Eulerian Cycle (2A)

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Path and Trail

A path is a trail in which all vertices are distinct. (except possibly the first and last)

A trail is a walk in which all edges are distinct.

	Vertices	Edges	
Walk	may repeat	may repeat	(Closed/Open)
Trail	may repeat	cannot repeat	(Open)
Path	cannot repeat	cannot repeat	(Open)
Circuit	may repeat Cycle	cannot repeat repeat	cannot repeat

Simple Paths and Cycles

Most literatures require that all of the edges and vertices of a path be distinct from one another.

But, some do not require this and instead use the term simple path to refer to a path which contains no repeated vertices.

A simple cycle may be defined as a closed walk with no repetitions of vertices and edges allowed, other than the repetition of the starting and ending vertex

There is considerable variation of terminology!!!
Make sure which set of definitions are used...

Simple Paths and Cycles

Most literatures

trail	
	circuit
path	cycle

narrow sense path \& cycle
some other literatures
$\left.\begin{array}{|c|l|}\hline \text { path } & \\ \hline & \begin{array}{l}\text { simple } \\ \text { path }\end{array} \\ \hline\end{array} \begin{array}{l}\text { simple } \\ \text { cycle }\end{array}\right]$
wide sense path \& cycle

Paths and Cycles

$$
\begin{aligned}
& \begin{array}{llllllll}
& e^{e_{1}} & \mathrm{o}^{e_{2}} & \mathrm{o}^{e_{3}} & \mathrm{o} & \cdots & e_{k} & \mathrm{o} \\
v_{0} & v_{1} & v_{2} & v_{3} & & & v_{k}
\end{array} \\
& \text { path } \quad v_{0,} e_{1}, v_{1}, e_{2}, \cdots, e_{k}, v_{k} \\
& \text { cycle } \quad v_{0}, e_{1}, v_{1}, e_{2}, \cdots, e_{k}, v_{k} \quad\left(v_{0}=v_{k}\right)
\end{aligned}
$$

One of a kind

path	cycle

Two different kinds

Euler Cycle

Some people reserve the terms path and cycle to mean non-self-intersecting path and cycle.

A (potentially) self-intersecting path is known as a trail or an open walk;
and a (potentially) self-intersecting cycle, a circuit or a closed walk.

This ambiguity can be avoided by using the terms Eulerian trail and Eulerian circuit when self-intersection is allowed
no repeating vertices
repeating vertices
repeating vertices
repeating vertices

Degree of a vertex

the degree (or valency) of a vertex is the number of edges incident to the vertex, with loops counted twice.

The degree of a vertex v is denoted deg(v) the maximum degree of a graph G, denoted by $\Delta(G)$ the minimum degree of a graph, denoted by $\delta(\mathrm{G})$

$$
\begin{aligned}
& \Delta(\mathrm{G})=5 \\
& \delta(\mathrm{G})=0
\end{aligned}
$$

In a regular graph, all degrees are the same

Regular Graphs

a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency.

Handshake Lemma

The degree sum formula states that, given a graph $G=(V, E)$

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

This statement (as well as the degree sum formula) is known as the handshaking lemma.

$$
\begin{array}{r}
\operatorname{deg}(a)=1 \\
\operatorname{deg}(b)=3 \\
\operatorname{deg}(c)=3 \\
\operatorname{deg}(d)=2 \\
\operatorname{deg}(e)=5 \\
\operatorname{deg}(f)=2 \\
\operatorname{deg}(g)=0 \\
\hline
\end{array}
$$

$$
|E|=8
$$

16

$$
2|E|=16
$$

Adding odd vertex

The number of odd vertices

Even vertices : $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$
$S=\frac{\operatorname{deg}\left(x_{1}\right)}{\operatorname{deg}\left(x_{i}\right)}+\underline{\operatorname{deg}\left(x_{2}\right)}+\cdots+\underline{\operatorname{deg}\left(x_{m}\right)}$
$S=\underline{\text { even }}+\underline{\text { even }}+\cdots+\underline{\text { even }}$

$$
\begin{aligned}
& \text { Odd vertices: }\left\{y_{1}, y_{2}, \cdots, y_{n}\right\} \\
& T=\frac{\operatorname{deg}\left(y_{1}\right)}{\operatorname{deg}\left(y_{i}\right): \underline{\operatorname{deg}\left(y_{2}\right)}+\cdots+\underline{\operatorname{odd}}\left(y_{n}\right)} \\
& T=\underline{o d d}+\underline{\text { odd }}+\cdots+\underline{\text { odd }}
\end{aligned}
$$

S : even

$$
\begin{aligned}
T: \text { even }= & \sum n \text { odd numbers } \\
& \not \square n: \text { even }
\end{aligned}
$$

in any graph, the number of vertices with odd degree is even.

