A Sudoku Solver - Specifications (1A)

- Richard Bird Implementation

[^0]Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using OpenOffice.

Based on

Thinking Functionally with Haskell, R. Bird
https://wiki.haskell.org/Sudoku
http://cdsoft.fr/haskell/sudoku.html
https://gist.github.com/wvandyk/3638996
http://www.cse.chalmers.se/edu/year/2015/course/TDA555/lab3.html

Basic Data Types

```
type Choices = [Digit]
type Matrix a = [Row a]
type Row a = [a]
type Grid = Matrix Digit
type Digit = Char
digits :: [Digit]
digits = ['1'..'9']
```

```
blank :: Digit -> Bool
blank = (== '0')
```

[[a]]

The valid digits are '1' to '9' A list of non-zero characters ('1'to ‘9')
[[Digit]] 9x9 matrix of digits
'0' standing for blank

Matrix Digit \& Matrix Choices

Sudoku

		4			5	7		
					9	4		
3	6							8
7	2			6				
			4		2			
				8			9	3
4							5	6
		5	3					
		6	1			9		

> [['0’, '0’, '4’, ‘0’, '0', ‘5’, '7’, ‘0’, ‘0’],
> ['0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘9’, ‘4', ‘0’, ‘0’],
> ['3', ‘6’, '0’, '0’, '0’, ‘0’, '0', '0’, '8’],

$$
\begin{aligned}
& \text { ['0’, ‘0’, ‘0’, '0’, ‘8’, ‘0’, '0’, '9', '3'], }
\end{aligned}
$$

> ['0’, ‘0’, ‘5’, ‘3’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’],
> ['0’, ‘0’, ‘6’, ‘1’, ‘0’, ‘0’, ‘9’, ‘0’, ‘0’]]
type Grid $=$ Matrix Digit
[Row Digit]
[[Digit]]

Specification (0)

solve1	:	Grid	-> [Grid]
choices	:	Grid	-> Matrix Choices
expand	:	Matrix Choices	-> [Grid]
cp	:	[[a]]	-> [[a]]
valid	:	Grid	-> Bool
nodups	:: Eq a =>	[a]	-> Bool
rows	::	Matrix a	-> [Row a]
cols	:	Matrix a	-> [Row a]
boxs	:	Matrix a	-> [Row a]
ungroup group []	$\begin{aligned} & =\text { concat } \\ & =[] \end{aligned}$		
group (x:y	:xs) $=[x, y, z]$	group xs	

Function Types : choices, expand

solve1	:		-> [Grid]		
		Matrix Digit	[Matrix Digit]		
choices	:	Grid	-> Matrix		
		Matrix Digit	Matrix [Digit]		
expand	:	Matrix Choices	-> [Grid]		
		Matrix [Digit]	[Matrix Digit]		
		type Digit =	Char		
		type Choices =	[Digit]		
		type Row a =	[a]		
		type Matrix a =	[Row a]		
		Matrix Digit	[Row Digit]	[[Digit]]	
		Matrix Choices	[Row Choices]	[[Choices]]	[[[Digit]]]
		type Grid =	Matrix Digit	[Row Digit]	[[Digit]]

Function completions

```
solve :: Grid -> [Grid]
solve = filter valid . completions
```

completions :: Grid -> [Grid]
valid :: Grid -> Bool
completions $=$ expand. choices
[Grid]
[Matrix Digit]
expand
Matrix Choices [Digit]
Matrix $\quad \begin{gathered}\text { choices } \\ \text { Matrix Digit }\end{gathered}$

Function: choices

```
choices :: Grid -> Matrix Choices
choices = map (map choice)
    where choice d | blank d = digits
    | otherwise = [d]
```

