Lambda Calculus - Church Numerals (5A)

Copyright (c) 2023-2016 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice.

Church encoding (1)

Church encoding is a means of representing data and operators in the lambda calculus.

The Church numerals are a representation of the natural numbers using lambda notation.

The method is named for Alonzo Church, who first encoded data in the lambda calculus this way.

Church encoding (1)

Terms that are usually considered primitive in other notations (such as integers, booleans, pairs, lists, and tagged unions) are mapped to higher-order functions under Church encoding.

The Church-Turing thesis asserts that any computable operator (and its operands) can be represented under Church encoding.

In the untyped lambda calculus
the only primitive data type is the function.
https://en.wikipedia.org/wiki/Church_encoding

Typed and untyped calculus (1)

Lambda calculus may be untyped or typed.

In typed lambda calculus, functions can be applied
only if they are capable of accepting the given input's "type" of data.

Typed lambda calculi are weaker than the untyped lambda calculus, in the sense that typed lambda calculi can express less
than the untyped calculus can,
but on the other hand typed lambda calculi
allow more things to be proven;
https://en.wikipedia.org/wiki/Church_encoding

Typed and untyped calculus (2)

in the simply typed lambda calculus it is, for example, a theorem that every evaluation strategy terminates
for every simply typed lambda-term,
whereas evaluation of untyped lambda-terms need not terminate.

One reason there are many different typed lambda calculi
has been the desire to do more (of what the untyped calculus can do)
without giving up on being able to prove strong theorems
about the calculus.
https://en.wikipedia.org/wiki/Church_encoding

Typed lambda calculus (3)

A typed lambda calculus is a typed formalism
that uses the lambda-symbol (λ llambda)
to denote anonymous function abstraction.

In this context, types are usually objects of a syntactic nature that are assigned to lambda terms;
the exact nature of a type depends
on the calculus considered
(see Kinds of typed lambda calculi).

Typed lambda calculus (3)

From a certain point of view,
typed lambda calculi can be seen
as refinements of the untyped lambda calculus
but from another point of view,
they can also be considered the more fundamental theory
and untyped lambda calculus
a special case with only one type.
https://en.wikipedia.org/wiki/Church_encoding

Typed lambda calculus (4)

Typed lambda calculi are foundational programming languages and are the base of typed functional programming languages such as ML and Haskell and, more indirectly, typed imperative programming languages.

Typed lambda calculi play an important role
in the design of type systems for programming languages;
here typability usually captures desirable properties of the program, e.g. the program will not cause a memory access violation.

Typed lambda calculus (5)

Typed lambda calculi are closely related to mathematical logic and proof theory via the Curry-Howard isomorphism and they can be considered as
the internal language of classes of categories, e.g. the simply typed lambda calculus is the language of Cartesian closed categories (CCCs).

Formalism

In the philosophy of mathematics,
formalism is the view that holds
that statements of mathematics and logic
can be considered to be statements
about the consequences of the manipulation of strings
(alphanumeric sequences of symbols, usually as equations)
using established manipulation rules.
https://en.wikipedia.org/wiki/Formalism_(philosophy_of_mathematics)

Classification of typed / untyped lambda calculus (1)

- Untyped lambda calculus -- no logical interpretation
- Simply typed lambda calculus -- intuitionistic propositional logic
- Polymorphic lambda calculus -- pure second-order logic
ie, without first-order quantifiers
- Dependent types -- generalization of first-order logic
- Calculus of constructions -- generalization of higher-order logic

Classification of typed / untyped lambda calculus (2)

Type dependency is more general than first-order quantification, since it turns proofs into objects you can quantify over.

Lambda calculi corresponding to ordinary intuitionistic FOL exist, but are not widely used enough to have a special name
-- people tend to go straight to dependent types.

Classification of typed / untyped lambda calculus (3)

Pure untyped λ-calculus is Turing complete, i.e.,
a partial number-theoretic map is computable
if, and only if, it is definable in the untyped λ-calculus.

The computational power of typed λ-calculus is much smaller.

For example, if we add a type of natural numbers nat
to the typed λ-calculus, together with
0 , successor, and primitive recursion,
we get what is commonly known as Gödel's T.

It computes the primitive recursive functions only (and they are all total).

