
1 Young Won Lim
6/28/23

Lambda Calculus - Church Numerals (5A)

2 Young Won Lim
6/28/23

 Copyright (c) 2023 - 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Lambda Calculus (5A) –
Church Numerals

3 Young Won Lim
6/28/23

Church encoding is a means of

representing data and operators in the lambda calculus.

The Church numerals are a representation of

the natural numbers using lambda notation.

The method is named for Alonzo Church,

who first encoded data in the lambda calculus this way.

https://en.wikipedia.org/wiki/Church_encoding

Church encoding (1)

Lambda Calculus (5A) –
Church Numerals

4 Young Won Lim
6/28/23

Terms that are usually considered primitive in other notations

(such as integers, booleans, pairs, lists, and tagged unions)

are mapped to higher-order functions under Church encoding.

The Church-Turing thesis asserts that

any computable operator (and its operands)

can be represented under Church encoding.

In the untyped lambda calculus

the only primitive data type is the function.

https://en.wikipedia.org/wiki/Church_encoding

Church encoding (1)

Lambda Calculus (5A) –
Church Numerals

5 Young Won Lim
6/28/23

Lambda calculus may be untyped or typed.

In typed lambda calculus, functions can be applied

only if they are capable of accepting the given input's "type" of data.

Typed lambda calculi are weaker than the untyped lambda calculus,

in the sense that typed lambda calculi can express less

than the untyped calculus can,

but on the other hand typed lambda calculi

allow more things to be proven;

https://en.wikipedia.org/wiki/Church_encoding

Typed and untyped calculus (1)

Lambda Calculus (5A) –
Church Numerals

6 Young Won Lim
6/28/23

in the simply typed lambda calculus it is, for example, a theorem

that every evaluation strategy terminates

for every simply typed lambda-term,

whereas evaluation of untyped lambda-terms need not terminate.

One reason there are many different typed lambda calculi

has been the desire to do more (of what the untyped calculus can do)

without giving up on being able to prove strong theorems

about the calculus.

https://en.wikipedia.org/wiki/Church_encoding

Typed and untyped calculus (2)

Lambda Calculus (5A) –
Church Numerals

7 Young Won Lim
6/28/23

A typed lambda calculus is a typed formalism

that uses the lambda-symbol (λ \lambda)

to denote anonymous function abstraction.

In this context, types are usually objects of a syntactic nature

that are assigned to lambda terms;

the exact nature of a type depends

on the calculus considered

(see Kinds of typed lambda calculi).

https://en.wikipedia.org/wiki/Church_encoding

Typed lambda calculus (3)

Lambda Calculus (5A) –
Church Numerals

8 Young Won Lim
6/28/23

From a certain point of view,

typed lambda calculi can be seen

as refinements of the untyped lambda calculus

but from another point of view,

they can also be considered the more fundamental theory

and untyped lambda calculus

a special case with only one type.

https://en.wikipedia.org/wiki/Church_encoding

Typed lambda calculus (3)

Lambda Calculus (5A) –
Church Numerals

9 Young Won Lim
6/28/23

Typed lambda calculi are foundational programming languages

and are the base of typed functional programming languages

such as ML and Haskell and, more indirectly,

typed imperative programming languages.

Typed lambda calculi play an important role

in the design of type systems for programming languages;

here typability usually captures desirable properties of the program,

e.g. the program will not cause a memory access violation.

https://en.wikipedia.org/wiki/Church_encoding

Typed lambda calculus (4)

Lambda Calculus (5A) –
Church Numerals

10 Young Won Lim
6/28/23

Typed lambda calculi are closely related

to mathematical logic and proof theory

via the Curry–Howard isomorphism and

they can be considered as

the internal language of classes of categories,

e.g. the simply typed lambda calculus is

the language of Cartesian closed categories (CCCs).

https://en.wikipedia.org/wiki/Church_encoding

Typed lambda calculus (5)

Lambda Calculus (5A) –
Church Numerals

11 Young Won Lim
6/28/23

In the philosophy of mathematics,

formalism is the view that holds

that statements of mathematics and logic

can be considered to be statements

about the consequences of the manipulation of strings

(alphanumeric sequences of symbols, usually as equations)

using established manipulation rules.

https://en.wikipedia.org/wiki/Formalism_(philosophy_of_mathematics)