Installs the available digits for each cell
If the cell is blank, then all digits for possible choices
else there is only one choice and a singleton is returned

```
digits :: [Digit]
```

digits :: [Digit]
digits = ['1'..'9']
digits = ['1'..'9']
blank :: Digit -> Bool
blank :: Digit -> Bool
blank = (== '0')

```
blank = (== '0')
```

```
choices :: Grid -> Matrix [Digit]
```

choices :: Grid -> Matrix [Digit]
choices $=$ map (map choice)
choices $=$ map (map choice)
choice $d=$ if blank d then digits else [d]

```
choice \(d=\) if blank \(d\) then digits else [d]
```

else there is only one choice and a singleton is returned

Function: choices

choices $=$ map $($ map choice $)$

map choice

[[0 ', '0', '4', '0', '0', '5', '7', '0', '0,],	
©	['0, '0', '0', '0', '0', '9', '4', '0', '0’],
	'3', '6', '0', '0', '0', '0,
ก	2, ${ }^{\prime}$
E	['0', '0', '0', ‘ 4
$\begin{aligned} & \text { O} \\ & \stackrel{\text { ® }}{\underline{E}} \end{aligned}$,
	['4', '0', '0', '0', '0', '0', '0', '5', '6'
	['0, '0', ‘5', '3', '0’, '0', '0', '0, '0'
	[$0,0,6$

Matrix Choices Example

$$
\text { Matrix Choices }=[\text { Row Choices }] \Rightarrow[[\text { Choices }]] \Rightarrow[[\text { [Digit }]]
$$

$$
\begin{aligned}
& \text { [[['1'..'9'], ['1'..'9'], ['4'], ['1'..'9'], ['1'...'9'], ['5'], ['7'], ['1'..'9'], ['1'...'9']], } \\
& \text { [['1'..'9'], ['1'...'9'], ['1'..'9'], ['1'...9'], ['1'..'9'], ['9'], ['4'], ['1'...'9'], ['1'..'9']], } \\
& \text { [['3'], ['6'], ['1'..'9'], ['1'..'9'], ['1'..'9'], ['1'...'9'], ['1'..'9'], ['1'...'9'], ['8']], } \\
& \text { [['7'], ['2'], ['4'], ['1'..'9'], ['6'], ['1'...'9'], ['1'..'9'], ['1'...'9'], ['1 ...'9']], } \\
& \text { [['1'..'9'], ['1'...'9'], ['1'..'9'], ['4'], ['1'..'9'], ['2'], ['1'..'9'], ['1'...'9'], ['1'..'9']], } \\
& \text { [['1'..'9'], ['1'...'9'], ['1'..'9'], ['1'...'9'], ['8'], ['1'..'9'], ['1'..'9'], ['9'], ['3']], } \\
& \text { [['4'], ['1'..9'], ['1'..'9'], ['1'..'9'], ['1'..'9'], ['1'..'9'], ['1'..'9'], ['5'], ['6']], } \\
& \text { [['1'..'9'], ['1'..'9'], ['5'], ['3'], ['1'..'9'], [[1'..'9'], ['1'..'9'], ['1'..'9'], ['1'..'9']], } \\
& \text { [['1'..'9'], ['1'..'9'], ['6'], ['1'], ['1'..'9'], ['1'..'9'], ['9'], ['1'..'9'], ['1'..'9']]] }
\end{aligned}
$$

Cartesian Product (cp)

```
cp [[1, 2, 3], [2], [1, 3]]
[[1, 2, 3] x [2] x [1, 3]]
[[1, 2, 1], [1, 2, 3], [2, 2, 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]]
cp [] = [[]]
cp [[1], [2], [3]] => [[1, 2, 3]]
cp [[1], [], [4, 5]] => []
```


Cartesian Product (cp)

$$
\begin{aligned}
& \mathbf{c p}[[1,2,3],[2],[1,3]] \\
& {[[1,2,1],[1,2,3],[2,2,1],[2,2,3],[3,2,1],[3,2,3]]} \\
& \mathbf{c p}[[2],[1,3]]=[[2,1],[2,3]] \\
& \mathbf{c p}([1,2,3]:[[2],[1,3]])=[[1,2,1],[1,2,3], \\
& {\left[\begin{array}{r}
{[2,2,1],[2,2,3],} \\
[3,2,1],[3,2,3]]
\end{array}\right.}
\end{aligned}
$$