Classification of typed / untyped lambda calculus (4)

The untyped λ-calculus does not have a reasonable interpretation under the Curry-Howard correspondence, while the typed λ

- calculus corresponds precisely to intuitionistic propositional calculus.

Models of typed λ

- calculus are precisely the cartesian-closed categories.

Models of the untyped λ-calculus are less well-behaved.
While it is possible to talk about them,
they are certainly not studied as widely as cartesian-closed categories.

Use (1)

A straightforward implementation of Church encoding slows some access operations from $O(1)$ to $O(n)$, where n is the size of the data structure, making Church encoding impractical.

Research has shown that
this can be addressed by targeted optimizations, but most functional programming languages instead expand their intermediate representations
to contain algebraic data types.
https://en.wikipedia.org/wiki/Church_encoding

Use (2)

Nonetheless Church encoding is often used in theoretical arguments, as it is a natural representation
for partial evaluation and theorem proving.

Operations can be typed using higher-ranked types, and primitive recursion is easily accessible.

The assumption that functions are the only primitive data types streamlines many proofs.

Use (3)

Church encoding is complete but only representationally.

Additional functions are needed
to translate the representation into common data types, for display to people.

It is not possible in general to decide
if two functions are extensionally equal
due to the undecidability of equivalence from Church's theorem.
https://en.wikipedia.org/wiki/Church_encoding

Use (4)

The translation may apply the function in some way to retrieve the value it represents, or look up its value as a literal lambda term.

Lambda calculus is usually interpreted as using intensional equality.

There are potential problems with the interpretation of results
because of the difference between the intensional
and extensional definition of equality.
https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (1)

Church numerals are
the representations of natural numbers under Church encoding.

The higher-order function that represents natural number \boldsymbol{n} is a function that maps any function f to its n-fold composition.

In simpler terms, the "value" of the numeral is equivalent to the number of times the function encapsulates its argument.
n times
$f^{\circ n}=f \circ f \circ \cdots \circ f$
https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (2)

https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (3)

All Church numerals are functions
that take two parameters. (\mathbf{f} and \mathbf{x})

Church numerals $0,1,2, \ldots$, are defined in the lambda calculus.

Number	Function definition	Lambda expression
0	$0 \mathrm{ft}=\mathrm{f}^{(0)}(\mathrm{x})=\mathrm{x}$	$\lambda \mathrm{f} . \lambda \mathrm{x}$. x
1	$1 \mathrm{fx}=\mathrm{f}^{(1)}(\mathrm{x})=\mathrm{f} \boldsymbol{x}$	$\lambda \mathrm{f} . \lambda \mathrm{x} . \mathrm{fx}$
2	$2 \mathrm{fx}=\mathrm{f}^{(2)}(\mathrm{x})=\mathrm{f}(\mathrm{f} \mathrm{x})$	$\lambda \mathrm{f} . \lambda \mathrm{x} . \mathrm{f}(\mathrm{f} \mathrm{x})$
3	$3 \mathrm{fx}=\mathrm{f}^{(3)}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{f} \mathrm{x})$)	$\lambda \mathrm{f} . \lambda \mathrm{x} . \mathrm{f}(\mathrm{f}(\mathrm{fx})$)
n	$n \mathrm{fx}=\mathrm{f}^{(n)}(\mathrm{x})=\mathrm{f}(\mathrm{f} \ldots(\mathrm{f} x) \ldots$...)	$\lambda \mathrm{f} . \lambda \mathrm{x} . \mathrm{f}(\mathrm{f} \ldots$... (f x$) \ldots$...)
	n times	n times

https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (4)

The Church numeral 3 represents
the action of applying any given function three times to a value.

The supplied function f is first applied
to a supplied parameter \mathbf{x}
and then successively to its own result.
$x \rightarrow f x \rightarrow f(f x) \rightarrow f(f(f x))$
$3=3 \mathrm{fx}$
$=f(f(f x))$
$=f^{(3)}(x)$
$=\lambda f . \lambda x . f(f(f x))$

The higher-order function that represents natural number n is a function
that maps any function f
to its n -fold composition.

