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Basic Data Types

type Choices = [Digit]

type Matrix a = [Row a]
type Row a    = [a]

type Grid     = Matrix Digit
type Digit    = Char

digits  :: [Digit]
digits  =  ['1'..'9']

blank   :: Digit -> Bool
blank   =  (== '0')

 [ [a] ]

 [ [Digit] ]  9x9 matrix of digits

The valid digits are ‘1’ to ‘9’
A list of non-zero characters 
(‘1’ to ‘9’) 

‘0’ standing for blank
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Matrix Digit & Matrix Choices 

type Digit    = Char
type Choices = [Digit]

type Row a    = [a]
type Matrix a = [Row a]  

Matrix Digit = [Row Digit] [[Digit]]
Matrix [Digit] = [Row [Digit]] [[[Digit]]]
Matrix Choices = [Row Choices] [[Choices]] [[[Digit]]]

type Grid     = Matrix Digit [Row Digit] [[Digit]]
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Sudoku
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 [ [ ‘0’, ‘0’, ‘4’, ‘0’, ‘0’, ‘5’, ‘7’, ‘0’, ‘0’ ],

[ ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘9’, ‘4’, ‘0’, ‘0’ ],

[ ‘3’, ‘6’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘8’ ],

[ ‘7’, ‘2’, ‘4’, ‘0’, ‘6’, ‘0’, ‘0’, ‘0’, ‘0’ ],

[ ‘0’, ‘0’, ‘0’, ‘4’, ‘0’, ‘2’, ‘0’, ‘0’, ‘0’ ],

[ ‘0’, ‘0’, ‘0’, ‘0’, ‘8’, ‘0’, ‘0’, ‘9’, ‘3’ ],

[ ‘4’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘5’, ‘6’ ],

[ ‘0’, ‘0’, ‘5’, ‘3’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’ ],

[ ‘0’, ‘0’, ‘6’, ‘1’, ‘0’, ‘0’, ‘9’, ‘0’, ‘0’ ] ]

type Grid     = Matrix Digit [Row Digit] [[Digit]]
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Specification (0)

solve1  :: Grid -> [Grid]
choices :: Grid -> Matrix Choices
expand :: Matrix Choices -> [Grid]
cp          :: [[ a ]] -> [[ a ]]
valid      :: Grid -> Bool
nodups :: Eq a => [ a ] -> Bool
rows     :: Matrix a -> [Row a]
cols      :: Matrix a -> [Row a]
boxs     ::  Matrix a -> [Row a]

ungroup          = concat
group []           = []
group (x:y:z:xs) = [x,y,z] : group xs
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Function Types : choices, expand

solve1  :: Grid -> [Grid]
Matrix Digit [Matrix Digit]

choices :: Grid -> Matrix Choices
Matrix Digit Matrix [Digit]

expand :: Matrix Choices -> [Grid]
Matrix [Digit] [Matrix Digit]

type Digit    = Char

type Choices = [Digit]

type Row a    = [a]

type Matrix a = [Row a] 

 

Matrix Digit [Row Digit] [[Digit]]

Matrix Choices [Row Choices] [[Choices]] [[[Digit]]]

type Grid     = Matrix Digit [Row Digit] [[Digit]]
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Function completions

solve :: Grid ->  [Grid]
solve  = filter valid . completions

completions :: Grid -> [Grid] 
valid :: Grid -> Bool

completions = expand . choices

Matrix DigitMatrix [Digit][Matrix Digit]
choicesexpand

GridMatrix Choices[Grid]
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Function: choices 

choices :: Grid -> Matrix Choices
choices = map (map choice)
  where choice d | blank d   = digits

                         | otherwise = [d]

choices :: Grid -> Matrix [Digit]
choices = map (map choice)
choice d  = if blank d then digits else  [d]

digits  :: [Digit]
digits  =  ['1'..'9']
blank   :: Digit -> Bool
blank   =  (== '0')

Matrix DigitMatrix [Digit]
choices

GridMatrix Choices

Installs the available digits for each cell
If the cell is blank, then all digits for possible choices
else there is only one choice and a singleton is returned
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Function: choices