$[1,2,3] \times \mathbf{c p}[[2],[1,3]]=[1,2,3] \times[[2,1],[2,3]]$
list comprehension
cp (xs:xss) $=[\mathrm{x}: \mathrm{ys} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{ys}<-\mathbf{c p} \mathrm{xss}]$

Cartesian Product (cp)

```
cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]
```

$$
\begin{array}{r}
\mathbf{c p}(x s: x s s)=[x: y s \mid x<-x s, y s<-y s s] \\
\text { where yss }=\mathbf{c p} \text { xss }
\end{array}
$$

```
cp [xs] = cp (x:[ ])
    \(=[\mathrm{x}: \mathrm{ys} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{ys}<-\mathbf{c p}[]]\) if \(\mathbf{c p}[]=[]\)
    \(=[\mathrm{x}: \mathrm{ys} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{ys}<-\) [ ] ]
    = [] contradict
```

$\mathbf{c p}[]=[]$ results in $\mathbf{c p}$ xss = [] therefore $\mathbf{c p}[]=[[]]$

Expand

```
expand :: Matrix Choices -> [Grid]
expand = cp . map cp
```

$\mathbf{c p} \cdot \operatorname{map} \mathbf{c p}=[[[a]]]$-> [[[a]]]

$$
\begin{aligned}
& \text { digits :: [Digit] } \\
& \text { digits }=[11 ' . .9 \text { ' }] \\
& \text { blank }:: \text { Digit -> Bool } \\
& \text { blank }=(==\text { '0') }
\end{aligned}
$$

[Grid]
[Matrix Digit]
expand Matrix Choices

Expand Operations

expand :: Matrix Choices -> [Grid]
[[[a]]] -> [[[a]]]
expand $=\mathbf{c p} \cdot \operatorname{map} \mathbf{c p}$
map $\mathbf{~ c p ~}$

Matrix Choices Example

```
expand :: Matrix Choices -> [Grid]
expand = cp . map cp
```

```
[ cp [[1'...9'], [1'...'9'], [4'], ['1'...'9], [1'1...'9], ['5'], ['7'], ['1'..'9'], ['1'...'9']],
cp [ ['1'..'9'], ['1'...'9'], ['1'...'9'], ['1'..'9'], ['1'..'9'], ['9'], ['4'], ['1'..'''], ['1'..'9']],
    cр [ ['3'], ['6'], ['1'...'9], ['1'..'9'], ['1'..'9'], [1'..'9'], [1'..'9], ['1'..'9'], ['8'] ],
    cр [['7'], ['2'], ['4'], ['1'..'9'], ['6'], ['1'..'9'], ['1'...9'], ['1'...9'], ['1'..'9']],
    cp [['1'..'9'], ['1'..'9'], [1'...'9'], ['4'], ['1'..'9'], ['2'], ['1'...'9'], ['1'..'9'], ['1'..'9']],
    cр [ ['1'..'9'], ['1'..'9'], [1'...'9'], ['1'..'9'], ['8'], ['1'..'9], ['1'..'9], ['9], ['3'] ],
    ср [['4'], ['1'...'9], ['1'..'9'], ['1'..'9'], ['1'..'9'], [1'...'9], ['1'..'9'], ['5'], ['6'] ],
    ср [['1'..'9], ['1'..'9'], ['5'], ['3], ['1'..9'], [1'...9'], [1'...'9], ['1'..'9'], ['1'..'9]],
    ср [['1'...'9], ['1'..'9'], ['6'], ['1'], ['1'..'9'], [1'..'9'], ['9'], [['1'..''], ['1'..'9']]]
```

```
cp [[1, 2, 3], [2], [1, 3]]
[[1, 2, 1], [1, 2, 3], [2, 2, 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]]
```