Church Numerals (5)

The end result is not the numeral 3
unless the supplied parameter happens to be $\mathbf{0}$
and the function is a successor function

The function itself,
and not its end result,
is the Church numeral 3.

The Church numeral 3 means
simply to do anything three times.

It is an ostensive demonstration of what is meant by "three times".
ostensive : directly or clearly demonstrative

The higher-order function that represents natural number n is a function
that maps any function f to its n-fold composition.

[^0]
Why definition (1)

Church wasn't trying to be practical.
He was trying to prove results about
the expressive power of lambda calculus -
that in principle any possible computation
can be done in lambda calculus,
hence lambda calculus can serve
as a theoretical foundation for the study of computability.

For this purpose, it was necessary
to encode numbers as lambda expressions,
in such a way that things like the successor function are easily definable.

Why definition (2)

This was a key step in showing
the equivalence of lambda calculus and

Gödel's recursive function theory

(which was about computable functions on the natural numbers).

Church numerals are basically a convenient
albeit not very readable encoding of numbers.

In some sense, there isn't any very deep logic to it.

The claim isn't that $\mathbf{1}$ in its essence is $\boldsymbol{\lambda} \mathbf{f} . \boldsymbol{\lambda} \mathbf{x} . \mathbf{f} \mathbf{x}$, but that the latter is a serviceable encoding of the former.

Why definition (3)

This doesn't mean that it is an arbitrary encoding.
There is a definite logic to it.

The most natural way to encode a number n is by something which involves n.

Church numerals use \boldsymbol{n} function applications.

The natural number \boldsymbol{n} is represented
by the higher order function
which applies a function \boldsymbol{n} times to an input.
https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Why definition (4)

1 is encoded by a function applied once, 2 by a function applied twice and so on.

It is a very natural encoding,
especially in the context of lambda calculus.

Furthermore, the fact that it is easy
to define arithmetic on them
streamlines the proof
that lambda calculus is equivalent to
recursive functions.

Why definition (5)

To see this in practice, you can run the following Python3 script:
\#some Church numerals:

ZERO = lambda $f:$ lambda $x: x$
ONE = lambda f: lambda $x: f(x)$
TWO = lambda f: lambda x : $f(f(x))$
THREE = lambda $f:$ lambda $x: f(f(f(x)))$

Why definition (6)

\# function to apply these numerals to:
def square(x): return $x^{* *} 2$
\# so ZERO(square), ONE(square), etc. are functions
\# apply these to 2 and print the results:
print(ZERO(square)(2), ONE(square)(2),
TWO(square)(2),THREE(square)(2))

ZERO = lambda f: lambda x : x
ONE = lambda f: lambda $x: f(x)$
TWO = lambda f: lambda x : $f(f(x))$
THREE = lambda f: lambda x : $f(f(f(x)))$

Output:
2416256

Note that these numbers have been obtained
by squaring the number two 0 times, 1 times,
2 times, and 3 times respectively.
https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Church numeral (1)

Natural numbers are non-negative.
Given a successor function, next, which adds one,
we can define the natural numbers
in terms of zero and next:

```
1 = (next 0)
2 = (next 1) = (next (next 0))
3 = (next 2) = (next (next (next 0)))
```

and so on.

Church numeral (2)

Therefore a number \mathbf{n} will be that
number of successors of zero.
Just as we adopted the convention TRUE = first,
and FALSE = second, we adopt the following convention:

```
zero = \lambdaf.\lambdax.x
one = \lambdaf.\lambdax.(f x)
two = \lambdaf.\lambdax.(f (f x))
three = \lambdaf.\lambdax.(f (f (f x)))
four = \lambdaf.\lambdax.(f (f (f (f x))))
```

```
1 = (next 0)
2 = (next 1) = (next (next 0))
3 = (next 2) = (next (next (next 0)))
    \(\mathrm{f} \leftarrow \mathrm{next}\)
    \(\mathbf{x} \leftarrow\) zero
```


Church numeral (3)

a "unary" representation of the natural numbers, such that \mathbf{n} is represented as \mathbf{n} applications of the function \mathbf{f} to the argument \mathbf{x}.