References

[1] http://en.wikipedia.org/
[2]

Graph Search (6A)

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Graph Traversal

graph traversal (graph search) refers to the process of visiting (checking and/or updating) each vertex in a graph.

Such traversals are classified

by the order in which the vertices are visited.
Tree traversal is a special case of graph traverspal.

A depth-first search (DFS) $\quad \downarrow$ DPS is an algorithm for traversing a finite graph.

DFS visits the child vertices before visiting the sibling vertices;
that is, it traverses the depth of any particular path before exploring its breadth.

Attack (often the program's call stack via recursion) is generally used when implementing the algorithm.

DFS Backtrack

Star t

The algorithm begins with a chosen "root" vertex;
it then iteratively transitions from the current vertex to an adjacent, unvisited vertex, until it can no longer find an unexplored vertex to transition to from its current location.

The algorithm then backtracks along previously visited vertices, until it finds a vertex connected to yet more uncharted territory.

It will then proceed down the new path as it had before, backtracking as it encounters dead-ends and ending only
 when the algorithm has backtracked past the original "root" vertex from the very first step.

A breadth-first search (BFS) is another technique for traversing a finite graph.

BFS visits the neighbor vertices before visiting the child vertices
a queue is used in the search process
This algorithm is often used to find the shortest path from one vertex to another.

Depth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

Breadth First Search Example

https://en.wikipedia.org/wiki/Graph_traversal

General Graph Search Algorithm - 1

DFS

OPEN

unvisited children : 1, 3

BFS

OPEN

CLOSED marked "visited"

unvisited children : 1, 3

Possible duplication

DFS Stack

possible duplication - not yet expanded

BFS Queue

possible duplication

- not yet expanded

Must check before expansion

DFS Stack

must check if the selected node is already "visited"

possible duplication

BFS Queue

must check if the selected node is already "visited"

possible duplication

General Graph Search Algorithm - 1

```
Search(Start, isGoal, Criteria)
    insert(Start, Open);
    repeat
        if (empty(Open)) then return fail;
        select node from Open using Criteria;
        mark node as visited;
        if (isGoal(node)) then return node;
        for each child of node do
        if (child not already visited)
                then insert(child, Open);
```


DFS-1 (Depth First Search)

Open list - use a stack
Select with Criteria - pop

```
DFS(Start, isGoal)
    push(Start, Open); // push
    repeat
        if (empty(Open)) then return fail;
        node := pop(Open); // pop
        mark node as visited;
        if (isGoal(node)) then return node;
        for each child of node do
        if (child not already visited) then
                push(child, Open); // push
```


DFS-1 Example (1)

DFS-1 Example (2)

BFS-1 (Breadth First Search)

Open list - use a FIFO
Select with Criteria - dequeue

```
BFS(Start, isGoal)
    enqueue(Start, Open); // enqueue
    repeat
    if (empty(Open)) then return fail;
    node := dequeue(Open); // dequeue
    mark node as visited;
    if (isGoal(node)) then return node;
    for each child of node do
                if (child not already visited) then
                    enqueue(child, Open); // enqueue
```

BFS-1 Example (1)

BFS-1 Example (2)

General Graph Search Algorithm - 2

```
Initialize as follows:
    unmark all nodes in N;
    mark node s;
    pred(s) = 0; {that is, it has no predecessor}
    LIST = {s}
while LIST # \varnothing do
    select a node in LIST;
    if node j is incident to an admissible arc (i,j) then
        mark node j;
        pred(j) := i;
        add node j to the end of LIST;
    else
        delete node i from LIST
```

DFS : select the last node i in LIST;

Admissible arc

$\operatorname{pred}(\mathrm{j})$ is a node that precedes j on some path from s ;
A node is either marked or unmarked.
Initially only node s is marked.
If a node is marked, it is reachable from node s.
An arc $(\mathrm{i}, \mathrm{j}) \in \mathrm{A}$ is admissible

if node i is marked and j is not.

