
Conditions

Young W. Lim

2022-06-20 Mon

Young W. Lim Conditions 2022-06-20 Mon 1 / 52

Outline

1 Based on

2 Condition Codes

3 Accessing the Conditon Codes

Young W. Lim Conditions 2022-06-20 Mon 2 / 52

Based on

1 "Self-service Linux: Mastering the Art of Problem Determination",

Mark Wilding

1 "Computer Architecture: A Programmer’s Perspective", Bryant &
O’Hallaron

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Conditions 2022-06-20 Mon 3 / 52

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim Conditions 2022-06-20 Mon 4 / 52

TOC: Conditional codes

Young W. Lim Conditions 2022-06-20 Mon 5 / 52

Essential flags

Z Zero flag destination equals zero
S Sign flag destination is negative
C Carry flag unsigned value out of range
O Overflow flag signed value out of range

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2022-06-20 Mon 6 / 52

Zero flag ZF

Whenever the destination operand equals Zero,
the Zero flag is set

ZF examples
movw $1, %cx
subw $1, %cx ; %cx = 0, ZF = 1
movw $0xFFFF, %ax
incw %ax ; AX = 0, ZF = 1
incw %ax ; AX = 1, ZF = 0

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2022-06-20 Mon 7 / 52

Sign flag SF

the Sign flag is set when the destination operand is negative
the Sign flag is clear when the destination operand is positive

SF examples
movw $0, %cx
subw $1, %cx ; %cx = -1, SF = 1
addw $2, %cx ; %cx = 1, SF = 0

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2022-06-20 Mon 8 / 52

Carry flag CF

Addition : copy carry out of MSB to CF

Subtraction : copy inverted carry out of MSB to CF

INC / DEC : not affect CF
Applying NEG to a nonzero operand sets CF

CF examples
movw $0x00ff, %cx
addw $1, %ax ; %ax = 0x0100, SF = 0, ZF = 0, CF = 0
subw $1, %ax ; %cx = 0x00ff, SF = 0, ZF = 0, CF = 0
addb %1, %al ; %al = 0x00, SF = 0, ZF = 1, CF = 1
movb $0x6c, %bh
addb %0x95, %bh ; %bh = 0x01, SF = 0, ZF = 0, CF = 1

movb $2, %al
subb $3, %al ; %al = 0xff, SF = 1, ZF = 0, CF = 1

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2022-06-20 Mon 9 / 52

Overflow flag OF

the overflow flag is set when the signed result of an operation
is invalid or out of range

case 1: adding two positive operands produces a negative number
case 2: adding two negative operands produces a positive number

OF examples
movb $+127, %al
addb $1, %al ; %al = -128, OF = 1

movb $0x7F, %al
addb $1, %al ; %al = 0x80, OF = 1

movb $0x80, %al ; 0x80 + 0x92 = 0x112
addb $0x92, %al ; %al = 0x12, OF = 1

movb $-2, %al ; 0xfe + 0x7f = 0x17d
addb $+127 %al ; %al = 0x7d, OF = 0

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2022-06-20 Mon 10 / 52

Signed / Unsigned Integers

all CPU instructions operate exactly the same
on signed and unsigned integers
the CPU canot distinguish between
signed and unsigned integers
the programmer are soley responsible for
using the correct data type with each instruciton

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2022-06-20 Mon 11 / 52

Overflow / Carry Flags (1)

ADD instruction

CF : (Carry out of the MSB)
OF : (Carry out of the MSB)

⊕
(Carry into the MSB)

SUB instruction

CF : ~(Carry out of the MSB)
OF : (Carry out of the MSB)

⊕
(Carry into the MSB)

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2022-06-20 Mon 12 / 52

Overflow / Carry Flags (2)

ADD SUB

CF Cn Cn

OF Cn
⊕

Cn−1 Cn
⊕

Cn−1

https://www.csie.ntu.edu.tw/~cyy/courses/assembly/12fall/lectures/handouts/lec14_x86isa.pdf

Young W. Lim Conditions 2022-06-20 Mon 13 / 52

Borrow and subtraction (1)

While the carry flag is
well-defined for addition,

there are two ways in common use
to use the carry flag
for subtraction operations.

