
Young Won Lim
4/26/17

A Sudoku Solver - Specifications (1A)

● Richard Bird Implementation

Young Won Lim
4/26/17

 Copyright (c) 2016 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using OpenOffice.

mailto:youngwlim@hotmail.com

Bird’s Sudoku
Specifications (1A) 3 Young Won Lim

4/26/17

Based on

Thinking Functionally with Haskell, R. Bird

https://wiki.haskell.org/Sudoku

http://cdsoft.fr/haskell/sudoku.html

https://gist.github.com/wvandyk/3638996

http://www.cse.chalmers.se/edu/year/2015/course/TDA555/lab3.html

https://wiki.haskell.org/Sudoku
http://cdsoft.fr/haskell/sudoku.html
https://gist.github.com/wvandyk/3638996
http://www.cse.chalmers.se/edu/year/2015/course/TDA555/lab3.html

Bird’s Sudoku
Specifications (1A) 4 Young Won Lim

4/26/17

Basic Data Types

type Choices = [Digit]

type Matrix a = [Row a]
type Row a = [a]

type Grid = Matrix Digit
type Digit = Char

digits :: [Digit]
digits = ['1'..'9']

blank :: Digit -> Bool
blank = (== '0')

 [[a]]

 [[Digit]] 9x9 matrix of digits

The valid digits are ‘1’ to ‘9’
A list of non-zero characters
(‘1’ to ‘9’)

‘0’ standing for blank

Bird’s Sudoku
Specifications (1A) 5 Young Won Lim

4/26/17

Matrix Digit & Matrix Choices

type Digit = Char
type Choices = [Digit]

type Row a = [a]
type Matrix a = [Row a]

Matrix Digit = [Row Digit] [[Digit]]
Matrix [Digit] = [Row [Digit]] [[[Digit]]]
Matrix Choices = [Row Choices] [[Choices]] [[[Digit]]]

type Grid = Matrix Digit [Row Digit] [[Digit]]

Haskell Overview 6 Young Won Lim
4/26/17

Sudoku

4 5 7

 9 4

3 6

7 2 6

 4 2

 8 9

4 5

 5 3

8

3

6

 6 1 9

 [[‘0’, ‘0’, ‘4’, ‘0’, ‘0’, ‘5’, ‘7’, ‘0’, ‘0’],

[‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘9’, ‘4’, ‘0’, ‘0’],

[‘3’, ‘6’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘8’],

[‘7’, ‘2’, ‘4’, ‘0’, ‘6’, ‘0’, ‘0’, ‘0’, ‘0’],

[‘0’, ‘0’, ‘0’, ‘4’, ‘0’, ‘2’, ‘0’, ‘0’, ‘0’],

[‘0’, ‘0’, ‘0’, ‘0’, ‘8’, ‘0’, ‘0’, ‘9’, ‘3’],

[‘4’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘5’, ‘6’],

[‘0’, ‘0’, ‘5’, ‘3’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’],

[‘0’, ‘0’, ‘6’, ‘1’, ‘0’, ‘0’, ‘9’, ‘0’, ‘0’]]

type Grid = Matrix Digit [Row Digit] [[Digit]]

Bird’s Sudoku
Specifications (1A) 7 Young Won Lim

4/26/17

Specification (0)

solve1 :: Grid -> [Grid]
choices :: Grid -> Matrix Choices
expand :: Matrix Choices -> [Grid]
cp :: [[a]] -> [[a]]
valid :: Grid -> Bool
nodups :: Eq a => [a] -> Bool
rows :: Matrix a -> [Row a]
cols :: Matrix a -> [Row a]
boxs :: Matrix a -> [Row a]

ungroup = concat
group [] = []
group (x:y:z:xs) = [x,y,z] : group xs

Bird’s Sudoku
Specifications (1A) 8 Young Won Lim

4/26/17

Function Types : choices, expand

solve1 :: Grid -> [Grid]
Matrix Digit [Matrix Digit]

choices :: Grid -> Matrix Choices
Matrix Digit Matrix [Digit]

expand :: Matrix Choices -> [Grid]
Matrix [Digit] [Matrix Digit]

type Digit = Char

type Choices = [Digit]

type Row a = [a]

type Matrix a = [Row a]

Matrix Digit [Row Digit] [[Digit]]

Matrix Choices [Row Choices] [[Choices]] [[[Digit]]]

type Grid = Matrix Digit [Row Digit] [[Digit]]

Bird’s Sudoku
Specifications (1A) 9 Young Won Lim

4/26/17

Function completions

solve :: Grid -> [Grid]
solve = filter valid . completions

completions :: Grid -> [Grid]
valid :: Grid -> Bool

completions = expand . choices

Matrix DigitMatrix [Digit][Matrix Digit]
choicesexpand

GridMatrix Choices[Grid]

Bird’s Sudoku
Specifications (1A) 10 Young Won Lim

4/26/17

Function: choices

choices :: Grid -> Matrix Choices
choices = map (map choice)
 where choice d | blank d = digits

 | otherwise = [d]

choices :: Grid -> Matrix [Digit]
choices = map (map choice)
choice d = if blank d then digits else [d]

digits :: [Digit]
digits = ['1'..'9']
blank :: Digit -> Bool
blank = (== '0')