Before a node is added into LIST, the node is marked

LIST contains only the marked nodes
thus, the selected node \mathbf{i} is marked already
The node \mathbf{j} incident to the admissible $\operatorname{arc}(\mathbf{i}, \mathbf{j})$ must be unmarked

This node \mathbf{j} is marked and added into LIST
In this way, LIST contains only marked and non-repeating nodes

Check before inserting

DFS-2

```
Initialize as follows:
    unmark all nodes in N;
    mark node s;
    pred(s) = 0; {that is, it has no predecessor}
    push s onto LIST
while LIST }\not=\varnothing\mathrm{ do
    pop a node i from LIST;
    if node j is incident to an admissible arc (i,j) then
        mark node j;
        pred(j) := i;
        push(node j) onto LIST;
    else
        delete node i from LIST
```


DFS-2 Example (1)

DFS-2 Example (2)

BFS-2

```
Initialize as follows:
    unmark all nodes in N;
    mark node s;
    pred(s) = 0; {that is, it has no predecessor}
    enqueue s onto LIST
while LIST = ø do
    dequeue node i from LIST;
    if node j is incident to an admissible arc (i,j) then
        mark node j;
        pred(j) := i;
        enqueue node j onto LIST;
    else
        delete node i from LIST
```

BFS-2 Example (1)

BFS-2 Example (2)

DFS Pseudocode

1 procedure DFS(G, v):
2 label v as explored
3 for all edges e in G.incidentEdges(v) do
4 if edge e is unexplored then
$5 \quad \mathrm{w} \leftarrow \mathrm{G} . \operatorname{adjacentVertex}(\mathrm{v}, \mathrm{e})$
6 if vertex w is unexplored then
8 recursively call DFS(G, w)
9 else
10 label e as a back edge

BFS Pseudocode

1 procedure BFS(G, v):
2 create a queue Q
3 enqueue v onto Q
4 mark v
5 while Q is not empty:
$6 \quad \mathrm{t} \leftarrow \mathrm{Q}$.dequeue()
7 if t is what we are looking for:
8 return t
9 for all edges e in G.adjacentEdges(t) do
$12 \quad \mathrm{o} \leftarrow \mathrm{G}$.adjacentVertex(t, e)
13
if o is not marked:
mark o
14
15 enqueue o onto Q
16 return null

References

[1] http://en.wikipedia.org/
[2]

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Planar Graph

a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints.
it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. (planar representation)

A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

Planar Graph Examples

Planar Representation

Q_{3}

Discrete Mathematics, Rosen

No crossing
Q_{3} Planar

Non-planar Graph K ${ }_{3,3}$

no where v_{6}

Non-planar

Non-planar graph examples

Homeomorphic

All these graphs are similar
 in determining whether
 they are planar or not

Subdivision and Smoothing

https://en.wikipedia.org/wiki/Planar_graph

Homeomorphism

two graphs G_{1} and G_{2} are homeomorphic
if there is a graph isomorphism
homeo (identity, sameness)
iso (equal) from some subdivision of G_{1} to some subdivision of G_{2}

https://en.wikipedia.org/wiki/Planar_graph

Homeomorphism Examples

Subdivision
\qquad

Embedding on a surface

subdividing a graph preserves planarity.
Kuratowski's theorem states that
a finite graph is planar if and only if it contains no subgraph homeomorphic to K_{5} (complete graph on five vertices) or $K_{3,3}$ (complete bipartite graph on six vertices, three of which connect to each of the other three).

In fact, a graph homeomorphic to \mathbf{K}_{5} or $\mathbf{K}_{3,3}$ is called a Kuratowski subgraph.

Kuratowski's Theorem

A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of the complete graph \mathbf{K}_{5} or the complete bipartite graph $\mathbf{K}_{3,3}$ (utility graph).

A subdivision of a graph results from inserting vertices into edges
(changing an edge zero or more times.

Kuratowski's Theorem

A subdivision of $\mathrm{K}_{3,3}$

Euler's Formula

Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and \mathbf{v} is the number of vertices, \mathbf{e} is the number of edges and \mathbf{f} is the number of faces (regions bounded by edges, including the outer, infinitely large region), then

$$
v-e+f=2
$$

Euler's Formula Examples

$$
\begin{array}{lll}
v=4 & v=8 \\
e=6 & v-e+f=2 & e=12 \\
f=4 & & f=6
\end{array}
$$

Planar Q_{3}

Corollary 1

In a finite, connected, simple, planar graph,
any face (except possibly the outer one) is bounded by at least three edges and
every edge touches at most two faces;
using Euler's formula, one can then show
that these graphs are sparse in the sense that if $v \geq 3$:

ess $\mathbf{~ v - 6}$

Corollary 1 Examples

$$
\begin{array}{ll}
v=4 & e \leq 3 v-6 \\
e=6 & 6 \leq 3 \cdot 4-6 \\
f=4 &
\end{array}
$$

$$
\begin{array}{ll}
v=8 & e \leq 3 v-6 \\
e=12 & 12 \leq 3.8-6 \\
f=6 &
\end{array}
$$

Planar Q_{3}

Euler's Formula : Corollary 2

In a finite, connected, simple, planar graph,
Every vertex has a degree not exceeding 5.

$$
\operatorname{deg}(v) \leq 5
$$

Corollary 2 Examples

degree: $\mathbf{3} \quad \operatorname{deg}(\mathrm{v}) \leq 5$

degree: $3 \quad \operatorname{deg}(v) \leq 5$

https://en.wikipedia.org/wiki/Planar_graph

Dual Graph

the dual graph of a plane graph G is a graph that has a vertex for each face of G.