subtract with borrow
uses the carry bit as a borrow flag
subtract with carry
uses the identity directly
-x = (not x)+1
(i.e. without storing the carry bit inverted)

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2022-06-20 Mon 14 / 52

Borrow and subtraction (1’)

subtract with borrow
uses the carry bit as a borrow flag

setting the carry bit if a < b when computing a - b,
and a borrow must be performed.
If a >= b, the bit is cleared.

a subtract with borrow (SBB) instruction
will compute a-b-C = a-(b+C)
as if the borrow bit were set
a subtract without borrow (SUB)
acts a-b-0 = a - b
as if the borrow bit were clear.

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2022-06-20 Mon 15 / 52

Borrow and subtraction (2)

subtract with carry uses the identity directly
-x = (not x)+1
(i.e. without storing the carry bit inverted)
computes a - b as a+(not b)+1
the carry bit is set according to this addition
subtract with carry computes a+not(b)+C
while subtract without carry acts as if the carry bit were set.
The result is that the carry bit is set if a >= b,
and clear if a < b.

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2022-06-20 Mon 16 / 52

Borrow and subtraction (2’)

the first approach : subtract with borrow
The 8080, 6800, Z80, 8051, x86 and 68k families (among others)
use a borrow bit.

the second approach : subtract with carry

The System/360, 6502, MSP430, COP8, ARM and PowerPC
processors use this convention.
The 6502 is a particularly well-known example because it does not have
a subtract without carry operation, so programmers must ensure that
the carry flag is set before every subtract operation where a borrow is
not required.

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2022-06-20 Mon 17 / 52

Borrow and subtraction (3)

However, there are exceptions in both directions;
the VAX, NS320xx, and Atmel AVR architectures
use the borrow bit convention,
but call their a-b-C operation subtract with carry
(SBWC, SUBC and SBC).
The PA-RISC and PICmicro architectures
use the carry bit convention, but call their a+not(b)+C operation
subtract with borrow (SUBB and SUBWFB).

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2022-06-20 Mon 18 / 52

Borrow and subtraction (4)

The ST6 8-bit microcontrollers are perhaps
the most confusing of all.
Although they do not have any sort of subtract with carry
instruction, they do have a carry bit which is set
by a subtract instruction, and the convention
depends on the processor model.
The ST60 processor uses the "carry" convention,
while the ST62 and ST63 processors use the "borrow" convention.

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2022-06-20 Mon 19 / 52

Borrow and subtraction (5)

Summary of different uses of carry flag in subtraction

Carry or Subtract without Subtract Subtract
borrow bit carry/borrow with borrow with carry
C = 0 a - b a - b - 0 a - b - 1

= a+not(b)+1 = a+not(b)+1 = a+not(b)+ 0
C = 1 a - b a - b - 1 a - b - 0

= a+not(b)+1 = a+not(b)+0 = a+not(b)+1

https://en.wikipedia.org/wiki/Carry_flag

Young W. Lim Conditions 2022-06-20 Mon 20 / 52

Condition Codes (1)

condition code registers describe attributes
of the most recent arithmetic or logical operation
these registers can be tested to perform conditional branches
the most useful condition codes are as belows

CF Carry Flag
ZF Zero Flag
SF Sign Flag
OF Overflow Flag

Young W. Lim Conditions 2022-06-20 Mon 21 / 52

Condition Codes (2)

as a result of the most recent operation

CF a carry was generated out of the msb
used to detect overflow for unsigned operations

ZF a zero was yielded

SF a negative value was yielded

OF a 2’s complement overflow was happened
either neagtive or positive

Young W. Lim Conditions 2022-06-20 Mon 22 / 52

Condition Codes and c = a+b (1)

assume addl is used to perform t = a + b
and a, b, t are of type int

CF unsigned overflow (unsigned t) < (unsigned a)
ZF zero (t == 0)
SF negative (t < 0)
OF signed overflow (a < 0 == b < 0) && (t < 0 != a < 0)

Young W. Lim Conditions 2022-06-20 Mon 23 / 52

Condition Codes and c = a+b (2)