Matrix Choices Example

```
expand :: Matrix Choices -> [Grid]
expand = cp . map cp
```

row1 choices],
row2 choices		- ••],
row3 choices		- - -],
row4 choices			
row5 choices		- ••],
row6 choices		- - -],
row7 choices		- - -],
row8 choices],
row9 choices		- ••	

```
cp [[1, 2, 3], [2], [1, 3]]
[[1, 2, 1], [1, 2, 3], [2, 2, 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]]
```


[Grid]

Expand

```
> solve1 :: Grid -> [Grid]
> solve1 = filter valid . expand . choices
> type Choices = [Digit]
> choices :: Grid -> Matrix Choices
> choices = map (map choice)
\(>\) where choice d|blank d = digits
> | otherwise = [d]
> expand :: Matrix Choices -> [Grid]
> expand \(=\mathbf{c p} . \operatorname{map} \mathbf{c p}\)
> cp :: [[a]] -> [[a]]
\(>\mathbf{c p}[]=[[]]\)
\(>\mathbf{c p}(x s: x s s)=[x: y s \mid x<-x s, y s<-c p x s s]\)
```

```
digits :: [Digit]
```

digits :: [Digit]
digits = ['1'..'9']
digits = ['1'..'9']
blank :: Digit -> Bool
blank :: Digit -> Bool
blank = (== '0')

```
blank = (== '0')
```


Specification (1)

```
solve1 :: Grid -> [Grid]
solve1 = filter valid . expand . choices
type Choices = [Digit]
choices :: Grid -> Matrix Choices
choices = map (map choice)
    where choice d | blank d = digits
    | otherwise = [d]
expand :: Matrix Choices -> [Grid]
expand = cp . map cp
cp :: [[a]] -> [[a]]
cp [] = []]
cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]
```

```
digits :: [Digit]
```

digits :: [Digit]
digits = ['1'..'9']
digits = ['1'..'9']
blank :: Digit -> Bool
blank :: Digit -> Bool
blank = (== '0')

```
blank = (== '0')
```


Specification (2)

```
valid :: Grid -> Bool
valid g = all nodups (rows g) &&
    all nodups (cols g) &&
    all nodups (boxs g)
```

nodups :: Eq a => [a] -> Bool
nodups [] = True
nodups (x:xs) = x `notElem` xs \&\& nodups xs

Specification (3)

```
rows :: Matrix a -> [Row a]
rows = id
cols :: Matrix a -> [Row a]
cols [xs] = [[x]|x<-xs]
cols (xs:xss) = zipWith (:) xs (cols xss)
boxs :: Matrix a -> [Row a]
boxs = map ungroup . ungroup .
    map cols .
    group .map group
```


group and ungroup

```
ungroup = concat
group [] = []
group (x:y:z:xs) = [x,y,z] : group xs
[x,y, z, xs ] \longrightarrow[[x,y,z], group xs ]
```


rows and cols

type Matrix a = [Row a]

$$
[[\mathrm{a}]]
$$

rows :: Matrix a -> [Row a]
rows :: Matrix a -> Matrix a
rows = id
id : identity function
If a matrix is given by a list of its rows
tt returns the same matrix

```
cols :: Matrix a -> [Row a]
cols :: Matrix a -> Matrix a
cols [xs] \(=[[x] \mid x<-x s]\)
cols (xs:xss) = zipWith (:) xs (cols xss)
```

transpose of a matrix

```
cols :: Matrix a -> [Row a]
cols :: Matrix a -> Matrix a
cols [xs] = [[x]|x<- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)
```


boxs :: Matrix a -> [Row a]
boxs :: Matrix a -> Matrix a
boxs $=\quad$ map ungroup .
ungroup .
map cols .
group .
map group

$$
\begin{aligned}
& \text { type Matrix } \mathrm{a}=[\text { Row } a] \\
& \text { type Row } \mathrm{a}=[\mathrm{a}]
\end{aligned}
$$