The dual graph has an edge whenever two faces of G are separated from each other by an edge,
and a self-loop when the same face appears on both sides of an edge.

The red graph is the dual graph क of the blue graph, and vice versa.
each edge \mathbf{e} of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of \mathbf{e}.

Dipoles and Cycles

Self-loop in a dual graph

Correspondence between G and G*

Vertices of G*	Faces of G
Edges of G*	Edges of G
Multigraph	Dual of a plane graph
Loops of G*	Cut edge of G
Multiple edges of G*	distinct faces of G with multiple common boundary edges

Cut

a cut is a partition of the vertices of a graph into two disjoint subsets.

Any cut determines a cut-set the set of edges that have one endpoint in each subset of the partition.

These edges are said to cross the cut.
In a connected graph, each cut-set determines a unique cut, and in some cases cuts are identified with their cut-sets rather than with their vertex partitions.

Minimum Cut

A cut is minimum if the size or weight of the cut is not larger than the size of any other cut.
the size of this cut is 2 , and there is no cut of size 1 because the graph is bridgeless.

Maximum Cut

A cut is maximum if the size of the cut is not smaller than the size of any other cut.
the size of the cut is equal to 5 , and there is no cut of size 6 , or |E| (the number of edges),
 because the graph is not bipartite (there is an odd cycle).

Infinite Graphs and Tessellations

The concept of duality applies as well to infinite graphs embedded in the plane as it does to finite graphs.

When all faces are bounded regions surrounded by a cycle of the graph, an infinite planar graph embedding can also be viewed as a tessellation of the plane, a covering of the plane by closed disks (the tiles of the tessellation) whose interiors (the faces of the embedding) are disjoint open disks.

Dual Logic Graph

Stick Layout

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

CMOS Transistors and Stick Layout

Single-Strip Stick Graph and Logic Graph

http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

Stick Graph and Logic Diagram

uninterrupted diffusion strip

GND
consistent Euler paths (PUN \& PDN)

Stick Graph and Logic Diagram

Eulerian Trail
Eulerian Circuit
http://www.cse.psu.edu/~kxc104/class/cmpen411/11s/lec/C411L06StaticLogic.pdf

References

[1] http://en.wikipedia.org/
[2]

Graph Coloring (9A)

Copyright (c) 2015-2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Graph Coloring

graph coloring is a special case of graph labeling;
it is an assignment of labels (colors)
to elements of a graph subject to certain constraints.
\checkmark a vertex coloring
is a way of coloring the vertices of a graph
such that no two adjacent vertices share the same color
an edge coloring
assigns a color to each edge so that no two adjacent
 edges share the same color
a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

Graph Coloring Relations

an edge coloring of a graph is just a vertex coloring of its line graph,
aface coloring of a plane graph is just a vertex coloring of its dual graph.

However, non-vertex coloring problems are often stated and studied as is.
a graph coloring means almost always a vertex coloring.

Since a vertex with a loop could never be properly colored, a loopless graph is generally assumed.

k-coloring and chromatic number

k-coloring

a coloring using at most \mathbf{k} colors
chromatic number, $\chi(G)$
the smallest number of colors needed to color a graph \mathbf{G}

A graph that can be assigned a (proper) k-coloring is k-colorable

A graph whose chromatic number is exactly \mathbf{k} is k-chromatic

Color Class

A subset of vertices assigned to the same color is called a color class,
every such class forms an independent set.
a k-coloring is the same as a partition of the vertex set into \mathbf{k} independent sets,
the terms k-partite and k-colorable have the same meaning.

Bipartite Graph

a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets U and V such that every edge connects a vertex in U to one in V.

Vertex sets U and V are usually called the parts of the graph.

Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

A complete bipartite graph
with $\mathrm{m}=5$ and $\mathrm{n}=3$

Bipartite Graph : 2-colorable

The two sets U and V may be thought of as a coloring of the graph with two colors:
if one colors all nodes in U blue, and all nodes in V green, each edge has endpoints of differing colors, as is required in the graph coloring problem.