CF (unsigned t) < (unsigned a) mag(t) < mag(a) if C=1
ZF (t == 0) zero t
SF (t < 0) negative t
OF (a<0 = b<0) && (t<0 ! a<0) sign(a) = sign(b) ! sign(t)

Young W. Lim Conditions 2022-06-20 Mon 24 / 52

Setting condition codes without altering registers (1)

Compare and test

cmpb S2, S1 S1 - S2 Compare bytes
cmpw S2, S1 S1 - S2 Compare words
cmpl S2, S1 S1 - S2 Compare double words
testb S2, S1 S1 & S2 Test bytes
testw S2, S1 S1 & S2 Test words
testl S2, S1 S1 & S2 Test double words

Young W. Lim Conditions 2022-06-20 Mon 25 / 52

Setting condition codes without altering registers (2)

Compare and test

cmpb S2, S1 -S2 + S1 Compare bytes
cmpw S2, S1 -S2 + S1 Compare words
cmpl S2, S1 -S2 + S1 Compare double words
testb S2, S1 S2 & S1 Test bytes
testw S2, S1 S2 & S1 Test words
testl S2, S1 S2 & S1 Test double words

Young W. Lim Conditions 2022-06-20 Mon 26 / 52

CMP instruction (1)

cmpb op1, op2

cmpw op1, op2

cmpl op1, op2

NULL \leftarrow op2 - op1

subtracts the contents of the src operand op1
from the dest operand op2
discard the results, only the flag register is affected

Young W. Lim Conditions 2022-06-20 Mon 27 / 52

CMP instruction (2)

cmpb op1, op2

cmpw op1, op2

cmpl op1, op2

Condition Signed Compare Unsigned Compare
op1 < op2 ZF == 0 && SF == OF CF == 0 && ZF == 0
op1 < op2= SF == OF CF == 0
op1 = op2= ZF == 1 ZF == 1
op1 > op2= ZF == 1 or SF != OF CF == 1 or ZF ==1
op1 > op2 SF != OF CF ==1

Young W. Lim Conditions 2022-06-20 Mon 28 / 52

TEST instruction

testb src, dest

testw src, dest

testl src, dest

NULL ← dest & src

ands the contents of the src operand with the dest operand
discard the results, only the flag register is affected

Young W. Lim Conditions 2022-06-20 Mon 29 / 52

TOC: accessing the condition codes

Young W. Lim Conditions 2022-06-20 Mon 30 / 52

Set (1)

set(e, z) D (equal / zero) D ← ZF
set(ne, nz) D (not equal/ not zero) D ← ~ZF
set(s) D (negative) D ← SF
set(ns) D (non-negative) D ← ~SF
set(g, le) D (greater, signed >) D ← ~(SF^OF)&~ZF
set(ge, nl) D (greater or equal, signed >=) D ← ~(SF^OF)
set(l, nge) D (less, signed <) D ← SF^OF
set(le, ng) D (less or equal, signed <=) D ← (SF^OF) | ZF
set(a, nbe) D (above, usnigned >) D ← ~CF&~ZF
set(ae, nb) D (above or euqal, unsinged >=) D ← ~CF
set(b, nae) D (below, unsigned <) D ← CF
set(be, na) D (below or equal, unsigned <=) D ← CF&~ZF

Young W. Lim Conditions 2022-06-20 Mon 31 / 52

Set (2)

set(e, z) D (equal / zero) D ← ZF
set(s) D (negative) D ← SF
set(g, le) D (greater, signed >) D ← ~(SF^OF)&~ZF
set(l, ge) D (less, signed <) D ← SF^OF
set(a, nbe) D (above, usnigned >) D ← ~CF&~ZF
set(b, nae) D (below, unsigned <) D ← CF

set(ne, nz) D (not equal/ not zero) D ← ~ZF
set(ns) D (non-negative) D ← ~SF
set(ge, nl) D (greater or equal, signed >=) D ← ~(SF^OF)
set(le, ng) D (less or equal, signed <=) D ← (SF^OF) | ZF
set(ae, nb) D (above or euqal, unsinged >=) D ← ~CF
set(be, na) D (below or equal, unsigned <=) D ← CF&~ZF