[[a]]
takes a grouped list and ungroups it
group ($x: y: z: x s$) $=[x, y, z]$:group $x s$ splits a list into groups of three
group xs = take 3 xs : group (drop 3 xs)

group.map group

map group

$$
\text { type } \quad \text { Grid } \quad=\quad \text { Matrix Digit }
$$

$$
\begin{aligned}
& \text { ['6’, '7’, '2’, ‘1', '9’, ‘5', ‘3', ‘4', ‘8’], } \\
& \text { ['1', ‘9', ‘8’, '3', '4’, '2', ‘5', '6’, '7’], } \\
& \text { ['8’, ‘5', '9', '7', '6’, '1', ‘4', '2', '3’], } \\
& \text { ['4', '2', '6’, '8', '5', '3', ‘7’, '9', '1’], } \\
& \text { ['7', '1', ‘3', '9', '2', '4’, ‘8', ‘5', '6'], } \\
& \text { ['9', '6’, ‘1', ‘5', '3', '7’, '2', '8', '4’], } \\
& \text { ['2', '8’, '7’, '4', '1', '9', ‘6’, '3', '5’], } \\
& \text { ['3', ‘4', ‘5', '2', '8', ‘6', '1', '7', '9']] }
\end{aligned}
$$

[[[['5', ‘3', ‘4'], ['6', ‘7', ‘8'], ['9', ‘1', ‘2']], [['6', ‘7', ‘2'], ['1', ‘9', ‘5’], ['3', ‘4', ‘8’]], [[‘1', ‘9’, ‘8’], [‘3’, ‘4’, ‘2’], [‘5’, ‘6’, ‘7’]]], [[['8', ‘5', '9'], ['7’, ‘6’, '1'], ['4', '2', ‘3']], [['4', '2', ‘6'], ['8', ‘5', '3'], ['7', ‘9', '1’]], [['7', ‘1', ‘3'], ['9', '2', '4’], ['8', ‘5', '6’]]], [[['9’, ‘6', ‘1'], ['5’, ‘3', ‘7’], ['2’, ‘8’, ‘4']], [['2', ‘8', '7’], ['4', ‘1', ‘9'], ['6', ‘3', ‘5']],
[['3', ‘4', '5'], ['2', '8', '6'], ['1', '7', '9']]]]

map cols. group . map group

$$
\text { type Grid }=\text { Matrix Digit }
$$

$$
\begin{aligned}
& \text { [[[['5', '3', '4'], ['6', '7', '8'], ['9', '1', '2']], } \\
& \text { [['6', '7', '2'], [1', '9', '5'], ['3', '4', '8']], } \\
& \text { [[} 1 \text { ', '9', '8'], ['3', '4', '2'], ['5', '6', '7']]], } \\
& \text { [[['8', '5', '9'], ['7', '6', '1'], ['4', '2', '3']], } \\
& \text { [[4', '2', '6'], [8', '5', '3'], [77, '9', '1']], } \\
& \text { [['7', '1', '3'], ['9', '2', '4'], ['8', '5', '6']]], } \\
& \text { [[['9', '6', '1'], [[5', '3', '7'], ['2', '8', '4']], }
\end{aligned}
$$

$$
\begin{aligned}
& \text { [['3', '4', '5'], [} 2 \text { ', '8', '6'], ['1', '7', '9']]]] }
\end{aligned}
$$