In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a triangle: 3 colors

Bipartite Graph : degree sequence

The degree sum formula for-a hipartite grapk states that $\sum_{v \in V} \operatorname{deg}(v)\left(\sum_{u \in U} \operatorname{deg} u\right)=|E|$.

The degree sequence of a bipartite graph is the pair of lists each containing the degrees of the two parts U and V.

For example, the complete bipartite graph $\mathrm{K}_{3,5}$ has degree sequence $(5,5,5)$, $(3,3,3,3,3)$
$\mathrm{K}_{5,3}$ has degree sequence $(3,3,3,3,3)$, $(5,5,5)$

References

[1] http://en.wikipedia.org/
[2]

Tree Traversal (1A)

```
Copyright (c) 2015-2018 Young W. Lim.
```

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Tree Traversal

Depth First Search
Pre-Order In-order
Post-Order

https://en.wikipedia.org/wiki/Morphism

Recursive Algorithms

preorder(node)
if (node = null)
\quad return
visit(node)
preorder(node.left)
preorder(node.right)

inorder(node)
if (node = null)
return
inorder(node.left)
visit(node)
inorder(node.right)

postorder(node)
if (node = null) return postorder(node.left) postorder(node.right) visit(node)

Iterative Algorithms

```
iterativePreorder(node)
    if (node = null)
    return
    s}\leftarrow\mathrm{ empty stack
    s.push(node)
    while (not s.isEmpty())
        node \leftarrow s.pop()
        visit(node)
        // right child is pushed first
        // so that left is processed first
        if (node.right = null)
        s.push(node.right)
    if (node.left = null)
        s.push(node.left)
```

https://en.wikipedia.org/wiki/Tree_traversal

```
```

iterativelnorder(node)

```
```

iterativelnorder(node)
s}\leftarrow\mathrm{ empty stack
s}\leftarrow\mathrm{ empty stack
while (not s.isEmpty() or
while (not s.isEmpty() or
node }=\mathrm{ null)
node }=\mathrm{ null)
if (node }=\mathrm{ null)
if (node }=\mathrm{ null)
s.push(node)
s.push(node)
node }\leftarrow\mathrm{ node.left
node }\leftarrow\mathrm{ node.left
else
else
node \leftarrow s.pop()
node \leftarrow s.pop()
visit(node)
visit(node)
node \leftarrow node.right

```
```

 node \leftarrow node.right
    ```
```

```
iterativePostorder(node)
```

iterativePostorder(node)

```
iterativePostorder(node)
    s}\leftarrowempty stac
    s}\leftarrowempty stac
    s}\leftarrowempty stac
    lastNodeVisited }\leftarrow null
    lastNodeVisited }\leftarrow null
    lastNodeVisited }\leftarrow null
    while (not s.isEmpty() or node # null)
    while (not s.isEmpty() or node # null)
    while (not s.isEmpty() or node # null)
    if (node }=\mathrm{ null)
    if (node }=\mathrm{ null)
    if (node }=\mathrm{ null)
        s.push(node)
        s.push(node)
        s.push(node)
        node \leftarrow node.left
        node \leftarrow node.left
        node \leftarrow node.left
    else
    else
    else
        peekNode \leftarrows.peek()
        peekNode \leftarrows.peek()
        peekNode \leftarrows.peek()
    // if right child exists and traversing
    // if right child exists and traversing
    // if right child exists and traversing
    // node from left child, then move right
    // node from left child, then move right
    // node from left child, then move right
    if (peekNode.right = null and
    if (peekNode.right = null and
    if (peekNode.right = null and
                lastNodeVisited # p peekNode.right)
                lastNodeVisited # p peekNode.right)
                lastNodeVisited # p peekNode.right)
        node }\leftarrow\mathrm{ peekNode.right
        node }\leftarrow\mathrm{ peekNode.right
        node }\leftarrow\mathrm{ peekNode.right
    else
    else
    else
        visit(peekNode)
        visit(peekNode)
        visit(peekNode)
        lastNodeVisited }\leftarrow s.pop(
```

 lastNodeVisited }\leftarrow s.pop(
    ```
        lastNodeVisited }\leftarrow s.pop(
```


Infix, Prefix, Postfix Notations

Infix Notation	Prefix Notation	Postfix Notation
$A+B$	$+A B$	$A B+$
$(A+B) * C$	$*+A B C$	$A B+C *$
$A *(B+C)$	$* A+B C$	$A B C+*$
$A / B+C / D$	$+/ A B / C D$	$A B / C D /+$
$((A+B) * C)-D$	$-*+A B C D$	$A B+C$ * -