Young W. Lim Conditions 2022-06-20 Mon 32 / 52

Flag registers (1) - Z, O, S, P

E, Z Equal, Zero ZF == 1
NE, NZ Not Equal, Not Zero ZF == 0
O Overflow OF == 1
NO No Overflow OF == 0
S Signed SF == 1
NS Not Signed SF == 0
P Parity PF == 1
NP No Parity PF == 0

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2022-06-20 Mon 33 / 52

Flag registers (2) - unsigned arithmetic

C, B Carry, Below, CF == 1
NAE Not Above or Equal
NC, NB No Carry, Not Below, CF == 0
AE Above or Equal
A, NBE Above, Not Below or Equal CF==0 and ZF==0
NA, BE Not Above, Below or Equal CF==1 or ZF==1

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2022-06-20 Mon 34 / 52

Flag registers (3) - signed arithmetic

GE, NL Greater or Equal, Not Less SF==OF
NGE, L Not Greater or Equal, Less SF!=OF
G, NLE Greater, Not Less or Equal ZF==0 and SF==OF
NG, LE Not Greater, Less or Equal ZF==1 or SF!=OF

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2022-06-20 Mon 35 / 52

Flag registers (4)

The condition codes are grouped into three blocks :

Z, O, S, P Zero
Overflow
Sign
Parity

unsigned arithmetic Above
Below

signed arithmetic Greater
Less

JB would be "Jump if Below" (unsigned)
JL would be "Jump if Less" (signed)

https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2022-06-20 Mon 36 / 52

Flag registers (3)

In 16 bits, subtracting 1 from 0

from to
0 65,535 unsigned arithmetic
0 -1 signed arithmetic

0x0000 0xFFFF bit representation

It’s only by interpreting the condition codes that the meaning is clear.
1 is subtracted from 0x8000:

from to
32,768 32,767 unsigned arithmetic
-32,768 32,767 signed arithmetic
0x8000 0x7FFF bit representation

(0111 1111 1111 1111 + 1 = 1000 0000 0000 0000)
https://riptutorial.com/x86/example/6976/flags-register

Young W. Lim Conditions 2022-06-20 Mon 37 / 52

Set (3)

accessing the condition codes

to read the condition codes directly
to set an integer register
to perform a conditional branch

based on some combination of condition codes

Young W. Lim Conditions 2022-06-20 Mon 38 / 52

Set (4)

the set instructions set a single byte to 0 or 1
depending on some combination of the condition codes

the destination operand D is

either one of the eight single byte register elements
or a memory location where the single byte is to be stored

to generate a 32-bit result,
the high-order 24-bits must be cleared

Young W. Lim Conditions 2022-06-20 Mon 39 / 52

Set (5)

a typical assembly for a c predicate
; a is in %edx
; b is in %eax

cmpl %eax, %edx ; compare a and b ; (a - b)
setl %al ; set low order byte of %eax to 0 or 1
movzbl %al, %eax ; set remaining bytes of %eax to 0

movzbl instruction is used to clear the high-order three bytes
| set(l, ge) | D | (less, signed <) | D ← SF^OF |

Young W. Lim Conditions 2022-06-20 Mon 40 / 52

movz instruciton (1)

Purpose: To convert an unsigned integer to a wider unsigned integer
opcode src.rx, dst.wy

dst <- zero extended src;

MOVZBW (Move Zero-extended Byte to Word) 8-bit zero BW

MOVZBL (Move Zero-extended Byte to Long) 24-bit zero BL

MOVZWL (Move Zero-extended Word to Long) 16-bit zero WL

Young W. Lim Conditions 2022-06-20 Mon 41 / 52

movz instruciton (2)

MOVZ BW (Move Zero-extended Byte to Word) 8-bit zero

the low 8 bits of the destination are replaced by the source operand
the top 8 bits are set to 0.

MOVZ BL (Move Zero-extended Byte to Long) 24-bit zero

the low 8 bits of the destination are replaced by the source operand.
the top 24 bits are set to 0.

MOVZ WL (Move Zero-extended Word to Long) 16-bit zero
the low 16 bits of the destination are replaced by the source operand.
the top 16 bits are set to 0.

The source operand is unaffected.