$$
\begin{aligned}
& \text { [[[['5', '3', '4'], ['6', '7', '2'], [[1', '9', '8']], } \\
& \text { [['6', '7', '8'], [[1', '9', '5'], [[3', '4', '2']], } \\
& \text { [['9', '1', '2'], ['3', '4', '8'], ['5', '6', '7']]], } \\
& \text { [[[8', '5', '9'], [[4', '2', '6'], ['7', '1', '3']], } \\
& \text { [[77', '6', '1'], [8', '5', '3'], [[9', '2', '4']], } \\
& \text { [[4', '2', '3'], ['7', '9', '1'], [8', '5', '6']]], } \\
& \text { [[['9', '6', '1'], [[2', '8', '7'], ['3', '4', '5']], } \\
& \text { [['5', '3', '7'], [4', '1', '9'], ['2', '8', '6']], } \\
& \text { [['2', '8', '4'], [[6', '3', '5'], [[1', '7', '9']]]] }
\end{aligned}
$$

ungroup . map cols . group . map group

ungroup

],	[[['5', '3', '4'], ['6', '7', '2'], ['1', '9', '8']],
6', '7', '8'], ['1', '9', '5'], ['3', '4', '2']],	[['6', '7', '8'], ['1', '9', '5'], ['3', '4', '2']],
['9', '1', '2'], ['3', '4', '8'], ['5', '6', '7']]],	[['9', '1', '2'], ['3', '4', '8'], ['5', '6', '7']]
[[['8', '5', '9'], ['4', '2', '6'], ['7', '1', '3']],	[['8', '5', '9'], ['4', '2', '6'], ['7', '1', '3']],
[['7', '6', '1'], ['8', '5', '3'], ['9', '2', '4']],	[['7', '6', '1'], ['8', '5', '3'], ['9', '2', '4']
[['4', '2', '3'], [7 ', '9', '1'], ['8', '5', '6']]],	[['4', '2', '3'], ['7', '9', '1'], ['8', '5', '6']]
[[[9', '6', '1'], ['2', '8', '7'], ['3', '4', '5']],	[['9', '6', '1'], ['2', '8', '7'], ['3', '4', '5']],
[['5', '3', '7'], ['4', '1', '9'], ['2', '8', '6']],	[['5', '3', '7'], ['4', '1', '9'], ['2', '8', '6']
[['2', '8', '4'], ['6', '3', '5'], ['1', '7', '9']]]]	[['2', '8', '4'], ['6', '3', '5'], ['1', '7', '9']]

type Grid $=$ Matrix Digit \Rightarrow [Row Digit] \Rightarrow [[Digit $]$]

map ungroup . ungroup . map cols . group . map group

map ungroup

	['5’, '3', ‘4' , '6’, '7', '2’, '1', '9', '8'],
[['6', '7', '8'], ['1', '9', '5'], ['3', '4', '2']],	['6', '7', '8', '1', '9', '5', '3', '4', '2'
[['9', '1', '2'], ['3', '4', '8'], ['5', '6', '7']]	['9', '1', '2', '3', '4', '8', '5', '6', '7'
[['8', '5', '9'], ['4', '2', '6'], ['7', '1', '3']],	['8', '5', '9', '4', '2', '6', '7', '1', '3'
[['7', '6', '1'], ['8', '5', '3'], ['9', '2', '4']],	['7, '6', '1', '8', '5', '3', '9', '2', '4'
[['4', '2', '3'], ['7', '9', '1'], ['8', '5', '6']]	['4', '2', '3', '7', '9', '1', '8', '5', '6'
[['9', '6', '1'], ['2', '8', '7'], ['3', '4', '5']],	['9', '6', '1', '2', '8', '7', '3', '4', '5'
[['5', '3', '7'], ['4', '1', '9'], ['2', '8', '6']],	['5', '3', '7', '4', '1', '9', '2', '8', '6'
[['2', '8', '4'], ['6', '3', '5'], ['1', '7', '9']]]	['2', '8', '4', '6', '3', '5', '1', '7', '9']

type Grid $=$ Matrix Digit \Rightarrow [Row Digit] \Rightarrow [[Digit $]$]
boxs
map group

