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Church encoding is a means of 

representing data and operators in the lambda calculus. 

The Church numerals are a representation of 

the natural numbers using lambda notation. 

The method is named for Alonzo Church, 

who first encoded data in the lambda calculus this way.

https://en.wikipedia.org/wiki/Church_encoding

Church encoding (1)   
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Terms that are usually considered primitive in other notations 

(such as integers, booleans, pairs, lists, and tagged unions) 

are mapped to higher-order functions under Church encoding. 

The Church-Turing thesis asserts that 

any computable operator (and its operands) 

can be represented under Church encoding. 

In the untyped lambda calculus 

the only primitive data type is the function. 

https://en.wikipedia.org/wiki/Church_encoding

Church encoding (1)   
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Lambda calculus may be untyped or typed. 

In typed lambda calculus, functions can be applied 

only if they are capable of accepting the given input's "type" of data. 

Typed lambda calculi are weaker than the untyped lambda calculus, 

in the sense that typed lambda calculi can express less 

than the untyped calculus can, 

but on the other hand typed lambda calculi 

allow more things to be proven; 

https://en.wikipedia.org/wiki/Church_encoding

Typed and untyped calculus (1) 



Lambda Calculus (5A) – 
Church Numerals

6 Young Won Lim
6/28/23

in the simply typed lambda calculus it is, for example, a theorem 

that every evaluation strategy terminates 

for every simply typed lambda-term, 

whereas evaluation of untyped lambda-terms need not terminate. 

One reason there are many different typed lambda calculi 

has been the desire to do more (of what the untyped calculus can do) 

without giving up on being able to prove strong theorems 

about the calculus. 

https://en.wikipedia.org/wiki/Church_encoding

Typed and untyped calculus (2) 
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A typed lambda calculus is a typed formalism 

that uses the lambda-symbol ( λ \lambda ) 

to denote anonymous function abstraction. 

In this context, types are usually objects of a syntactic nature 

that are assigned to lambda terms; 

the exact nature of a type depends 

on the calculus considered 

(see Kinds of typed lambda calculi). 

https://en.wikipedia.org/wiki/Church_encoding

Typed lambda calculus (3)
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From a certain point of view, 

typed lambda calculi can be seen 

as refinements of the untyped lambda calculus 

but from another point of view, 

they can also be considered the more fundamental theory 

and untyped lambda calculus 

a special case with only one type.

https://en.wikipedia.org/wiki/Church_encoding

Typed lambda calculus (3)
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Typed lambda calculi are foundational programming languages 

and are the base of typed functional programming languages 

such as ML and Haskell and, more indirectly, 

typed imperative programming languages. 

Typed lambda calculi play an important role 

in the design of type systems for programming languages; 

here typability usually captures desirable properties of the program, 

e.g. the program will not cause a memory access violation. 

https://en.wikipedia.org/wiki/Church_encoding

Typed lambda calculus (4)
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Typed lambda calculi are closely related 

to mathematical logic and proof theory 

via the Curry–Howard isomorphism and 

they can be considered as 

the internal language of classes of categories, 

e.g. the simply typed lambda calculus is 

the language of Cartesian closed categories (CCCs). 

https://en.wikipedia.org/wiki/Church_encoding

Typed lambda calculus (5)
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In the philosophy of mathematics, 

formalism is the view that holds 

that statements of mathematics and logic 

can be considered to be statements 

about the consequences of the manipulation of strings 

(alphanumeric sequences of symbols, usually as equations) 

using established manipulation rules.

https://en.wikipedia.org/wiki/Formalism_(philosophy_of_mathematics)

Formalism 
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● Untyped lambda calculus -- no logical interpretation

● Simply typed lambda calculus -- intuitionistic propositional logic

● Polymorphic lambda calculus -- pure second-order logic 

     ie, without first-order quantifiers

● Dependent types -- generalization of first-order logic

● Calculus of constructions -- generalization of higher-order logic

https://cstheory.stackexchange.com/questions/5834/classification-of-typed-untyped-lambda-calculi

Classification of typed / untyped lambda calculus (1) 
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Type dependency is more general than first-order quantification, 

since it turns proofs into objects you can quantify over. 