Formalism

Lambda Calculus (5A) –
Church Numerals

12 Young Won Lim
6/28/23

● Untyped lambda calculus -- no logical interpretation

● Simply typed lambda calculus -- intuitionistic propositional logic

● Polymorphic lambda calculus -- pure second-order logic

 ie, without first-order quantifiers

● Dependent types -- generalization of first-order logic

● Calculus of constructions -- generalization of higher-order logic

https://cstheory.stackexchange.com/questions/5834/classification-of-typed-untyped-lambda-calculi

Classification of typed / untyped lambda calculus (1)

Lambda Calculus (5A) –
Church Numerals

13 Young Won Lim
6/28/23

Type dependency is more general than first-order quantification,

since it turns proofs into objects you can quantify over.

Lambda calculi corresponding to ordinary intuitionistic FOL exist,

but are not widely used enough to have a special name

-- people tend to go straight to dependent types.

https://cstheory.stackexchange.com/questions/5834/classification-of-typed-untyped-lambda-calculi

Classification of typed / untyped lambda calculus (2)

Lambda Calculus (5A) –
Church Numerals

14 Young Won Lim
6/28/23

Pure untyped λ-calculus is Turing complete, i.e.,

a partial number-theoretic map is computable

if, and only if, it is definable in the untyped λ-calculus.

The computational power of typed λ-calculus is much smaller.

For example, if we add a type of natural numbers nat

to the typed λ-calculus, together with

0, successor, and primitive recursion,

we get what is commonly known as Gödel's T.

It computes the primitive recursive functions only (and they are all total).

https://cstheory.stackexchange.com/questions/5834/classification-of-typed-untyped-lambda-calculi

Classification of typed / untyped lambda calculus (3)

Lambda Calculus (5A) –
Church Numerals

15 Young Won Lim
6/28/23

The untyped λ-calculus does not have a reasonable interpretation

under the Curry-Howard correspondence, while the typed λ

– calculus corresponds precisely to intuitionistic propositional calculus.

Models of typed λ

– calculus are precisely the cartesian-closed categories.

Models of the untyped λ-calculus are less well-behaved.

While it is possible to talk about them,

they are certainly not studied as widely as cartesian-closed categories.

https://cstheory.stackexchange.com/questions/5834/classification-of-typed-untyped-lambda-calculi

Classification of typed / untyped lambda calculus (4)

Lambda Calculus (5A) –
Church Numerals

16 Young Won Lim
6/28/23

A straightforward implementation of Church encoding

slows some access operations from O(1) to O(n),

where n is the size of the data structure,

making Church encoding impractical.

Research has shown that

this can be addressed by targeted optimizations,

but most functional programming languages instead

expand their intermediate representations

to contain algebraic data types.

https://en.wikipedia.org/wiki/Church_encoding

Use (1)

Lambda Calculus (5A) –
Church Numerals

17 Young Won Lim
6/28/23

Nonetheless Church encoding is

often used in theoretical arguments,

as it is a natural representation

for partial evaluation and theorem proving.

Operations can be typed using higher-ranked types,

and primitive recursion is easily accessible.

The assumption that functions are the only primitive data types

streamlines many proofs.

https://en.wikipedia.org/wiki/Church_encoding

Use (2)

Lambda Calculus (5A) –
Church Numerals

18 Young Won Lim
6/28/23

Church encoding is complete but only representationally.

Additional functions are needed

to translate the representation into common data types,

for display to people.

It is not possible in general to decide

if two functions are extensionally equal

due to the undecidability of equivalence from Church's theorem.

https://en.wikipedia.org/wiki/Church_encoding

Use (3)

Lambda Calculus (5A) –
Church Numerals

19 Young Won Lim
6/28/23

The translation may apply the function in some way

to retrieve the value it represents, or

look up its value as a literal lambda term.

Lambda calculus is usually interpreted as using intensional equality.

There are potential problems with the interpretation of results

because of the difference between the intensional

and extensional definition of equality.

https://en.wikipedia.org/wiki/Church_encoding

Use (4)

Lambda Calculus (5A) –
Church Numerals

20 Young Won Lim
6/28/23

Church numerals are

the representations of natural numbers under Church encoding.

The higher-order function that represents natural number n

is a function that maps any function f to its n-fold composition.