 [ [ ‘0’, ‘0’, ‘4’, ‘0’, ‘0’, ‘5’, ‘7’, ‘0’, ‘0’ ],

[ ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘9’, ‘4’, ‘0’, ‘0’ ],

[ ‘3’, ‘6’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘8’ ],

[ ‘7’, ‘2’, ‘4’, ‘0’, ‘6’, ‘0’, ‘0’, ‘0’, ‘0’ ],

[ ‘0’, ‘0’, ‘0’, ‘4’, ‘0’, ‘2’, ‘0’, ‘0’, ‘0’ ],

[ ‘0’, ‘0’, ‘0’, ‘0’, ‘8’, ‘0’, ‘0’, ‘9’, ‘3’ ],

[ ‘4’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘5’, ‘6’ ],

[ ‘0’, ‘0’, ‘5’, ‘3’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’ ],

[ ‘0’, ‘0’, ‘6’, ‘1’, ‘0’, ‘0’, ‘9’, ‘0’, ‘0’ ] ]

choices = map (map choice)

‘0’ [‘1’..‘9’]choice

map choice

m
ap

 (
m

ap
 c

h
o

ic
e

)
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Matrix Choices Example

 [ [ [‘1’..’9’], [‘1’..’9’], [‘4’],       [‘1’..’9’], [‘1’..’9’], [‘5’],      [‘7’],       [‘1’..’9’], [‘1’..’9’] ], 

[ [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘9’],      [‘4’],       [‘1’..’9’], [‘1’..’9’] ],

[ [‘3’],       [‘6’],      [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘8’]       ],

[ [‘7’],       [‘2’],      [‘4’],       [‘1’..’9’], [‘6’],      [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’] ],

[ [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘4’],       [‘1’..’9’], [‘2’],      [‘1’..’9’], [‘1’..’9’], [‘1’..’9’] ],

[ [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘8’],       [‘1’..’9’], [‘1’..’9’], [‘9’],      [‘3’]       ],

[ [‘4’],       [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘5’],      [‘6’]       ],

[ [‘1’..’9’], [‘1’..’9’], [‘5’],       [‘3’],       [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’] ],

[ [‘1’..’9’], [‘1’..’9’], [‘6’],       [‘1’],       [‘1’..’9’], [‘1’..’9’], [‘9’],       [‘1’..’9’], [‘1’..’9’] ] ]

Matrix Choices = [Row Choices] [[ Choices ]] [[ [Digit] ]]
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Cartesian Product (cp)

cp [[1, 2, 3], [2], [1, 3]]

[[1, 2, 3] x [2] x [1, 3]]

[[1, 2, 1], [1, 2, 3], [2, 2, 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]] 

cp [ ] = [ [ ] ]

cp [[1], [2], [3]]  => [[1, 2, 3]]

cp [[1], [ ], [4, 5]]   => [ ]
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Cartesian Product (cp)

cp [[1, 2, 3], [2], [1, 3]]

[[1, 2, 1], [1, 2, 3], [2, 2, 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]] 

cp [[2], [1, 3]]  =   [[2, 1], [2, 3]]

cp ( [1, 2, 3] : [[2], [1, 3]] ) =  [[1, 2, 1], [1, 2, 3], 
[2, 2, 1], [2, 2, 3], 
[3, 2, 1], [3, 2, 3]] 

[1, 2, 3] x cp [[2], [1, 3]] = [1, 2, 3] x  [[2, 1], [2, 3]]

list comprehension
cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]
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Cartesian Product (cp)

cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

cp (xs:xss) = [x:ys | x <- xs, ys <- yss]
where yss = cp xss

cp [xs] = cp (x:[ ])
            = [x:ys | x <- xs, ys <- cp [ ] ]    if cp [ ] = [ ]      
            = [x:ys | x <- xs, ys <- [ ] ]        

     = [ ]  contradict 

cp [ ] = [ ]   results in cp xss = [ ]    therefore  cp [] = [ [ ] ]
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Expand

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

cp . map cp = [ [[a]] ] -> [ [[a]] ]

digits  :: [Digit]
digits  =  ['1'..'9']
blank   :: Digit -> Bool
blank   =  (== '0')

Matrix [Digit][Matrix Digit]
expand

Matrix Choices[Grid]
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Expand Operations

 [ [ [‘1’..’9’], [‘1’..’9’], [‘4’],       [‘1’..’9’], [‘1’..’9’], [‘5’],      [‘7’],       [‘1’..’9’], [‘1’..’9’] ], 

[ [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘9’],      [‘4’],       [‘1’..’9’], [‘1’..’9’] ],

