)
if (node = null)
 return
inorder(node.left)
visit(node)
inorder(node.right)

postorder(node)
if (node = null)
 return
postorder(node.left)
postorder(node.right)
visit(node)

Young Won Lim

5/26/18

Tree Traversal (1A)

Pre-Order recursive algorithm

preorder(node)
if (node = null)
 return
visit(node)
preorder(node.left)
preorder(node.right)

https://en.wikipedia.org/wiki/Tree_traversal
Iterative Algorithms

iterativePreorder(node)

if (node = null) return s ← empty stack s.**push**(node)

while (not s.isEmpty())
node ← s.pop()
visit(node)
// right child is pushed first
// so that left is processed first
if (node.right ≠ null)
s.push(node.right)
if (node.left ≠ null)
s.push(node.left)

https://en.wikipedia.org/wiki/Tree_traversal

iterativeInorder(node) s ← empty stack

iterativePostorder(node) s ← empty stack lastNodeVisited ← null

while (not s.isEmpty() or node ≠ null)
if (node ≠ null)
s.push(node)
node ← node.left
else
peekNode ← s.peek()
// if right child exists and traversing
// node from left child, then move right
if (peekNode.right ≠ null and
lastNodeVisited ≠ peekNode.right
else
visit(peekNode)
lastNodeVisited ← s.pop()

Tree Traversal (1A)

18

https://en.wikipedia.org/wiki/Morphism

Stack

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

 $https://en.wikipedia.org/wiki/Queue_(abstract_data_type) \#/media/File:Data_Queue.sv$

g

Search Algorithms

DFS (Depth First Search)

BFS (Breadth First Search)

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

A recursive implementation of DFS:

DFS (Depth First Search)

A non-recuUrsive implementation of DFS:

```
procedure DFS-iterative(G,v):
let S be a stack
S.push(v)
while S is not empty
v = S.pop()
if v is not labeled as discovered:
label v as discovered
for all edges from v to w in G.adjacentEdges(v) do
S.push(w)
```

 $https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search$

Search Algorithms

DFS (Depth First Search)

BFS (Breadth First Search)

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

BFS Algorithm

Breadth-First-Search(Graph, root):

```
create empty set S
create empty queue Q
```

add root to S Q.enqueue(root)

```
while Q is not empty:
    current = Q.dequeue()
    if current is the goal:
        return current
    for each node n that is adjacent to current:
        if n is not in S:
            add n to S
            n.parent = current
            Q.enqueue(n)
```

https://en.wikipedia.org/wiki/Breadth-first_search, /Depth-first_search

BFS (Breadth First Search)

In-Order

26

Ternary Tree

a-b-e-j-k-n-o-p-f-c-d-g-l-m-h-i

Rosen

In-Order

Rosen

Post-Order

Rosen

Ternary

Ternary

Etymology Late Latin ternarius ("consisting of three things"), from terni ("three each"). Adjective

ternary (not comparable) Made up of three things; treble, triadic, triple, triplex Arranged in groups of three (mathematics) To the base three [quotations ▼] (mathematics) Having three variables

https://en.wiktionary.org/wiki/ternary

The sequence continues with **quaternary**, **quinary**, **senary**, **septenary**, **octonary**, **nonary**, and **denary**, although most of these terms are rarely used. There's no word relating to the number eleven but there is one that relates to the number twelve: **duodenary**.

https://en.oxforddictionaries.com/explore/what-comes-after-primary-secondary-tertiary

References

Formal Language (1A)

Young Won Lim 5/22/18 Copyright (c) 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Class of Automata

https://en.wikipedia.org/wiki/Automata_theory

Finite State Machine

The figure at right illustrates a **finite-state machine**, which belongs to a well-known type of **automaton**.

This automaton consists of **states** (represented in the figure by circles) and **transitions** (represented by arrows).

As the automaton sees a **symbol** of **input**, it makes a **transition** (or jump) to another **state**, according to its **transition function**, which takes the **current state** and the recent **symbol** as its **inputs**.

properties of such automata is automata theory. The picture is a visualization of an automaton that recognizes strings containing an even number of 0s. The automaton starts in state S1, and transitions to the nonaccepting state S2 upon reading the symbol 0. Reading another 0 causes the automaton to transition back to the accepting state S1. In both states the symbol 1 is ignored by making a transition to the current state.

https://en.wikipedia.org/wiki/Automata_theory

The head is always over a particular square \Box of the tape; only a finite stretch of squares is shown. The instruction to be performed (q₄) is shown over the scanned square. (Drawing after Kleene (1952) p. 375.)

the head, and the illustration describes the tape as being infinite and pre-filled with "0", the symbol serving as blank. The system's full state (its *complete configuration*) consists of the internal state, any non-blank symbols on the tape (in this illustration "11B"), and the position of the head relative to those symbols including blanks, i.e. "011B". (Drawing after Minsky (1967) p. 121.)

https://en.wikipedia.org/wiki/Turing_machine

Pushdown Automaton

a pushdown automaton (PDA) is a type of automaton that employs a stack

https://en.wikipedia.org/wiki/Pushdown_automaton

Finite State Machine

https://en.wikipedia.org/wiki/Finite-state_machine

Formal Language (11A)

References

Finite State Machine (3A)

Copyright (c) 2013 - 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Formal Language

а

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FSM (3A)

NOR-based SR Latch

4

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A)

Young Won Lim 5/25/18

NOR-based SR Latch States

5

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

SR Latch Symbols

8

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

NOR-based D Latch

NOR-based D Latch

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Master-Slave D FlipFlop

Master D Latch

Master-Slave D F/F

the hold output of the master is transparently reaches the output of the slave this value is held for another half period

Master-Slave D FlipFlop – Falling Edge

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Master-Slave D FlipFlop – Rising Edge

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

D Latch & D FlipFlop

Level Sensitive D Latch

CK=1 transparent CK=0 opaque

Edge Sensitive D FlipFlop

 $CK=1 \rightarrow 0$ transparent else opaque

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

D FlipFlop with Enable

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FF Timing (Ideal)

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A)

19
Sequence of States

 $https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design$

When NextSt becomes CurrSt

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Finding FF Inputs

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

During the tth clock edge period,

Compute the next state Q(t+1) using the current state Q(t) and other external inputs

Place it to FF inputs

After the next clock edge, $(t+1)^{th}$, the computed next state Q(t+1) becomes the current state

Method of Finding FF Inputs

Latches and Flip-flops (1A)

D_{3:0}

 $\mathsf{Q}_{_{3:0}}$

State Transition

25

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and Flip-flops (1A)

Mealy Machine

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Latches and FF's

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

FSM Inputs and Outputs

Latches and Flip-flops (1A)

States

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Latches and Flip-flops (1A)

Moore FSM State Transition Table

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

 $S_1 S_0 T_A T_B S_1 S_0'$

0 0 0 X 0 1

0 0 1 X 0 0

0 1 X X 1 0

10X011

1 0 X 1 1 0

1 1 X X 0 0

States

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Moore FSM (1)

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Latches and Flip-flops (1A)

32

Moore FSM

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Divide By N Counter FSM

39

Encoding States

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Latches and Flip-flops (1A)

40

References