$$
\begin{array}{ll}
\text { zero } & =\lambda f \cdot \lambda x . x \\
\text { one } & =\lambda f \cdot \lambda x .(f x) \\
\text { two } & =\lambda f \cdot \lambda x .(f(f x)) \\
\text { three } & =\lambda f \cdot \lambda x .(f(f(f x))) \\
\text { four } & =\lambda f \cdot \lambda x .(f(f(f(f x))))
\end{array}
$$

This representation is refered to as
CHURCH NUMERALS.
https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (3)

We can define the function next as follows:

```
next = \lambdan.\lambdaf.\lambdax.(f (( n f) x))
```

and therefore one as follows:

```
one \(=\) (next zero)
    => ( \(\boldsymbol{\lambda} \mathrm{n} . \boldsymbol{\lambda f} . \boldsymbol{\lambda x} .(\mathrm{f}(\mathbf{( n f ) x )}\) ) zero)
    => \(\lambda \mathrm{f} . \lambda \mathrm{\lambda x}\).(f ((zerof) x\())\)
    \(=>\lambda f . \lambda x .(f((\lambda g . \lambda y . y \mathbf{f}) \mathbf{x})) \quad\) (* alpha conversion avoids clash *)
    => \(\lambda \mathrm{f} . \lambda \mathrm{x} .(\mathrm{f}(\lambda y . \mathrm{y} \mathrm{x}))\)
    => \(\lambda \mathrm{f} . \lambda \mathrm{x}\).( f x )
```

```
zero = \lambdaf. }\lambda\textrm{x}.\textrm{x
one = \lambdaf. \lambdax.(f x)
two = \lambdaf.\lambdax.(f (f x))
three = \lambdaf.\lambdax.(f (f (f x)))
four = \lambdaf.\lambdax.(f (f (f (f x)))
```


Church numeral (4)

```
and two as follows:
two \(=\) (next one)
    => ( \(\boldsymbol{\lambda} \mathrm{n} . \boldsymbol{\lambda} \mathrm{f} . \boldsymbol{\lambda x} .(\mathrm{f}((\mathrm{nf}) \mathbf{x}))\) one)
    => \(\lambda \mathrm{f} . \lambda \mathrm{x}\).(f ((one f) x\()\) )
    => \(\boldsymbol{\lambda} \mathbf{f} . \boldsymbol{\lambda x} .(\mathbf{f}((\boldsymbol{g} . \boldsymbol{\lambda y} .(\mathbf{g} \mathbf{y}) \mathbf{f}) \mathbf{x})) \quad\) (* alpha conversion avoids clash *)
    => \(\lambda \mathrm{f} . \lambda \mathrm{x} .(\mathrm{f}(\lambda y .(\mathrm{f} \mathrm{y}) \mathrm{x})\)
    => \(\lambda \mathrm{f} . \lambda \mathrm{x}\).( \(\mathrm{f}(\mathrm{f} \mathrm{x})\) )
val next \(=f n \mathbf{n}=>\mathrm{fn} \mathrm{f}=>\mathrm{fn} x=>(\mathrm{f}((\mathrm{nf}) \mathrm{x})\) );
    next \(=\boldsymbol{\lambda} \mathrm{n} . \lambda \mathrm{\lambda} . \boldsymbol{\lambda} \mathrm{x} .(\mathrm{f}((\mathrm{nf}) \mathrm{x}))\)
val next \(=(\mathbf{f}((\mathrm{nf}) \mathbf{x})\) )
```

```
next = \lambdan.\lambdaf.\lambdax.(f ((n f) x))
zero = \lambdaf.\lambdax.x
one = \lambdaf.\lambdax.(f x)
two = \lambdaf.\lambdax.(f (f x))
three = \lambdaf.\lambdax.(f (f (f x)))
four = \lambdaf.\lambdax.(f (f (f (f x)))
```


Church numeral (5-1)

NOTE that $\left(\left(\begin{array}{l}\text { wo } \\ \mathbf{g}) \\ \mathbf{y}\end{array}\right)=(\mathbf{g}(\mathbf{g} \mathbf{y}))\right.$.