[ [‘3’],       [‘6’],      [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘8’]       ],

[ [‘7’],       [‘2’],      [‘4’],       [‘1’..’9’], [‘6’],      [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’] ],

[ [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘4’],       [‘1’..’9’], [‘2’],      [‘1’..’9’], [‘1’..’9’], [‘1’..’9’] ],

[ [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘8’],       [‘1’..’9’], [‘1’..’9’], [‘9’],      [‘3’]       ],

[ [‘4’],       [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘5’],      [‘6’]       ],

[ [‘1’..’9’], [‘1’..’9’], [‘5’],       [‘3’],       [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’] ],

[ [‘1’..’9’], [‘1’..’9’], [‘6’],       [‘1’],       [‘1’..’9’], [‘1’..’9’], [‘9’],       [‘1’..’9’], [‘1’..’9’] ] ]

map cp

cp
 (

m
a

p 
cp

)

expand :: Matrix Choices -> [Grid]
     [ [[a]] ] -> [ [[a]] ]
expand = cp . map cp
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Matrix Choices Example

 [ cp [ [‘1’..’9’], [‘1’..’9’], [‘4’],       [‘1’..’9’], [‘1’..’9’], [‘5’],      [‘7’],       [‘1’..’9’], [‘1’..’9’] ], 

cp [ [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘9’],      [‘4’],       [‘1’..’9’], [‘1’..’9’] ],

cp [ [‘3’],       [‘6’],      [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘8’]       ],

cp [ [‘7’],       [‘2’],      [‘4’],       [‘1’..’9’], [‘6’],      [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’] ],

cp [ [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘4’],       [‘1’..’9’], [‘2’],      [‘1’..’9’], [‘1’..’9’], [‘1’..’9’] ],

cp [ [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘8’],       [‘1’..’9’], [‘1’..’9’], [‘9’],      [‘3’]       ],

cp [ [‘4’],       [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘5’],      [‘6’]       ],

cp [ [‘1’..’9’], [‘1’..’9’], [‘5’],       [‘3’],       [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’] ],

cp [ [‘1’..’9’], [‘1’..’9’], [‘6’],       [‘1’],       [‘1’..’9’], [‘1’..’9’], [‘9’],       [‘1’..’9’], [‘1’..’9’] ] ]

cp [[1, 2, 3], [2], [1, 3]]
[[1, 2, 1], [1, 2, 3], [2, 2, 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]] 

expand :: Matrix Choices -> [Grid]
expand = cp . map cp
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Matrix Choices Example

cp [[1, 2, 3], [2], [1, 3]]
[[1, 2, 1], [1, 2, 3], [2, 2, 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]] 

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

[                 ], [                 ], [                 ],

[                 ], [                 ], [                 ],

[                 ], [                 ], [                 ],

[                 ], [                 ], [                 ],

[                 ], [                 ], [                 ],

[                 ], [                 ], [                 ],

[                 ], [                 ], [                 ],

[                 ], [                 ], [                 ],

[                 ], [                 ], [                 ],

    [    [                                                                                                                    ], 

         [                                                                                                                    ], 

         [                                                                                                                    ], 

         [                                                                                                                    ], 

         [                                                                                                                    ], 

         [                                                                                                                    ], 

         [                                                                                                                    ], 

         [                                                                                                                    ], 

         [                                                                                                                    ]     ] 

row1 choices

row2 choices

row3 choices

row4 choices

row5 choices

row6 choices

row7 choices

row8 choices

row9 choices
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[Grid] 

[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],

,

[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],

,

[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],

,

[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],

9 rows

9 elements 
per each row

type Grid = 

Matrix Digit

[Row Digit]

[[Digit]]
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Expand

> solve1 :: Grid -> [Grid]
> solve1 = filter valid . expand . choices

> type Choices = [Digit]

> choices :: Grid -> Matrix Choices
> choices = map (map choice)
>  where choice d | blank d   = digits

>                 | otherwise = [d]

> expand :: Matrix Choices -> [Grid]
> expand = cp . map cp

> cp :: [[a]] -> [[a]]
> cp []       = [[]]
> cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

digits  :: [Digit]
digits  =  ['1'..'9']
blank   :: Digit -> Bool
blank   =  (== '0')