Lambda calculi corresponding to ordinary intuitionistic FOL exist, 

but are not widely used enough to have a special name 

-- people tend to go straight to dependent types.

https://cstheory.stackexchange.com/questions/5834/classification-of-typed-untyped-lambda-calculi

Classification of typed / untyped lambda calculus (2) 
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Pure untyped λ-calculus is Turing complete, i.e., 

a partial number-theoretic map is computable 

if, and only if, it is definable in the untyped λ-calculus. 

The computational power of typed λ-calculus is much smaller. 

For example, if we add a type of natural numbers nat 

to the typed λ-calculus, together with 

0, successor, and primitive recursion, 

we get what is commonly known as Gödel's T. 

It computes the primitive recursive functions only (and they are all total).

https://cstheory.stackexchange.com/questions/5834/classification-of-typed-untyped-lambda-calculi

Classification of typed / untyped lambda calculus (3) 
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The untyped λ-calculus does not have a reasonable interpretation 

under the Curry-Howard correspondence, while the typed λ

– calculus corresponds precisely to intuitionistic propositional calculus.

Models of typed λ

– calculus are precisely the cartesian-closed categories. 

Models of the untyped λ-calculus are less well-behaved. 

While it is possible to talk about them, 

they are certainly not studied as widely as cartesian-closed categories.

https://cstheory.stackexchange.com/questions/5834/classification-of-typed-untyped-lambda-calculi

Classification of typed / untyped lambda calculus (4) 
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A straightforward implementation of Church encoding 

slows some access operations from O(1) to O(n), 

where n is the size of the data structure, 

making Church encoding impractical. 

Research has shown that 

this can be addressed by targeted optimizations, 

but most functional programming languages instead 

expand their intermediate representations 

to contain algebraic data types.

 

https://en.wikipedia.org/wiki/Church_encoding

Use (1)
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Nonetheless Church encoding is 

often used in theoretical arguments, 

as it is a natural representation 

for partial evaluation and theorem proving. 

Operations can be typed using higher-ranked types, 

and primitive recursion is easily accessible. 

The assumption that functions are the only primitive data types 

streamlines many proofs. 

https://en.wikipedia.org/wiki/Church_encoding

Use (2)
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Church encoding is complete but only representationally. 

Additional functions are needed 

to translate the representation into common data types, 

for display to people. 

It is not possible in general to decide 

if two functions are extensionally equal 

due to the undecidability of equivalence from Church's theorem. 

https://en.wikipedia.org/wiki/Church_encoding

Use (3)
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The translation may apply the function in some way 

to retrieve the value it represents, or 

look up its value as a literal lambda term. 

Lambda calculus is usually interpreted as using intensional equality. 

There are potential problems with the interpretation of results 

because of the difference between the intensional 

and extensional definition of equality. 

https://en.wikipedia.org/wiki/Church_encoding

Use (4)
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Church numerals are 

the representations of natural numbers under Church encoding. 

The higher-order function that represents natural number n 

is a function that maps any function f to its n-fold composition. 

In simpler terms, the "value" of the numeral is equivalent 

to the number of times the function encapsulates its argument.

https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (1)

n times

f 
○ n

 = f ○ f ○ ∙ ∙ ∙ ○ f
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Starting with 0 not applying the function at all, 

proceed with 1 applying the function once, 

2 applying the function twice, 

3 applying the function three times, etc.: 

n f x = f 
(n) 

(x)

https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (2)

n times

f 
○ n

 = f ○ f ○ ∙ ∙ ∙ ○ f
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All Church numerals are functions 

that take two parameters.  (f and x)

Church numerals 0, 1, 2, ...,  are defined in the lambda calculus.

Number Function definition Lambda expression

0 0 f x = f (0) (x) = x λf. λx. x

1 1 f x = f (1) (x) = f x λf. λx. f x

2 2 f x = f (2) (x) = f (f x) λf. λx. f (f x)

3 3 f x = f (3) (x) = f (f (f x)) λf. λx. f (f (f x))

n n f x = f (n) (x) = f (f … (f x)…) λf. λx. f (f … (f x)…)

https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (3)

n times n times



Lambda Calculus (5A) – 
Church Numerals

23 Young Won Lim
6/28/23

The Church numeral 3 represents 

the action of applying any given function three times to a value. 

The supplied function f is first applied 

to a supplied parameter x

and then successively to its own result. 

x → f x → f (f x) → f (f (f x))

https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (4)

3 = 3 f x 

= f (f (f x))

= f (3) (x)

= λf. λx. f (f (f x))

The higher-order function that 
represents natural number n 
is a function 

that maps any function f 
to its n-fold composition. 
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The end result is not the numeral 3 

unless the supplied parameter happens to be 0 

and the function is a successor function

The function itself, 

and not its end result, 

is the Church numeral 3. 