In simpler terms, the "value" of the numeral is equivalent

to the number of times the function encapsulates its argument.

https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (1)

n times

f
○ n

 = f ○ f ○ ∙ ∙ ∙ ○ f

Lambda Calculus (5A) –
Church Numerals

21 Young Won Lim
6/28/23

Starting with 0 not applying the function at all,

proceed with 1 applying the function once,

2 applying the function twice,

3 applying the function three times, etc.:

n f x = f
(n)

(x)

https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (2)

n times

f
○ n

 = f ○ f ○ ∙ ∙ ∙ ○ f

Lambda Calculus (5A) –
Church Numerals

22 Young Won Lim
6/28/23

All Church numerals are functions

that take two parameters. (f and x)

Church numerals 0, 1, 2, ..., are defined in the lambda calculus.

Number Function definition Lambda expression

0 0 f x = f (0) (x) = x λf. λx. x

1 1 f x = f (1) (x) = f x λf. λx. f x

2 2 f x = f (2) (x) = f (f x) λf. λx. f (f x)

3 3 f x = f (3) (x) = f (f (f x)) λf. λx. f (f (f x))

n n f x = f (n) (x) = f (f … (f x)…) λf. λx. f (f … (f x)…)

https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (3)

n times n times

Lambda Calculus (5A) –
Church Numerals

23 Young Won Lim
6/28/23

The Church numeral 3 represents

the action of applying any given function three times to a value.

The supplied function f is first applied

to a supplied parameter x

and then successively to its own result.

x → f x → f (f x) → f (f (f x))

https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (4)

3 = 3 f x

= f (f (f x))

= f (3) (x)

= λf. λx. f (f (f x))

The higher-order function that
represents natural number n
is a function

that maps any function f
to its n-fold composition.

Lambda Calculus (5A) –
Church Numerals

24 Young Won Lim
6/28/23

The end result is not the numeral 3

unless the supplied parameter happens to be 0

and the function is a successor function

The function itself,

and not its end result,

is the Church numeral 3.

The Church numeral 3 means

simply to do anything three times.

It is an ostensive demonstration of what is meant by "three times".

ostensive : directly or clearly demonstrative

https://en.wikipedia.org/wiki/Church_encoding

Church Numerals (5)

The higher-order function that
represents natural number n
is a function

that maps any function f
to its n-fold composition.

Lambda Calculus (5A) –
Church Numerals

25 Young Won Lim
6/28/23

Church wasn't trying to be practical.

He was trying to prove results about

the expressive power of lambda calculus —

that in principle any possible computation

can be done in lambda calculus,

hence lambda calculus can serve

as a theoretical foundation for the study of computability.

For this purpose, it was necessary

to encode numbers as lambda expressions,

in such a way that things like the successor function

are easily definable.

https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Why definition (1)

Lambda Calculus (5A) –
Church Numerals

26 Young Won Lim
6/28/23

This was a key step in showing

the equivalence of lambda calculus and

Gödel's recursive function theory

(which was about computable functions on the natural numbers).

Church numerals are basically a convenient

albeit not very readable encoding of numbers.

In some sense, there isn't any very deep logic to it.

The claim isn't that 1 in its essence is λf. λx. f x,

but that the latter is a serviceable encoding of the former.

https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Why definition (2)

Lambda Calculus (5A) –
Church Numerals

27 Young Won Lim
6/28/23

This doesn't mean that it is an arbitrary encoding.

There is a definite logic to it.

The most natural way to encode a number n is

by something which involves n.

Church numerals use n function applications.

The natural number n is represented

by the higher order function

which applies a function n times to an input.

https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Why definition (3)

Lambda Calculus (5A) –
Church Numerals

28 Young Won Lim
6/28/23

1 is encoded by a function applied once,

2 by a function applied twice and so on.

It is a very natural encoding,

especially in the context of lambda calculus.

Furthermore, the fact that it is easy

to define arithmetic on them

streamlines the proof

that lambda calculus is equivalent to

recursive functions.

https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Why definition (4)

Lambda Calculus (5A) –
Church Numerals

29 Young Won Lim
6/28/23

To see this in practice, you can run

the following Python3 script:

#some Church numerals:

 ZERO = lambda f: lambda x: x

 ONE = lambda f: lambda x: f(x)

 TWO = lambda f: lambda x: f(f(x))

 THREE = lambda f: lambda x: f(f(f(x)))

https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Why definition (5)

Lambda Calculus (5A) –
Church Numerals

30 Young Won Lim
6/28/23

function to apply these numerals to:

def square(x): return x**2

so ZERO(square), ONE(square), etc. are functions

apply these to 2 and print the results:

print(ZERO(square)(2), ONE(square)(2),

TWO(square)(2),THREE(square)(2))