\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}
\mathbf{i}	\mathbf{j}	\mathbf{k}	\mathbf{l}
\mathbf{m}	\mathbf{n}	\mathbf{o}	\mathbf{p}

map ungroup

a	b	e
c	d	g
i	j	m
k		0

\mathbf{a}	\mathbf{b}	\mathbf{e}	\mathbf{f}
\mathbf{c}	\mathbf{d}	\mathbf{g}	\mathbf{h}
\mathbf{i}	\mathbf{j}	\mathbf{m}	\mathbf{n}
\mathbf{k}	l	o	\mathbf{p}

group

\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{h}
\mathbf{i}	\mathbf{j}	\mathbf{k}	\mathbf{l}
\mathbf{m}	n	\mathbf{o}	p

map cols
ungroup

\mathbf{a}	\mathbf{b}	e	f
\mathbf{c}	d	g	h
\mathbf{i}	\mathbf{j}	m	n
k	I	o	p

boxs

a		C	d	boxs	a	b	e	f
e		g	h		c	d	g	h
i		k	I		i	j	m	n
m		0	p		k	I	0	p
a		c	d	boxs	a	b	e	f
e		g	h		c	d	g	h
i		k	I		i	J	m	n
m		0	p		k	I	0	p

a	b	c	d	cols	a	e		i	m
e	f	g	h		b	f		j	n
i	j	k	I		C	g		k	0
m	n	0	p		d	h		I	p

a	b	c
e	f	g
i	j	k
m	n	0

	e	m	
b			
C	g		
d	h		

rows, cols, boxs

a	b	c	d
e	f	g	h
i	j	k	l
m	n	o	p

a	b	c	d
e	f	g	h
i	j	k	l
m	n	o	p

cols

a	e		m
b	f		n
c	g	k	0
	h		

a	b	c	d
e	f	g	h
i	j	k	I
m	n	o	p

boxs

$$
\begin{array}{c|ccc}
a & b & e & f \\
c & d & g & h \\
\mathbf{i} & j & m & n \\
k & l & o & p
\end{array}
$$

nodups

```
nodups :: (Eq a) => [a] -> Bool
nodups [] = True
nodups (x:xs) = x `notElem` xs && nodups xs
notElem :: (Eq a) => a -> [a] -> Bool
notElem x xs = all (/= x) xs
all p = and . map p
```

nodups :: (Eq a) => [a] -> Bool
nodups [] = True
nodups (x:xs) = all (/=x) xs \&\& nodups xs
all $p=$ and. $\operatorname{map} p$

nodups

```
[ '6', '7', '2', '1', '9', '5', '3', '4', '8'] nodups (x:xs) =
    x `notElem` xs && nodups xs
    '6', ['7', '2', '1', '9', '5', '3', '4', '8']
    '6', '7', [ '2', '1', '9', '5', '3', '4', '8']
                                    all p = and . map p
    '6', '7', '2', [ '1', '9', '5', '3', '4', '8']
    '6', '7', '2', '1', [ '9', '5', '3', '4', '8']
    '6', '7', '2', '1', '9', ['5', '3', '4', '8']
    '6', '7', '2', '1', '9', '5', [ '3', '4', '8']
```


nodups

$[66$ ', '7', '2', '1', '9', '5', '3', '4', '8'] nodups (x:xs) $=$
$\quad x$ notElem` xs \&\& nodups xs
'6', '7’, '2', '1', '9', ‘5', ['3', ‘4’, '8’]
notElem x xs $=$ all (/=x)xs
'6', '7’, '2', '1', '9', ‘5', '3', [‘4’, '8']
all $p=$ and. $\operatorname{map} p$
'6’, '7’, '2', '1', ‘9', ‘5', ‘3', ‘4’, ['8’]
'6’, '7’, '2’, ‘1’, '9’, ‘5’, ‘3’, ‘4’, ‘8’ []

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

[^0]: Copyright (c) 2016 Young W. Lim.
 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