The Church numeral 3 means 

simply to do anything three times. 

It is an ostensive demonstration of what is meant by "three times". 

ostensive : directly or clearly demonstrative

https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (5)

The higher-order function that 
represents natural number n 
is a function 

that maps any function f 
to its n-fold composition. 
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Church wasn't trying to be practical. 

He was trying to prove results about 

the expressive power of lambda calculus — 

that in principle any possible computation 

can be done in lambda calculus, 

hence lambda calculus can serve 

as a theoretical foundation for the study of computability. 

For this purpose, it was necessary 

to encode numbers as lambda expressions, 

in such a way that things like the successor function 

are easily definable. 

https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Why definition (1) 
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This was a key step in showing 

the equivalence of lambda calculus and 

Gödel's recursive function theory

(which was about computable functions on the natural numbers). 

Church numerals are basically a convenient 

albeit not very readable encoding of numbers. 

In some sense, there isn't any very deep logic to it. 

The claim isn't that 1 in its essence is λf. λx. f x, 

but that the latter is a serviceable encoding of the former.

https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Why definition (2) 
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This doesn't mean that it is an arbitrary encoding. 

There is a definite logic to it. 

The most natural way to encode a number n is 

by something which involves n. 

Church numerals use n function applications. 

The natural number n is represented 

by the higher order function 

which applies a function n times to an input. 

https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Why definition (3) 
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1 is encoded by a function applied once, 

2 by a function applied twice and so on. 

It is a very natural encoding, 

especially in the context of lambda calculus. 

Furthermore, the fact that it is easy 

to define arithmetic on them 

streamlines the proof 

that lambda calculus is equivalent to

recursive functions.

https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Why definition (4) 
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To see this in practice, you can run 

the following Python3 script:

#some Church numerals:

   ZERO = lambda f: lambda x: x

   ONE = lambda f: lambda x: f(x)

   TWO = lambda f: lambda x: f(f(x))

   THREE = lambda f: lambda x: f(f(f(x)))

https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Why definition (5) 
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# function to apply these numerals to:

def square(x): return x**2

# so ZERO(square), ONE(square), etc. are functions

# apply these to 2 and print the results:

print(ZERO(square)(2), ONE(square)(2), 

TWO(square)(2),THREE(square)(2))

Output:

2 4 16 256

Note that these numbers have been obtained 

by squaring the number two 0 times, 1 times, 

2 times, and 3 times respectively.

https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Why definition (6) 

   ZERO = lambda f: lambda x: x

   ONE = lambda f: lambda x: f(x)

   TWO = lambda f: lambda x: f(f(x))

   THREE = lambda f: lambda x: f(f(f(x)))
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Natural numbers are non-negative. 

Given a successor function, next, which adds one, 

we can define the natural numbers 

in terms of zero and next:

    1 = (next 0)

    2 = (next 1) = (next (next 0))

    3 = (next 2) = (next (next (next 0)))

and so on. 

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (1)
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Therefore a number n will be that 

number of successors of zero. 

Just as we adopted the convention TRUE = first,

and FALSE = second, we adopt the following convention:

     zero = λf.λx.x

     one = λf.λx.(f x)

     two = λf.λx.(f (f x))

     three = λf.λx.(f (f (f x)))

     four = λf.λx.(f (f (f (f x))))

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (2)

    1 = (next 0)

    2 = (next 1) = (next (next 0))

    3 = (next 2) = (next (next (next 0)))

f ← next

x ← zero 
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a "unary" representation of the natural numbers, 

such that n is represented 

as n applications of the function f to the argument x. 

     zero = λf.λx.x

     one = λf.λx.(f x)

     two = λf.λx.(f (f x))

     three = λf.λx.(f (f (f x)))

     four = λf.λx.(f (f (f (f x))))

This representation is refered to as

CHURCH NUMERALS. 