Output:

2 4 16 256

Note that these numbers have been obtained

by squaring the number two 0 times, 1 times,

2 times, and 3 times respectively.

https://stackoverflow.com/questions/41978590/why-the-definition-of-churchs-numerals

Why definition (6)

 ZERO = lambda f: lambda x: x

 ONE = lambda f: lambda x: f(x)

 TWO = lambda f: lambda x: f(f(x))

 THREE = lambda f: lambda x: f(f(f(x)))

Lambda Calculus (5A) –
Church Numerals

31 Young Won Lim
6/28/23

Natural numbers are non-negative.

Given a successor function, next, which adds one,

we can define the natural numbers

in terms of zero and next:

 1 = (next 0)

 2 = (next 1) = (next (next 0))

 3 = (next 2) = (next (next (next 0)))

and so on.

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (1)

Lambda Calculus (5A) –
Church Numerals

32 Young Won Lim
6/28/23

Therefore a number n will be that

number of successors of zero.

Just as we adopted the convention TRUE = first,

and FALSE = second, we adopt the following convention:

 zero = λf.λx.x

 one = λf.λx.(f x)

 two = λf.λx.(f (f x))

 three = λf.λx.(f (f (f x)))

 four = λf.λx.(f (f (f (f x))))

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (2)

 1 = (next 0)

 2 = (next 1) = (next (next 0))

 3 = (next 2) = (next (next (next 0)))

f ← next

x ← zero

Lambda Calculus (5A) –
Church Numerals

33 Young Won Lim
6/28/23

a "unary" representation of the natural numbers,

such that n is represented

as n applications of the function f to the argument x.

 zero = λf.λx.x

 one = λf.λx.(f x)

 two = λf.λx.(f (f x))

 three = λf.λx.(f (f (f x)))

 four = λf.λx.(f (f (f (f x))))

This representation is refered to as

CHURCH NUMERALS.

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (3)

Lambda Calculus (5A) –
Church Numerals

34 Young Won Lim
6/28/23

We can define the function next as follows:

 next = λn.λf.λx.(f ((n f) x))

and therefore one as follows:

 one = (next zero)

 => (λn.λf.λx.(f ((n f) x)) zero)

 => λf.λx.(f ((zero f) x))

 => λf.λx.(f ((λg.λy.y f) x)) (* alpha conversion avoids clash *)

 => λf.λx.(f (λy.y x))

 => λf.λx.(f x)

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (3)

 zero = λf.λx.x

 one = λf.λx.(f x)

 two = λf.λx.(f (f x))

 three = λf.λx.(f (f (f x)))

 four = λf.λx.(f (f (f (f x))))

Lambda Calculus (5A) –
Church Numerals

35 Young Won Lim
6/28/23

and two as follows:

 two = (next one)

 => (λn.λf.λx.(f ((n f) x)) one)

 => λf.λx.(f ((one f) x))

 => λf.λx.(f ((λg.λy.(g y) f) x)) (* alpha conversion avoids clash *)

 => λf.λx.(f (λy.(f y) x)

 => λf.λx.(f (f x))

val next = fn n => fn f => fn x => (f ((n f) x));

 next = λn.λf.λx.(f ((n f) x))

val next = (f ((n f) x))

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (4)

 next = λn.λf.λx.(f ((n f) x))

 zero = λf.λx.x

 one = λf.λx.(f x)

 two = λf.λx.(f (f x))

 three = λf.λx.(f (f (f x)))

 four = λf.λx.(f (f (f (f x))))

Lambda Calculus (5A) –
Church Numerals

36 Young Won Lim
6/28/23

NOTE that ((two g) y) = (g (g y)).