Bird’s Sudoku 
Specifications (1A) 22 Young Won Lim

4/26/17

Specification (1)

solve1 :: Grid -> [Grid]
solve1 = filter valid . expand . choices

type Choices = [Digit]

choices :: Grid -> Matrix Choices
choices = map (map choice)
  where choice d | blank d   = digits

                | otherwise = [d]

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

cp :: [[a]] -> [[a]]
cp []       = [[]]
cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

digits  :: [Digit]
digits  =  ['1'..'9']
blank   :: Digit -> Bool
blank   =  (== '0')
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Specification (2)

valid  :: Grid -> Bool
valid g = all nodups (rows g) &&
          all nodups (cols g) &&
          all nodups (boxs g)

nodups :: Eq a => [a] -> Bool
nodups []        = True
nodups (x:xs) = x `notElem` xs && nodups xs

[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],

,

[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],

,

[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],

,

Grid = Matrix Digit

[Row Digit]

[[Digit]]

g
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Specification (3)

rows :: Matrix a -> [Row a]
rows = id

cols :: Matrix a -> [Row a]
cols [xs]   = [[x] | x <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)

boxs :: Matrix a -> [Row a]
boxs = map ungroup . ungroup . 

map cols .
       group . map group
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group and ungroup

ungroup          = concat

group []           = []
group (x:y:z:xs) = [x,y,z] : group xs

   [ x, y, z, xs ]    [ [x, y, z], group xs ]
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rows and cols

rows :: Matrix a -> [Row a]
rows :: Matrix a -> Matrix a
rows = id

cols          :: Matrix a -> [Row a]
cols          :: Matrix a -> Matrix a
cols [xs]     = [[x] | x <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)

type Matrix a = [Row a] [[a]]
type Row a    = [a]

id : identity function
If a matrix is given by a list of its rows  
tt returns the same matrix

transpose of a matrix
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cols

cols          :: Matrix a -> [Row a]
cols          :: Matrix a -> Matrix a
cols [xs]     = [[x] | x <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)

[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],

[                 ],
[                 ],

[                 ],
[                 ],

[                 ],
[                 ],
[                 ],
[                 ],
[                 ],

[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
[                 ],
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boxs

boxs :: Matrix a -> [Row a]
boxs :: Matrix a -> Matrix a
boxs = map ungroup . 

ungroup . 
map cols .

       group . 
map group

ungroup :: [[a]] -> [a] 
ungroup          = concat  takes a grouped list and ungroups it

group []           = []
group (x:y:z:xs) = [x,y,z]:group xs        splits a list into groups of three 
group xs = take 3 xs : group (drop 3 xs) 

type Matrix a = [Row a] [[a]]
type Row a    = [a]
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group.map group

type Grid     = Matrix Digit [Row Digit] [[Digit]]

 [ [ ‘5’, ‘3’, ‘4’, ‘6’, ‘7’, ‘8’, ‘9’, ‘1’, ‘2’ ],

[ ‘6’, ‘7’, ‘2’, ‘1’, ‘9’, ‘5’, ‘3’, ‘4’, ‘8’ ],

[ ‘1’, ‘9’, ‘8’, ‘3’, ‘4’, ‘2’, ‘5’, ‘6’, ‘7’ ],

[ ‘8’, ‘5’, ‘9’, ‘7’, ‘6’, ‘1’, ‘4’, ‘2’, ‘3’ ],

[ ‘4’, ‘2’, ‘6’, ‘8’, ‘5’, ‘3’, ‘7’, ‘9’, ‘1’ ],

[ ‘7’, ‘1’, ‘3’, ‘9’, ‘2’, ‘4’, ‘8’, ‘5’, ‘6’ ],

[ ‘9’, ‘6’, ‘1’, ‘5’, ‘3’, ‘7’, ‘2’, ‘8’, ‘4’ ],

[ ‘2’, ‘8’, ‘7’, ‘4’, ‘1’, ‘9’, ‘6’, ‘3’, ‘5’ ],

[ ‘3’, ‘4’, ‘5’, ‘2’, ‘8’, ‘6’, ‘1’, ‘7’, ‘9’ ] ]