Infix, Prefix, Postfix Notations and Binary Trees

Infix Notation	Prefix Notation	Postfix Notation
$A+B$	$+A B$	$A B+$
$(A+B)^{*} C$	$*+A B C$	$A B+C *$
$A *(B+C)$	$* A+B C$	$A B C+*$
$A / B+C / D$	$+/ A B / C D$	$A B / C D /+$
$\left((A+B)^{*} C\right)-D$	$-*+A B C D$	$A B+C * D-$

In-Order, Pre-Order, Post-Order Binary Tree Traversals

Depth First Search
Pre-Order
In-order
Post-Order
Breadth First Search

$$
\begin{array}{ll}
(a \star(b-c))+(d / e) & \\
a * b-c+d / e & \text { Infix notation } \\
+* a-b c / d e & \text { Prefix notation } \\
a b c-* d e /+ & \text { Postfix notation }
\end{array}
$$

Pre-Order Binary Tree Traversals

$$
\begin{array}{ll}
\left(a^{*}(b-c)\right)+(d / e) & \\
a * b-c+d / e & \text { Infix notation } \\
+* a-b c / d e & \text { Prefix notation } \\
a b c-* d e /+ & \text { Postfix notation }
\end{array}
$$

In-Order Binary Tree Traversals

$$
\begin{array}{ll}
(a *(b-c))+(d / e) & \\
a * b-c+d / e & \text { Infix notation } \\
+* a-b c / d e & \text { Prefix notation } \\
a b c-* d e /+ & \text { Postfix notation }
\end{array}
$$

Post-Order Binary Tree Traversals

$$
\begin{array}{ll}
\left(a^{*}(b-c)\right)+(d / e) & \\
a * b-c+d / e & \text { Infix notation } \\
+* a-b c / d e & \text { Prefix notation } \\
a b c-* d e /+ & \text { Postfix notation }
\end{array}
$$

Tree Traversal

Depth First Search
Pre-Order
In-order
Post-Order

Breadth First Search

https://en.wikipedia.org/wiki/Morphism

Pre-Order

pre-order function
Check if the current node is empty / null.
Display the data part of the root (or current node).
Traverse the left subtree by recursively calling the pre-order function.
Traverse the right subtree by recursively calling the pre-order function.

FBADCEGIH

https://en.wikipedia.org/wiki/Morphism

In-Order

in-order function

Check if the current node is empty / null.
Traverse the left subtree by recursively calling the in-order function.
Display the data part of the root (or current node).
Traverse the right subtree by recursively calling the in-order function.

ABCDEFGHI

https://en.wikipedia.org/wiki/Morphism

Post-Order

post-order function

Check if the current node is empty / null.
Traverse the left subtree by recursively calling the post-order function.
Traverse the right subtree by recursively calling the post-order function.
Display the data part of the root (or current node).

ACEDBHIGH

https://en.wikipedia.org/wiki/Morphism

Recursive Algorithms

preorder(node)
if (node = null)
return
visit(node)
preorder(node.left)
preorder(node.right)

inorder(node)
if (node = null)
return
inorder(node.left)
visit(node)
inorder(node.right)

postorder(node)
if (node = null) return postorder(node.left) postorder(node.right) visit(node)

Pre-Order recursive algorithm

preorder(node)
if (node = null)
return
visit(node)
preorder(node.left)
preorder(node.right)

(A)

(C) (E)

Iterative Algorithms

```
iterativePreorder(node)
    if (node = null)
        return
    s}\leftarrow\mathrm{ empty stack
    s.push(node)
    while (not s.isEmpty())
        node \leftarrow s.pop()
        visit(node)
        // right child is pushed first
        // so that left is processed first
        if (node.right }=\mathrm{ null)
        s.push(node.right)
    if (node.left = null)
        s.push(node.left)
```

https://en.wikipedia.org/wiki/Tree_traversal

iterativelnorder(node)

$\mathrm{s} \leftarrow$ empty stack
while (not s.isEmpty() or node $=$ null)

$$
\text { if (node } \neq \text { null) }
$$ s.push(node) node \leftarrow node.left

else
node \leftarrow s.pop()
visit(node)
node \leftarrow node.right

iterativePostorder(node)

$\mathrm{s} \leftarrow$ empty stack
lastNodeVisited \leftarrow null
while (not s.isEmpty() or node \neq null)
if (node \neq null)
s.push(node)
node \leftarrow node.left
else
peekNode \leftarrow s.peek()
// if right child exists and traversing
// node from left child, then move right
if (peekNode.right \neq null and lastNodeVisited $=$ peekNode.right) node \leftarrow peekNode.right
else
visit(peekNode)
lastNodeVisited \leftarrow s.pop()