So if we had some function, say

one that increments n:

 inc = λn.(n+1)

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (5-1)

 two = λf.λx.(f (f x))

 two g = (λf.λx.(f (f x))) g

= λx.(g (g x))

 ((two g) y)

= (λx.(g (g x))) y

= (g (g y))

Lambda Calculus (5A) –
Church Numerals

37 Young Won Lim
6/28/23

then we can get a feel for a Church Numeral as follows:

 ((two inc) 0)

 => ((λf.λx.(f (f x)) inc) 0)

 => (λx.(inc (inc x) 0)

 => (inc (inc 0))

 => (λn.(n+1) (λn.(n+1) 0))

 => (λn.(n+1) (0 + 1))

 => ((0 + 1) + 1)

 => 2

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (5-2)

 two = λf.λx.(f (f x))

 two g = (λf.λx.(f (f x))) g

= λx.(g (g x))

 ((two g) y)

= (λx.(g (g x))) y

= (g (g y))

 inc = λn.(n+1)

Lambda Calculus (5A) –
Church Numerals

38 Young Won Lim
6/28/23

We are now in a position to define addition in terms of next:

 add = λm.λn.λf.λx.((((m next) n) f) x);

 next = λn.λf.λx.(f ((n f) x))

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (6-1)

Lambda Calculus (5A) –
Church Numerals

39 Young Won Lim
6/28/23

Therefore four may be computed as follows:

 four = ((add two) two)

 => ((λm.λn.λf.λx.((((m next) n) f) x) two) two)

 => (λn.λf.λx.((((two next) n) f) x) two

 => λf.λx.((((two next) two) f x)

 => λf.λx.((((λg.λy.(g (g y)) next) two) f x)

 => λf.λx.(((λy.(next (next y)) two) f) x)

 => λf.λx.(((next (next two)) f) x)

 => λf.λx.(((next (next (next (next zero)))) f) x)

 => λf.λx.(((next (λn.λf.λx.(f ((n f) x)) two)) f) x)

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (6-2)

 add = λm.λn.λf.λx.((((m next) n) f) x);

 next = λn.λf.λx.(f ((n f) x))

 two = λf.λx.(f (f x))

= λg.λy.(g (g y))

 two g = (λf.λx.(f (f x))) g

= λx.(g (g x))

 ((two g) y)

= (λx.(g (g x))) y

= (g (g y))

 one = (next zero)

 two = (next one)

 = (next (next zero))

Lambda Calculus (5A) –
Church Numerals

40 Young Won Lim
6/28/23

 mult = λm.λn.λx.(m (n x))

 six = ((mult two) three)

 => ((λm.λn.λx.(m (n x)) two) three)

 => (λn.λx.(two (n x) three)

 => λx.(two (three x))

 => λx.(two (λg.λy.(g (g (g y))) x))

 => λx.(two λy.(x (x (x y))))

 => λx.(λf.λz.(f (f z)) λy.(x (x (x y))))

 => λx.λz.(λy.(x (x (x y))) (λy.(x (x (x y))) z))

 => λx.λz.(λy.(x (x (x y))) (x (x (x z))))

 => λx.λx.(x (x (x (x (x (x z))))))

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (7)

 two = λf.λx.(f (f x))

= λg.λy.(g (g y))

 three = λf.λx.(f (f (f x)))

= λg.λy.(g (g (g y)))

Lambda Calculus (5A) –
Church Numerals

41 Young Won Lim
6/28/23

 power = λm.λn.(m n); nm

 nine = ((power two) three) threetwo

 => ((λm.λn.(m n) two) three)

 => (λn.(two n) three)

 => (two three)

 => (λf.λx.(f (f x)) three)

 => λx. (three (three x))

 => λx. (three (λg.λy.(g (g (g y))) x))

 => λx. (three λy.(x (x (x y))))

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (8-1)

 two = λf.λx.(f (f x))

= λg.λy.(g (g y))

 three = λf.λx.(f (f (f x)))

= λg.λy.(g (g (g y)))

Lambda Calculus (5A) –
Church Numerals

42 Young Won Lim
6/28/23

=> λx. (three λy.(x (x (x y))))

 => λx. (λg.λz.(g (g (g z))) λy.(x (x (x y))))

 => λx.λz.(λy.(x (x (x y))) (λy.(x (x (x y))) (λy.(x (x (x y))) z)))

 => λx.λz.(λy.(x (x (x y))) (λy.(x (x (x y))) (x (x (x z)))))

 => λx.λz.(λy.(x (x (x y))) (x (x (x (x (x (x z)))))))

 => λx.λz.(x (x (x (x (x (x (x (x (x z)))))))))

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (8-2)

 two = λf.λx.(f (f x))

= λg.λy.(g (g y))

 three = λf.λx.(f (f (f x)))

= λg.λy.(g (g (g y)))

Lambda Calculus (5A) –
Church Numerals

43 Young Won Lim
6/28/23

The following lambda function tests for zero:

 first = λx.λy.λz.x

 third = λx.λy.λz.z

 iszero = λn.((n third) first)