 [ [ [ [‘5’, ‘3’, ‘4’], [‘6’, ‘7’, ‘8’], [‘9’, ‘1’, ‘2’] ],

  [ [‘6’, ‘7’, ‘2’], [‘1’, ‘9’, ‘5’], [‘3’, ‘4’, ‘8’] ],

  [ [‘1’, ‘9’, ‘8’], [‘3’, ‘4’, ‘2’], [‘5’, ‘6’, ‘7’] ] ],

[ [ [‘8’, ‘5’, ‘9’], [‘7’, ‘6’, ‘1’], [‘4’, ‘2’, ‘3’] ],

  [ [‘4’, ‘2’, ‘6’], [‘8’, ‘5’, ‘3’], [‘7’, ‘9’, ‘1’] ],

  [ [‘7’, ‘1’, ‘3’], [‘9’, ‘2’, ‘4’], [‘8’, ‘5’, ‘6’] ] ],

[ [ [‘9’, ‘6’, ‘1’], [‘5’, ‘3’, ‘7’], [‘2’, ‘8’, ‘4’] ],

  [ [‘2’, ‘8’, ‘7’], [‘4’, ‘1’, ‘9’], [‘6’, ‘3’, ‘5’] ],

  [ [‘3’, ‘4’, ‘5’], [‘2’, ‘8’, ‘6’], [‘1’, ‘7’, ‘9’] ] ] ]

map group

g
ro

u
p
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map cols. group . map group

type Grid     = Matrix Digit [Row Digit] [[Digit]]

 [ [ [ [‘5’, ‘3’, ‘4’], [‘6’, ‘7’, ‘2’], [‘1’, ‘9’, ‘8’] ],

  [ [‘6’, ‘7’, ‘8’], [‘1’, ‘9’, ‘5’], [‘3’, ‘4’, ‘2’] ],

  [ [‘9’, ‘1’, ‘2’], [‘3’, ‘4’, ‘8’], [‘5’, ‘6’, ‘7’] ] ],

[ [ [‘8’, ‘5’, ‘9’], [‘4’, ‘2’, ‘6’], [‘7’, ‘1’, ‘3’] ],

  [ [‘7’, ‘6’, ‘1’], [‘8’, ‘5’, ‘3’], [‘9’, ‘2’, ‘4’] ],

  [ [‘4’, ‘2’, ‘3’], [‘7’, ‘9’, ‘1’], [‘8’, ‘5’, ‘6’] ] ],

[ [ [‘9’, ‘6’, ‘1’], [‘2’, ‘8’, ‘7’], [‘3’, ‘4’, ‘5’] ],

  [ [‘5’, ‘3’, ‘7’], [‘4’, ‘1’, ‘9’], [‘2’, ‘8’, ‘6’] ],

  [ [‘2’, ‘8’, ‘4’], [‘6’, ‘3’, ‘5’], [‘1’, ‘7’, ‘9’] ] ] ]

 [ [ [ [‘5’, ‘3’, ‘4’], [‘6’, ‘7’, ‘8’], [‘9’, ‘1’, ‘2’] ],

  [ [‘6’, ‘7’, ‘2’], [‘1’, ‘9’, ‘5’], [‘3’, ‘4’, ‘8’] ],

  [ [‘1’, ‘9’, ‘8’], [‘3’, ‘4’, ‘2’], [‘5’, ‘6’, ‘7’] ] ],

[ [ [‘8’, ‘5’, ‘9’], [‘7’, ‘6’, ‘1’], [‘4’, ‘2’, ‘3’] ],

  [ [‘4’, ‘2’, ‘6’], [‘8’, ‘5’, ‘3’], [‘7’, ‘9’, ‘1’] ],

  [ [‘7’, ‘1’, ‘3’], [‘9’, ‘2’, ‘4’], [‘8’, ‘5’, ‘6’] ] ],

[ [ [‘9’, ‘6’, ‘1’], [‘5’, ‘3’, ‘7’], [‘2’, ‘8’, ‘4’] ],

  [ [‘2’, ‘8’, ‘7’], [‘4’, ‘1’, ‘9’], [‘6’, ‘3’, ‘5’] ],

  [ [‘3’, ‘4’, ‘5’], [‘2’, ‘8’, ‘6’], [‘1’, ‘7’, ‘9’] ] ] ]
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ungroup . map cols . group . map group

type Grid     = Matrix Digit [Row Digit] [[Digit]]