Tree Traversal

https://en.wikipedia.org/wiki/Morphism

Stack

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Queue

Search Algorithms

DFS (Depth First Search)

BFS (Breadth First Search)

DFS Algorithm

A recursive implementation of DFS:

DFS (Depth First Search)

procedure DFS(G,v):
label v as discovered for all edges from v to w in G.adjacentEdges(v) do if vertex w is not labeled as discovered then recursively call DFS(G,w)

A non-recuUrsive implementation of DFS:

procedure DFS-iterative(G,v):
let S be a stack
S.push(v) while S is not empty
$v=$ S.pop()
if v is not labeled as discovered:
label v as discovered
for all edges from v to w in G.adjacentEdges(v) do S.push(w)

Search Algorithms

DFS (Depth First Search)

BFS (Breadth First Search)

BFS Algorithm

Breadth-First-Search(Graph, root):
create empty set S
create empty queue Q
add root to S
Q.enqueue(root)
while Q is not empty:
current = Q.dequeue()
if current is the goal:
return current
for each node n that is adjacent to current:
if n is not in S :
add n to S
n.parent = current
Q.enqueue(n)

In-Order

Ternary Tree

a-b-e-j-k-n-o-p-f-c-d-g-l-m-h-i

Rosen

In-Order

j-e-n-k-o-p-b-f-a-c-l-g-m-d-h-i

Post-Order

j-n-o-p-k-e-f-b-c-l-m-g-h-i-d-a

Ternary

Ternary

Etymology
Late Latin ternarius ("consisting of three things"), from terni ("three each").
Adjective
ternary (not comparable)
Made up of three things; treble, triadic, triple, triplex
Arranged in groups of three
(mathematics) To the base three [quotations $\mathbf{\nabla}$]
(mathematics) Having three variables
https://en.wiktionary.org/wiki/ternary

The sequence continues with quaternary, quinary, senary, septenary, octonary, nonary, and denary, although most of these terms are rarely used. There's no word relating to the number eleven but there is one that relates to the number twelve: duodenary.
https://en.oxforddictionaries.com/explore/what-comes-after-primary-secondary-tertiary

References

[1] http://en.wikipedia.org/
[2]

Formal Language (1A)

Copyright (c) 2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Class of Automata

Automata theory

Combinational logic
Finite-state machine
Pushdown automaton

Turing Machine

Classes of automata

(Clicking on each layer will take you to an article on that subject)

Finite State Machine

The figure at right illustrates a finite-state machine, which belongs to a well-known type of automaton.

This automaton consists of states (represented in the figure by circles) and transitions (represented by arrows).

As the automaton sees a symbol of input, it makes a transition (or jump) to another state, according to its transition function, which takes the current state and the recent symbol as its inputs.

Turing Machine

q_{4}								
	$\mathrm{~s}_{1}$	$\mathrm{~s}_{1}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$		

The head is always over a particular square io of the tape; only a finite stretch of squares is shown. The instruction to be performed $\left(\mathrm{q}_{4}\right)$ is shown over the scanned square. (Drawing after Kleene (1952) p. 375.)

Here, the internal state $\left(\mathrm{q}_{1}\right)$ is shown inside 5 the head, and the illustration describes the tape as being infinite and pre-filled with " 0 ", the symbol serving as blank. The system's full state (its complete configuration) consists of the internal state, any non-blank symbols on the tape (in this illustration "11B"), and the position of the head relative to those symbols including blanks, i.e. "011B". (Drawing after Minsky (1967) p. 121.)

Pushdown Automaton

a pushdown automaton (PDA) is a type of automaton that employs a stack

Finite State Machine

State diagram for a turnstile

Fig. 5: Representation of 5 a finite-state machine; this example shows one that determines whether a binary number has an even number of 0 s , where S_{1} is an accepting state.
https://en.wikipedia.org/wiki/Finite-state_machine

Fig. 3 Example of a simple finite state machine

Fig. 7 Transducer FSM: \quad Mealy model example

Fig. 4 Acceptor FSM: parsing the string "nice"

Fig. 6 Transducer FSM:
Moore model example

References

[1] http://en.wikipedia.org/
[2]