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (3)
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We can define the function next as follows:

  next = λn.λf.λx.(f ((n f) x))

and therefore one as follows:

  one = (next zero)

      => (λn.λf.λx.(f ((n f) x)) zero)

      => λf.λx.(f ((zero f) x))

      => λf.λx.(f ((λg.λy.y f) x)) (* alpha conversion avoids clash *)

      => λf.λx.(f (λy.y x))

      => λf.λx.(f x)

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (3)

     zero = λf.λx.x

     one = λf.λx.(f x)

     two = λf.λx.(f (f x))

     three = λf.λx.(f (f (f x)))

     four = λf.λx.(f (f (f (f x))))
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and two as follows:

  two = (next one)

      => (λn.λf.λx.(f ((n f) x)) one)

      => λf.λx.(f ((one f) x))

      => λf.λx.(f ((λg.λy.(g y) f) x))      (* alpha conversion avoids clash *)

      => λf.λx.(f (λy.(f y) x)

      => λf.λx.(f (f x))

val next = fn n => fn f => fn x => (f ((n f) x));

    next = λn.λf.λx.(f ((n f) x))

val next = (f ((n f) x))

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (4)

    next = λn.λf.λx.(f ((n f) x))

     zero = λf.λx.x

     one = λf.λx.(f x)

     two = λf.λx.(f (f x))

     three = λf.λx.(f (f (f x)))

     four = λf.λx.(f (f (f (f x))))
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NOTE that ((two g) y) = (g (g y)). 

So if we had some function, say

one that increments n:

 

   inc = λn.(n+1)

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (5-1)

     two = λf.λx.(f (f x))

     two g = (λf.λx.(f (f x))) g

= λx.(g (g x))

     ((two g) y)

= (λx.(g (g x))) y

= (g (g y))
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then we can get a feel for a Church Numeral as follows:

   ((two inc) 0)

   => ((λf.λx.(f (f x)) inc) 0)

   => (λx.(inc (inc x) 0)

   => (inc (inc 0))

   => (λn.(n+1) (λn.(n+1) 0))

   => (λn.(n+1) (0 + 1))

   => ((0 + 1) + 1)

   => 2

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (5-2)

     two = λf.λx.(f (f x))

     two g = (λf.λx.(f (f x))) g

= λx.(g (g x))

     ((two g) y)

= (λx.(g (g x))) y

= (g (g y))

   inc = λn.(n+1)
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We are now in a position to define addition in terms of next:

   add = λm.λn.λf.λx.((((m next) n) f) x);

    next = λn.λf.λx.(f ((n f) x))

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (6-1)
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Therefore four may be computed as follows:

   four = ((add two) two)

        => ((λm.λn.λf.λx.((((m next) n) f) x) two) two)

        => (λn.λf.λx.((((two next) n) f) x) two

        => λf.λx.((((two next) two) f x)

        => λf.λx.((((λg.λy.(g (g y)) next) two) f x)

        => λf.λx.(((λy.(next (next y)) two) f) x)

        => λf.λx.(((next (next two)) f) x)

        => λf.λx.(((next (next (next  (next zero)))) f) x)

        => λf.λx.(((next (λn.λf.λx.(f ((n f) x)) two)) f) x)

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (6-2)

    add = λm.λn.λf.λx.((((m next) n) f) x);

    next = λn.λf.λx.(f ((n f) x))

     two = λf.λx.(f (f x))

= λg.λy.(g (g y))

     two g = (λf.λx.(f (f x))) g

= λx.(g (g x))

     ((two g) y)

= (λx.(g (g x))) y

= (g (g y))

    one = (next zero)

    two = (next one)

  = (next  (next zero))
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   mult = λm.λn.λx.(m (n x))

   six  = ((mult two) three)

        => ((λm.λn.λx.(m (n x)) two) three)

        => (λn.λx.(two (n x) three)

        => λx.(two (three x))

        => λx.(two (λg.λy.(g (g (g y))) x))

        => λx.(two λy.(x (x (x y))))

        => λx.( λf.λz.(f (f z)) λy.(x (x (x y))) )

        => λx.λz.(λy.(x (x (x y))) (λy.(x (x (x y))) z))

        => λx.λz.(λy.(x (x (x y))) (x (x (x z))) )

        => λx.λx.(x (x (x (x (x (x z))) )))

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (7)

     two = λf.λx.(f (f x))

= λg.λy.(g (g y))

     three = λf.λx.(f (f (f x)))

= λg.λy.(g (g (g y)))
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    power = λm.λn.(m n); nm

    nine  = ((power two) three) threetwo

          => ((λm.λn.(m n) two) three)