So if we had some function, say one that increments n :

```
inc = \lambdan.(n+1)
```

two $=\lambda f . \lambda x .(f(f x))$
two $g=(\lambda f . \lambda x .(f(f x))) g$
$=\lambda x .(g(g x))$
((two g) y)
$=(\lambda x .(g(g x))) y$
$=(g(g y))$

Church numeral (5-2)

then we can get a feel for a Church Numeral as follows:

```
((two inc) 0)
=> ((\lambdaf.\lambdax.(f (f x)) inc) 0)
=> ( }\lambda\times\mathrm{ x.(inc (inc x) 0)
=> (inc (inc 0))
=> (\lambdan.(n+1) (\lambdan.(n+1) 0))
=> (\lambdan.(n+1) (0 + 1))
=> ((0 + 1) + 1)
=> 2
```

```
two \(=\lambda \mathrm{f} . \lambda \mathrm{x} .(\mathrm{f}(\mathrm{f} x)\) )
two \(g=(\lambda f . \lambda x .(f(f x))) g\)
    \(=\lambda x .(g(g x))\)
((two g) y)
    \(=(\lambda x .(g(g x))) y\)
    \(=(g(g y))\)
inc \(=\lambda n .(n+1)\)
```


Church numeral (6-1)

We are now in a position to define addition in terms of next:

```
add = \lambdam.\lambdan.\lambdaf.\lambdax.((((m next) n) f) x);
next = \n.\lambdaf.\lambdax.(f (( }\textrm{f}\mathbf{f})\mathbf{x})
```

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (6-2)

Therefore four may be computed as follows:

```
four = ((add two) two)
    => ((\lambdam.\lambdan.\lambdaf.\lambdax.((((m next) n) f) x) two) two)
    => (\lambdan.\lambdaf.\lambdax.((((two next) n) f) x) two
    => \lambdaf.\lambdax.((((two next) two) f x)
    => \lambdaf.\lambdax.((()
    => \lambdaf.\lambdax.(((\lambday.(next (next y)) two) f) x)
    => \lambdaf.\lambdax.(((next (next two)) f) x)
    => \lambdaf.\lambdax.(((next (next (next (next zero)))) f) x)
    => \lambdaf.\lambdax.(((next (\lambdan.\lambdaf.\lambdax.(f ((n f) x)) two)) f) x)
```

```
add = \lambdam.\lambdan.\lambdaf.\lambdax.((((m next) n) f) x);
next = \lambdan. \f. \x.(f((nf) x))
two = \lambdaf.\lambdax.(f (f x))
    = \lambdag.\lambday.(g (g y))
two g=(\lambdaf.\lambdax.(f(f x)))g
    = \lambdax.(g(g x))
((two g) y)
    = (\lambdax.(g(g x))) y
    =(g(g y))
one = (next zero)
two = (next one)
    = (next (next zero))
```


Church numeral (7)

```
mult = \lambdam.\lambdan.\lambdax.(m (n x))
six = ((mult two) three)
    => ((\lambdam.\lambdan.\lambdax.(m (n x)) two) three)
    => (\lambdan.\lambdax.(two (n x) three)
    => \lambdax.(two (three x))
    => \lambdax.(two (\lambdag.\lambday.(g (g (g y))) x))
    => \lambdax.(two \lambday.(x (x (x y))))
    => \lambdax.( \lambdaf.\lambdaz.(f (f z)) \lambday.(x (x (x y))) )
    => \lambdax.\lambdaz.(\lambday.(x (x (x y))) (\lambday.(x (x (x y))) z))
    => \lambdax.\lambdaz.(\lambday.(x (x (x y))) (x (x (x z))) )
    => \lambdax.\lambdax.(x (x (x (x (x (x z))) )))
```

```
two = \lambdaf.\lambdax.(f (f x))
    = \lambdag.\lambday.(g (g y))
three = \lambdaf.\lambdax.(f (f (f x)))
    = \lambdag.\lambday.(g (g (g y)))
```