Young W. Lim Conditions 2022-06-20 Mon 42 / 52

register operand types (1)

byte 3 byte 2 byte 1 byte 0
%ah %al
%ax_1 %ax_0

%eax_3 %eax_2 %eax_1 %eax_0
%ch %cl
%cx_1 %cx_0

%ecx_3 %ecx_2 %ecx_1 %ecx_0
%dh %dl
%dx_1 %dx_0

%edx_3 %edx_2 %edx_1 %edx_0
%bh %bl
%bx_1 %bx_0

%ebx_3 %ebx_2 %ebx_1 %ebx_0

Young W. Lim Conditions 2022-06-20 Mon 43 / 52

register operand types (2)

byte 3 byte 2 byte 1 byte 0
%si_1 %si_0

%esi_3 %esi_2 %esi_1 %esi_0
%di_1 %di_0

%edi_3 %edi_2 %edi_1 %edi_0
%sp_1 %sp_0

%esp_3 %esp_2 %esp_1 %esp_0
%bp_1 %bp_0

%ebp_3 %ebp_2 %ebp_1 %ebp_0

Young W. Lim Conditions 2022-06-20 Mon 44 / 52

register operand types (3)

byte 3 byte 2 byte 1 byte 0
%ah %al
%ch %cl
%dh %dl
%bh %bl
%ax_1 %ax_0
%cx_1 %cx_0
%dx_1 %dx_0
%bx_1 %bx_0
%si_1 %si_0
%di_1 %di_0
%sp_1 %sp_0
%bp_1 %bp_0

Young W. Lim Conditions 2022-06-20 Mon 45 / 52

register operand types (4)

byte 3 byte 2 byte 1 byte 0
%eax_3 %eax_2 %eax_1 %eax_0
%ecx_3 %ecx_2 %ecx_1 %ecx_0
%edx_3 %edx_2 %edx_1 %edx_0
%ebx_3 %ebx_2 %ebx_1 %ebx_0
%esi_3 %esi_2 %esi_1 %esi_0
%edi_3 %edi_2 %edi_1 %edi_0
%esp_3 %esp_2 %esp_1 %esp_0
%ebp_3 %ebp_2 %ebp_1 %ebp_0

Young W. Lim Conditions 2022-06-20 Mon 46 / 52

Set (6)

for some of the underlying machine instructions,
there are multiple possible names (synonyms),

setg (set greater)
setnle (set not less or equal)

compilers and disassemblers make arbitrary choices
of which names to use

Young W. Lim Conditions 2022-06-20 Mon 47 / 52

Set (7)

although all arithmetic operations set the condition codes,
the descriptions of the different set commands apply
to the case where a comparison instruction has been executed,
setting the condition codes according to the computation
t = a - b

for example, consider the sete, or "Set when equal" instruction
when a = b, we will have t = 0, and hence the zero flag
indicates equality

Young W. Lim Conditions 2022-06-20 Mon 48 / 52

Set (8)

Similarly, consider testing a signed comparison with the setl
or "Set when less"
when a and b are in two’s complement form,
then for a < b we will have a - b < 0
if the true difference were computed
when there is no overflow, this would be indicated by having
the sign flag set

Young W. Lim Conditions 2022-06-20 Mon 49 / 52

Set (9)

when there is positive overflow,
because a - b is a large positive number, however,
we will have t < 0

when there is negative overflow,
because a - b is a small negative number,
we will have t > 0

in either case, the sign flag will indicate the opposite
of the sign of the true difference

Young W. Lim Conditions 2022-06-20 Mon 50 / 52

Set (10)

in either case, the sign flag will indicate the opposite
of the sign of the true difference

hence, the Exclusive-Or of the overflow and sign bits
provides a test for whether a < b

the other signed comparison tests are based
on other combinations of SF ^ OF and ZF

Young W. Lim Conditions 2022-06-20 Mon 51 / 52

Set (11)

for the testing of unsigned comparisons, the carry flag
will be set by the cmpl instruction
when the integer difference a - b of the unsigned arguments
a and b would be negative, that is when
(unsinged) a < (unsigned) b

thus, these tests use combinations of the carry and zero flags

Young W. Lim Conditions 2022-06-20 Mon 52 / 52

	Based on
	Condition Codes
	Accessing the Conditon Codes