          => (λn.(two n) three)

          => (two three)

          => (λf.λx.(f (f x)) three)

          => λx. (three (three x))

          => λx. (three (λg.λy.(g (g (g y))) x))

          => λx. (three λy.(x (x (x y))))

          

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (8-1)

     two = λf.λx.(f (f x))

= λg.λy.(g (g y))

     three = λf.λx.(f (f (f x)))

= λg.λy.(g (g (g y)))
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=> λx. (three λy.(x (x (x y))))

 => λx. (λg.λz.(g (g (g z))) λy.(x (x (x y))))

          => λx.λz.(λy.(x (x (x y))) (λy.(x (x (x y))) (λy.(x (x (x y))) z)))

          => λx.λz.(λy.(x (x (x y))) (λy.(x (x (x y))) (x (x (x z)))))

          => λx.λz.(λy.(x (x (x y))) (x (x (x (x (x (x z))) ))) )

          => λx.λz.(x (x (x (x (x (x (x (x (x z)))))))))

          

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (8-2)

     two = λf.λx.(f (f x))

= λg.λy.(g (g y))

     three = λf.λx.(f (f (f x)))

= λg.λy.(g (g (g y)))
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The following lambda function tests for zero:

   first = λx.λy.λz.x

   third = λx.λy.λz.z

   iszero = λn.((n third) first)

= λn.((n λx.λy.λz.z) first)

= λn.((n λx.λy.λz.z) λx.λy.λz.x)

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (9-1)
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the most commonly defined Church numerals

    0 := λf.λx.x

    1 := λf.λx.f x

    2 := λf.λx.f (f x)

    3 := λf.λx.f (f (f x))

using the alternative syntax presented above in Notation:

    0 := λfx.x

    1 := λfx.f x

    2 := λfx.f (f x)

    3 := λfx.f (f (f x))

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Arithmetic in lambda calculus (1) 
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A Church numeral is a higher-order function – 

it takes a single-argument function f, 

and returns another single-argument function. 

The Church numeral n is a function 

that takes a function f as argument 

and returns the n-th composition of f, 

i.e. the function f composed with itself n times. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition
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This is denoted f(n) and is in fact 

the n-th power of f (considered as an operator); 

f(0) is defined to be the identity function. 

Such repeated compositions (of a single function f) 

obey the laws of exponents, 

which is why these numerals can be used for arithmetic. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition
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    0 := λf.λx.x

    1 := λf.λx.f x

    2 := λf.λx.f (f x)

    3 := λf.λx.f (f (f x))

f(0) is defined to be the identity function. 

In Church's original lambda calculus, 

the formal parameter of a lambda expression 

was required to occur at least once in the function body, 

which made the above definition of 0 impossible.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition
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One way of thinking about the Church numeral n, 

which is often useful when analysing programs, 

is as an instruction 'repeat n times'. 

For example, using the PAIR and NIL functions defined below, 

one can define a function that constructs 

a (linked) list of n elements all equal to x 

by repeating 'prepend another x element' n times, 

starting from an empty list. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition
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The lambda term is

    λn.λx.n (PAIR x) NIL

By varying what is being repeated, 

and varying what argument that function 

being repeated is applied to, 

a great many different effects can be achieved. 

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition
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We can define a successor function, 

which takes a Church numeral n and returns n + 1 

by adding another application of f, 

where '(mf)x' means the function 'f' is applied 'm' times on 'x':

    SUCC := λn.λf.λx.f (n f x)

Because the m-th composition of f composed 

with the n-th composition of f gives the m+n-th composition of f, 

addition can be defined as follows:

    PLUS := λm.λn.λf.λx.m f (n f x)

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition
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PLUS can be thought of as a function 

taking two natural numbers as arguments 

and returning a natural number; it can be verified that

    PLUS 2 3 and     5

are β-equivalent lambda expressions. 

Since adding m to a number n can be accomplished 

by adding 1 m times, an alternative definition is:

    PLUS := λm.λn.m SUCC n [23]

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition
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Similarly, multiplication can be defined as

    MULT := λm.λn.λf.m (n f)

Alternatively

    MULT := λm.λn.m (PLUS n) 0

since multiplying m and n is the same as 

repeating the add n function m times 

and then applying it to zero. 

Exponentiation has a rather simple rendering in Church numerals, namely

    POW := λb.λe.e b

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition
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