 [ [ [ [‘5’, ‘3’, ‘4’], [‘6’, ‘7’, ‘2’], [‘1’, ‘9’, ‘8’] ],

  [ [‘6’, ‘7’, ‘8’], [‘1’, ‘9’, ‘5’], [‘3’, ‘4’, ‘2’] ],

  [ [‘9’, ‘1’, ‘2’], [‘3’, ‘4’, ‘8’], [‘5’, ‘6’, ‘7’] ] ],

[ [ [‘8’, ‘5’, ‘9’], [‘4’, ‘2’, ‘6’], [‘7’, ‘1’, ‘3’] ],

  [ [‘7’, ‘6’, ‘1’], [‘8’, ‘5’, ‘3’], [‘9’, ‘2’, ‘4’] ],

  [ [‘4’, ‘2’, ‘3’], [‘7’, ‘9’, ‘1’], [‘8’, ‘5’, ‘6’] ] ],

[ [ [‘9’, ‘6’, ‘1’], [‘2’, ‘8’, ‘7’], [‘3’, ‘4’, ‘5’] ],

  [ [‘5’, ‘3’, ‘7’], [‘4’, ‘1’, ‘9’], [‘2’, ‘8’, ‘6’] ],

  [ [‘2’, ‘8’, ‘4’], [‘6’, ‘3’, ‘5’], [‘1’, ‘7’, ‘9’] ] ] ]

 [   [ [‘5’, ‘3’, ‘4’], [‘6’, ‘7’, ‘2’], [‘1’, ‘9’, ‘8’] ],

  [ [‘6’, ‘7’, ‘8’], [‘1’, ‘9’, ‘5’], [‘3’, ‘4’, ‘2’] ],

  [ [‘9’, ‘1’, ‘2’], [‘3’, ‘4’, ‘8’], [‘5’, ‘6’, ‘7’] ]  ,

  [ [‘8’, ‘5’, ‘9’], [‘4’, ‘2’, ‘6’], [‘7’, ‘1’, ‘3’] ],

  [ [‘7’, ‘6’, ‘1’], [‘8’, ‘5’, ‘3’], [‘9’, ‘2’, ‘4’] ],

  [ [‘4’, ‘2’, ‘3’], [‘7’, ‘9’, ‘1’], [‘8’, ‘5’, ‘6’] ]  ,

  [ [‘9’, ‘6’, ‘1’], [‘2’, ‘8’, ‘7’], [‘3’, ‘4’, ‘5’] ],

  [ [‘5’, ‘3’, ‘7’], [‘4’, ‘1’, ‘9’], [‘2’, ‘8’, ‘6’] ],

  [ [‘2’, ‘8’, ‘4’], [‘6’, ‘3’, ‘5’], [‘1’, ‘7’, ‘9’] ]   ]

ungroup
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map ungroup . ungroup . map cols . group . map group

type Grid     = Matrix Digit [Row Digit] [[Digit]]

 [   [  ‘5’, ‘3’, ‘4’ ,  ‘6’, ‘7’, ‘2’ ,  ‘1’, ‘9’, ‘8’  ],

  [  ‘6’, ‘7’, ‘8’ ,  ‘1’, ‘9’, ‘5’ ,  ‘3’, ‘4’, ‘2’  ],

  [  ‘9’, ‘1’, ‘2’ ,  ‘3’, ‘4’, ‘8’ ,  ‘5’, ‘6’, ‘7’  ]  ,

  [  ‘8’, ‘5’, ‘9’ ,  ‘4’, ‘2’, ‘6’ ,  ‘7’, ‘1’, ‘3’  ],

  [  ‘7’, ‘6’, ‘1’ ,  ‘8’, ‘5’, ‘3’ ,  ‘9’, ‘2’, ‘4’  ],

  [  ‘4’, ‘2’, ‘3’ ,  ‘7’, ‘9’, ‘1’ ,  ‘8’, ‘5’, ‘6’  ]  ,

  [  ‘9’, ‘6’, ‘1’ ,  ‘2’, ‘8’, ‘7’ ,  ‘3’, ‘4’, ‘5’  ],

  [  ‘5’, ‘3’, ‘7’ ,  ‘4’, ‘1’, ‘9’ ,  ‘2’, ‘8’, ‘6’  ],

  [  ‘2’, ‘8’, ‘4’ ,  ‘6’, ‘3’, ‘5’ ,  ‘1’, ‘7’, ‘9’  ]   ]