Finite State Machine (3A)

```
Copyright (c) 2013-2018 Young W. Lim.
```

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Formal Language

a

NOR-based SR Latch

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

NOR-based SR Latch States

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

SR Latch Symbols

HOLD RESET SET NAND based SR Latch

NOR-based D Latch

NOR-based D Latch

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

Master-Slave D FlipFlop

Master D Latch

Slave D Latch

Master-Slave D F/F

the hold output this value is of the master is held for another transparently half period reaches the output of the slave

Master-Slave D FlipFlop - Falling Edge

Master D Latch

Slave D Latch

Master-Slave D FlipFlop - Rising Edge

Master D Latch

Slave D Latch

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

D Latch \& D FlipFlop

Level Sensitive D Latch

$$
\begin{array}{ll}
\text { CK=1 } & \text { transparent } \\
\text { CK=0 } & \text { opaque }
\end{array}
$$

Edge Sensitive D FlipFlop

CK=1 $\rightarrow 0$ transparent else opaque

D FlipFlop with Enable

https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

FF Timing (Ideal)

Sequence of States

[^0]
When NextSt becomes CurrSt

Finding FF Inputs

During the $t^{\text {th }}$ clock edge period,
Compute the next state $\mathrm{Q}(\mathrm{t}+1)$ using the current state $\mathrm{Q}(\mathrm{t})$ and other external inputs

Place it to FF inputs
After the next clock edge, $(\mathrm{t}+1)^{\mathrm{th}}$, the computed next state $\mathrm{Q}(\mathrm{t}+1)$ becomes the current state

Method of Finding FF Inputs

Find the boolean functions D3, D2, D1, D0 in terms of Q3, Q2, Q1, Q0, and external inputs for all possible cases.

State Transition

Moore FSM

Mealy Machine

Latches and FF's

FSM Inputs and Outputs

States

Moore FSM State Transition Table

| $S_{1} S_{0}$ | $T_{A} T_{B}$ | S_{1}^{\prime} | S_{0}^{\prime} | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | X | 0 | 1 |
| 0 | 0 | 1 | X | 0 | 0 |
| 0 | 1 | X | X | 1 | 0 |
| 1 | 0 | X | 0 | 1 | 1 |
| 1 | 0 | X | 1 | 1 | 0 |
| 1 | 1 | X | X | 0 | 0 |

States

- 00
- 01
- 10

	$S_{1} S_{2}$	$L_{B 0}$
0	0	0
0	1	0
1	0	0
1	1	1
$L_{A 0}=S_{1} S_{0}$		

Moore FSM (1)

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Moore FSM

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Divide By N Counter FSM

https://en.wikiversity.org/wiki/The_necessities_in_Computer_Design

Input: none
Output: $Y=1$ every 3 cycles

State Transition Table Output Table

Curr St Next St	
S0	S1
S1	S2
S2	S0

Curr St	
S0	1
S1	0
S2	0

Encoding States

State Transition Table

Curr St	Next St
S0	S1
S1	S2
S2	S0

S_{1}	S_{0}	S_{1}^{\prime}	S_{0}^{\prime}
0	0	0	1
0	1	1	0
1	0	0	0

$$
\begin{array}{ll}
S_{1}^{\prime}=\overline{S_{1}} S_{0} & Y=\overline{S_{1}} \overline{S_{0}} \\
S_{0}^{\prime}=\overline{S_{1}} \overline{S_{0}} &
\end{array}
$$

Output Table

Curr St	Output
S0	1
S1	0
S2	0

S_{1}	S_{0}	Y
0	0	1
0	1	0
1	0	0

State Transition Table

Curr St	Next St
S0	S1
S1	S2
S2	S0

$S_{2} S_{1}$	S_{0}	$S_{2}^{\prime} S_{1}^{\prime} S_{0}^{\prime}$			
0	0	1	0	1	0
0	1	0	1	0	0
1	0	0	0	0	1

$$
\begin{array}{ll}
S_{2}^{\prime}=\overline{S_{2}} S_{1} \overline{S_{0}} & \Rightarrow S_{1} \\
S_{1}^{\prime}=\overline{S_{2}} \bar{S}_{1} S_{0} & \Rightarrow S_{0} \\
S_{0}^{\prime}=S_{2} \overline{S_{1}} \bar{S}_{0} & \Rightarrow S_{2}
\end{array}
$$

Output Table

Curr St	Output
S0	1
S1	0
S2	0

$S_{2} S_{1} S_{0}$	Y		
0	0	1	1
0	1	0	0
1	0	0	0

$Y=\bar{S}_{2} \bar{S}_{1} S_{0} \Rightarrow S_{0}$

References

[1] http://en.wikipedia.org/
[2]

[^0]: https://en.wikiversity.org/wiki/The_necessities_in_Digital_Design