= λn.((n λx.λy.λz.z) first)

= λn.((n λx.λy.λz.z) λx.λy.λz.x)

https://www.cs.unc.edu/~stotts/723/Lambda/church.html

Church numeral (9-1)

Lambda Calculus (5A) –
Church Numerals

44 Young Won Lim
6/28/23

the most commonly defined Church numerals

 0 := λf.λx.x

 1 := λf.λx.f x

 2 := λf.λx.f (f x)

 3 := λf.λx.f (f (f x))

using the alternative syntax presented above in Notation:

 0 := λfx.x

 1 := λfx.f x

 2 := λfx.f (f x)

 3 := λfx.f (f (f x))

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Arithmetic in lambda calculus (1)

Lambda Calculus (5A) –
Church Numerals

45 Young Won Lim
6/28/23

A Church numeral is a higher-order function –

it takes a single-argument function f,

and returns another single-argument function.

The Church numeral n is a function

that takes a function f as argument

and returns the n-th composition of f,

i.e. the function f composed with itself n times.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Arithmetic in lambda calculus (2)

Lambda Calculus (5A) –
Church Numerals

46 Young Won Lim
6/28/23

This is denoted f(n) and is in fact

the n-th power of f (considered as an operator);

f(0) is defined to be the identity function.

Such repeated compositions (of a single function f)

obey the laws of exponents,

which is why these numerals can be used for arithmetic.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Arithmetic in lambda calculus (3)

Lambda Calculus (5A) –
Church Numerals

47 Young Won Lim
6/28/23

 0 := λf.λx.x

 1 := λf.λx.f x

 2 := λf.λx.f (f x)

 3 := λf.λx.f (f (f x))

f(0) is defined to be the identity function.

In Church's original lambda calculus,

the formal parameter of a lambda expression

was required to occur at least once in the function body,

which made the above definition of 0 impossible.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Arithmetic in lambda calculus (4)

Lambda Calculus (5A) –
Church Numerals

48 Young Won Lim
6/28/23

One way of thinking about the Church numeral n,

which is often useful when analysing programs,

is as an instruction 'repeat n times'.

For example, using the PAIR and NIL functions defined below,

one can define a function that constructs

a (linked) list of n elements all equal to x

by repeating 'prepend another x element' n times,

starting from an empty list.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Arithmetic in lambda calculus (5)

Lambda Calculus (5A) –
Church Numerals

49 Young Won Lim
6/28/23

The lambda term is

 λn.λx.n (PAIR x) NIL

By varying what is being repeated,

and varying what argument that function

being repeated is applied to,

a great many different effects can be achieved.

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Arithmetic in lambda calculus (6)

Lambda Calculus (5A) –
Church Numerals

50 Young Won Lim
6/28/23

We can define a successor function,

which takes a Church numeral n and returns n + 1

by adding another application of f,

where '(mf)x' means the function 'f' is applied 'm' times on 'x':

 SUCC := λn.λf.λx.f (n f x)

Because the m-th composition of f composed

with the n-th composition of f gives the m+n-th composition of f,

addition can be defined as follows:

 PLUS := λm.λn.λf.λx.m f (n f x)

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Arithmetic in lambda calculus (7)

Lambda Calculus (5A) –
Church Numerals

51 Young Won Lim
6/28/23

PLUS can be thought of as a function

taking two natural numbers as arguments

and returning a natural number; it can be verified that

 PLUS 2 3 and 5

are β-equivalent lambda expressions.

Since adding m to a number n can be accomplished

by adding 1 m times, an alternative definition is:

 PLUS := λm.λn.m SUCC n [23]

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Arithmetic in lambda calculus (8)

Lambda Calculus (5A) –
Church Numerals

52 Young Won Lim
6/28/23

Similarly, multiplication can be defined as

 MULT := λm.λn.λf.m (n f)

Alternatively

 MULT := λm.λn.m (PLUS n) 0

since multiplying m and n is the same as

repeating the add n function m times

and then applying it to zero.

Exponentiation has a rather simple rendering in Church numerals, namely

 POW := λb.λe.e b

https://en.wikipedia.org/wiki/Lambda_calculus#Formal_definition

Arithmetic in lambda calculus (9)

Lambda Calculus (5A) –
Church Numerals

53 Young Won Lim
6/28/23

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