 [   [ [‘5’, ‘3’, ‘4’], [‘6’, ‘7’, ‘2’], [‘1’, ‘9’, ‘8’] ],

  [ [‘6’, ‘7’, ‘8’], [‘1’, ‘9’, ‘5’], [‘3’, ‘4’, ‘2’] ],

  [ [‘9’, ‘1’, ‘2’], [‘3’, ‘4’, ‘8’], [‘5’, ‘6’, ‘7’] ]  ,

  [ [‘8’, ‘5’, ‘9’], [‘4’, ‘2’, ‘6’], [‘7’, ‘1’, ‘3’] ],

  [ [‘7’, ‘6’, ‘1’], [‘8’, ‘5’, ‘3’], [‘9’, ‘2’, ‘4’] ],

  [ [‘4’, ‘2’, ‘3’], [‘7’, ‘9’, ‘1’], [‘8’, ‘5’, ‘6’] ]  ,

  [ [‘9’, ‘6’, ‘1’], [‘2’, ‘8’, ‘7’], [‘3’, ‘4’, ‘5’] ],

  [ [‘5’, ‘3’, ‘7’], [‘4’, ‘1’, ‘9’], [‘2’, ‘8’, ‘6’] ],

  [ [‘2’, ‘8’, ‘4’], [‘6’, ‘3’, ‘5’], [‘1’, ‘7’, ‘9’] ]   ]

map ungroup
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boxs
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cols
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rows, cols, boxs

a b c d

e f g h

i j k l

m n o p

a b e f

c d g h

i j m n

k l o p

boxs

colsa b c d

e f g h

i j k l

m n o p

a e i m

b f j n

c g k o

d h l p

a b c d

e f g h

i j k l

m n o p

a b c d

e f g h

i j k l

m n o p

rows



Bird’s Sudoku 
Specifications (1A) 37 Young Won Lim

4/26/17

nodups

nodups  :: (Eq a) => [a] -> Bool
nodups [] = True
nodups (x:xs) = x `notElem` xs && nodups xs

notElem :: (Eq a) => a ->  [a] -> Bool
notElem x xs = all (/= x ) xs

all p = and . map p 

nodups  :: (Eq a) => [a] -> Bool
nodups [] = True
nodups (x:xs) = all (/=x) xs && nodups xs

all p = and . map p 
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nodups

  [ ‘6’,   ‘7’,   ‘2’,   ‘1’,   ‘9’,   ‘5’,   ‘3’,   ‘4’,   ‘8’ ]

    ‘6’, [ ‘7’,   ‘2’,   ‘1’,   ‘9’,   ‘5’,   ‘3’,   ‘4’,   ‘8’ ]

    ‘6’,   ‘7’, [ ‘2’,   ‘1’,   ‘9’,   ‘5’,   ‘3’,   ‘4’,   ‘8’ ]

    ‘6’,   ‘7’,   ‘2’, [ ‘1’,   ‘9’,   ‘5’,   ‘3’,   ‘4’,   ‘8’ ]

    ‘6’,   ‘7’,   ‘2’,   ‘1’,  [ ‘9’,   ‘5’,   ‘3’,   ‘4’,   ‘8’ ]

    ‘6’,   ‘7’,   ‘2’,   ‘1’,    ‘9’,  [‘5’,   ‘3’,   ‘4’,   ‘8’ ]

    ‘6’,   ‘7’,   ‘2’,   ‘1’,    ‘9’,   ‘5’,  [ ‘3’,   ‘4’,   ‘8’ ]

nodups (x:xs) = 
x `notElem` xs && nodups xs

notElem x xs = all (/= x ) xs

all p = and . map p 
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nodups

  [ ‘6’,   ‘7’,   ‘2’,   ‘1’,   ‘9’,   ‘5’,   ‘3’,   ‘4’,   ‘8’ ]

    ‘6’,   ‘7’,   ‘2’,   ‘1’,    ‘9’,   ‘5’,  [ ‘3’,   ‘4’,   ‘8’ ]

    ‘6’,   ‘7’,   ‘2’,   ‘1’,    ‘9’,   ‘5’,    ‘3’,  [‘4’,   ‘8’ ]

    ‘6’,   ‘7’,   ‘2’,   ‘1’,    ‘9’,   ‘5’,    ‘3’,   ‘4’,  [‘8’ ]

    ‘6’,   ‘7’,   ‘2’,   ‘1’,    ‘9’,   ‘5’,    ‘3’,   ‘4’,   ‘8’   []

nodups (x:xs) = 
x `notElem` xs && nodups xs

notElem x xs = all (/= x ) xs

all p = and . map p 
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