Church numeral (8-1)

```
```

power $=\boldsymbol{\lambda} \mathrm{m} . \boldsymbol{\lambda} \mathrm{n} .(\mathrm{m} \mathrm{n})$;

```
```

power $=\boldsymbol{\lambda} \mathrm{m} . \boldsymbol{\lambda} \mathrm{n} .(\mathrm{m} \mathrm{n})$;
nine $=(($ power two $)$ three $) \quad$ three ${ }^{\text {two }}$
nine $=(($ power two $)$ three $) \quad$ three ${ }^{\text {two }}$
=> ($(\boldsymbol{\lambda} \mathrm{m} . \boldsymbol{\lambda n}$. $(\mathrm{m} \mathrm{n})$ two) three)
=> ($(\boldsymbol{\lambda} \mathrm{m} . \boldsymbol{\lambda n}$. $(\mathrm{m} \mathrm{n})$ two) three)
=> ($\boldsymbol{\lambda} \mathrm{n}$.(two n$)$ three)
=> ($\boldsymbol{\lambda} \mathrm{n}$.(two n$)$ three)
=> (two three)
=> (two three)
=> ($\lambda \mathrm{f} . \lambda \mathrm{x}$.(f (f x)) three)
=> ($\lambda \mathrm{f} . \lambda \mathrm{x}$.(f (f x)) three)
=> λx. (three (three $x)$)
=> λx. (three (three $x)$)
$=>\lambda x$. (three ($\lambda \mathrm{g} . \lambda \mathrm{y} .(\mathrm{g}(\mathrm{g}(\mathrm{g} y))) \mathrm{x}))$
$=>\lambda x$. (three ($\lambda \mathrm{g} . \lambda \mathrm{y} .(\mathrm{g}(\mathrm{g}(\mathrm{g} y))) \mathrm{x}))$
=> λx. (three λy.(x (x (x y))))

```
```

 => \(\lambda x\). (three \(\lambda y\).(x (x (x y))))
    ```
```


Church numeral (8-2)

$=>\lambda x$. (three λy.($x(x(x y))))$

$$
\begin{aligned}
& =>\lambda x \cdot(\lambda g \cdot \lambda z \cdot(\mathrm{~g}(\mathrm{~g}(\mathrm{~g} z))) \lambda \mathrm{y} \cdot(\mathrm{x}(\mathrm{x}(\mathrm{x} y)))) \\
& =>\lambda x \cdot \lambda z \cdot(\lambda y \cdot(\mathrm{x}(\mathrm{x}(\mathrm{x} y)))(\lambda y \cdot(\mathrm{x}(\mathrm{x}(\mathrm{x} y)))(\lambda y \cdot(\mathrm{x}(\mathrm{x}(\mathrm{x} y))) \mathrm{z}))) \\
& =>\lambda x \cdot \lambda z \cdot(\lambda y \cdot(\mathrm{x}(\mathrm{x}(\mathrm{x} y)))(\lambda y \cdot(\mathrm{x}(\mathrm{x}(\mathrm{x} y)))(\mathrm{x}(\mathrm{x}(\mathrm{x} z))))) \\
& =>\lambda x \cdot \lambda z \cdot(\lambda y \cdot(\mathrm{x}(\mathrm{x}(\mathrm{x} y)))(\mathrm{x}(\mathrm{x}(\mathrm{x}(\mathrm{x}(\mathrm{x}(\mathrm{x} z))))))) \\
& =>\lambda x \cdot \lambda z .(\mathrm{x}(\mathrm{x}(\mathrm{x}(\mathrm{x}(\mathrm{x}(\mathrm{x}(\mathrm{x}(\mathrm{x}(\mathrm{x} \mathbf{z})))))))))
\end{aligned}
$$

```
two = \lambdaf.\lambdax.(f (f x))
    = \lambdag.\lambday.(g (g y))
three = \lambdaf.\lambdax.(f (f (f x)))
    = \lambdag.\lambday.(g(g (g y)))
```


Church numeral (9-1)

The following lambda function tests for zero:

```
first = \lambdax.\lambday.\lambdaz.x
third = \lambdax.\lambday.\lambdaz.z
iszero = \lambdan.((n third) first)
    = \lambdan.((n \lambdax.\lambday.\lambdaz.z) first)
    = \lambdan.((n \lambdax.\lambday.\lambdaz.z) \lambdax.\lambday.\lambdaz.x)
```


Arithmetic in lambda calculus (1)

the most commonly defined Church numerals

$$
\begin{aligned}
& 0:=\lambda f . \lambda x \cdot x \\
& 1:=\lambda f . \lambda x \cdot f x \\
& 2:=\lambda f . \lambda x \cdot f(f x) \\
& 3:=\lambda f . \lambda x \cdot f(f(f x))
\end{aligned}
$$

using the alternative syntax presented above in Notation:
$0:=\lambda f x . x$
1 := $\lambda \mathrm{fx} . \mathrm{f} x$
2 := $\lambda \mathrm{fx} . \mathrm{f}(\mathrm{f} \mathrm{x})$
3 := $\lambda \mathrm{fx} . \mathrm{f}(\mathrm{f}(\mathrm{f} x)$)

Arithmetic in lambda calculus (2)

A Church numeral is a higher-order function -
it takes a single-argument function f, and returns another single-argument function.

The Church numeral \mathbf{n} is a function
that takes a function f as argument
and returns the \mathbf{n}-th composition of \mathbf{f},
i.e. the function \mathbf{f} composed with itself \mathbf{n} times.

Arithmetic in lambda calculus (3)

This is denoted $\mathbf{f}^{(n)}$ and is in fact
the n-th power of f (considered as an operator);
$f^{(0)}$ is defined to be the identity function.

Such repeated compositions (of a single function f)
obey the laws of exponents,
which is why these numerals can be used for arithmetic.
https://en.wikipedia.org/wiki/Lambda_calculus\#Formal_definition

Arithmetic in lambda calculus (4)

```
0:= \lambdaf.\lambdax.x
1:= \lambdaf.\lambdax.f x
2:= \lambdaf.\lambdax.f (f x)
3 := \lambdaf.\lambdax.f (f (f x))
```

$f^{(0)}$ is defined to be the identity function.

In Church's original lambda calculus,
the formal parameter of a lambda expression
was required to occur at least once in the function body,
which made the above definition of 0 impossible.
https://en.wikipedia.org/wiki/Lambda_calculus\#Formal_definition

Arithmetic in lambda calculus (5)

One way of thinking about the Church numeral n, which is often useful when analysing programs, is as an instruction 'repeat \mathbf{n} times'.

For example, using the PAIR and NIL functions defined below, one can define a function that constructs
a (linked) list of \mathbf{n} elements all equal to \mathbf{x}
by repeating 'prepend another \mathbf{x} element' \mathbf{n} times,
starting from an empty list.
https://en.wikipedia.org/wiki/Lambda_calculus\#Formal_definition

Arithmetic in lambda calculus (6)

The lambda term is
$\lambda n . \lambda x . n($ PAIR $x)$ NIL

By varying what is being repeated,
and varying what argument that function
being repeated is applied to,
a great many different effects can be achieved.
https://en.wikipedia.org/wiki/Lambda_calculus\#Formal_definition

Arithmetic in lambda calculus (7)

We can define a successor function, which takes a Church numeral n and returns $\mathrm{n}+1$
by adding another application of f,
where '(mf)x' means the function ' f ' is applied ' m ' times on ' x ':

$$
\text { SUCC := } \lambda n . \lambda f . \lambda x . f(n f x)
$$

Because the m-th composition of f composed
with the n-th composition of f gives the $m+n$-th composition of f, addition can be defined as follows:

```
PLUS := \lambdam.\lambdan.\lambdaf.\lambdax.m f(nfx)
```


Arithmetic in lambda calculus (8)

PLUS can be thought of as a function
taking two natural numbers as arguments
and returning a natural number; it can be verified that

PLUS 23 and 5
are β-equivalent lambda expressions.

Since adding m to a number n can be accomplished
by adding 1 m times, an alternative definition is:

PLUS := $\lambda m . \lambda n . m$ SUCC $n[23]$
https://en.wikipedia.org/wiki/Lambda_calculus\#Formal_definition

Arithmetic in lambda calculus (9)

Similarly, multiplication can be defined as

```
MULT := \lambdam.\lambdan.\lambdaf.m (n f)
```


Alternatively

MULT := λm. λn.m (PLUS n) 0
since multiplying m and n is the same as
repeating the add n function m times
and then applying it to zero.

Exponentiation has a rather simple rendering in Church numerals, namely
POW := λb. λ e.e b
https://en.wikipedia.org/wiki/Lambda_calculus\#Formal_definition

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

[^0]: https://en.wikipedia.org/wiki/Church_encoding