Matrix DigitMatrix [Digit]
choices

GridMatrix Choices

Installs the available digits for each cell
If the cell is blank, then all digits for possible choices
else there is only one choice and a singleton is returned

Haskell Overview 11 Young Won Lim
4/26/17

Function: choices

 [[‘0’, ‘0’, ‘4’, ‘0’, ‘0’, ‘5’, ‘7’, ‘0’, ‘0’],

[‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘9’, ‘4’, ‘0’, ‘0’],

[‘3’, ‘6’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘8’],

[‘7’, ‘2’, ‘4’, ‘0’, ‘6’, ‘0’, ‘0’, ‘0’, ‘0’],

[‘0’, ‘0’, ‘0’, ‘4’, ‘0’, ‘2’, ‘0’, ‘0’, ‘0’],

[‘0’, ‘0’, ‘0’, ‘0’, ‘8’, ‘0’, ‘0’, ‘9’, ‘3’],

[‘4’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘5’, ‘6’],

[‘0’, ‘0’, ‘5’, ‘3’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’],

[‘0’, ‘0’, ‘6’, ‘1’, ‘0’, ‘0’, ‘9’, ‘0’, ‘0’]]

choices = map (map choice)

‘0’ [‘1’..‘9’]choice

map choice

m
ap

 (
m

ap
 c

h
o

ic
e

)

Haskell Overview 12 Young Won Lim
4/26/17

Matrix Choices Example

 [[[‘1’..’9’], [‘1’..’9’], [‘4’], [‘1’..’9’], [‘1’..’9’], [‘5’], [‘7’], [‘1’..’9’], [‘1’..’9’]],

[[‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘9’], [‘4’], [‘1’..’9’], [‘1’..’9’]],

[[‘3’], [‘6’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘8’]],

[[‘7’], [‘2’], [‘4’], [‘1’..’9’], [‘6’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’]],

[[‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘4’], [‘1’..’9’], [‘2’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’]],

[[‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘8’], [‘1’..’9’], [‘1’..’9’], [‘9’], [‘3’]],

[[‘4’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘5’], [‘6’]],

[[‘1’..’9’], [‘1’..’9’], [‘5’], [‘3’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’]],

[[‘1’..’9’], [‘1’..’9’], [‘6’], [‘1’], [‘1’..’9’], [‘1’..’9’], [‘9’], [‘1’..’9’], [‘1’..’9’]]]

Matrix Choices = [Row Choices] [[Choices]] [[[Digit]]]

Bird’s Sudoku
Specifications (1A) 13 Young Won Lim

4/26/17

Cartesian Product (cp)

cp [[1, 2, 3], [2], [1, 3]]

[[1, 2, 3] x [2] x [1, 3]]

[[1, 2, 1], [1, 2, 3], [2, 2, 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]]

cp [] = [[]]

cp [[1], [2], [3]] => [[1, 2, 3]]

cp [[1], [], [4, 5]] => []

Bird’s Sudoku
Specifications (1A) 14 Young Won Lim

4/26/17

Cartesian Product (cp)

cp [[1, 2, 3], [2], [1, 3]]

[[1, 2, 1], [1, 2, 3], [2, 2, 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]]

cp [[2], [1, 3]] = [[2, 1], [2, 3]]

cp ([1, 2, 3] : [[2], [1, 3]]) = [[1, 2, 1], [1, 2, 3],
[2, 2, 1], [2, 2, 3],
[3, 2, 1], [3, 2, 3]]

[1, 2, 3] x cp [[2], [1, 3]] = [1, 2, 3] x [[2, 1], [2, 3]]

list comprehension
cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

Bird’s Sudoku
Specifications (1A) 15 Young Won Lim

4/26/17

Cartesian Product (cp)

cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

cp (xs:xss) = [x:ys | x <- xs, ys <- yss]
where yss = cp xss

cp [xs] = cp (x:[])
 = [x:ys | x <- xs, ys <- cp []] if cp [] = []
 = [x:ys | x <- xs, ys <- []]

 = [] contradict

cp [] = [] results in cp xss = [] therefore cp [] = [[]]

Bird’s Sudoku
Specifications (1A) 16 Young Won Lim

4/26/17

Expand

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

cp . map cp = [[[a]]] -> [[[a]]]

digits :: [Digit]
digits = ['1'..'9']
blank :: Digit -> Bool
blank = (== '0')

Matrix [Digit][Matrix Digit]
expand

Matrix Choices[Grid]

Haskell Overview 17 Young Won Lim
4/26/17

Expand Operations

 [[[‘1’..’9’], [‘1’..’9’], [‘4’], [‘1’..’9’], [‘1’..’9’], [‘5’], [‘7’], [‘1’..’9’], [‘1’..’9’]],

[[‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘9’], [‘4’], [‘1’..’9’], [‘1’..’9’]],

[[‘3’], [‘6’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘8’]],

[[‘7’], [‘2’], [‘4’], [‘1’..’9’], [‘6’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’]],

[[‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘4’], [‘1’..’9’], [‘2’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’]],

[[‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘8’], [‘1’..’9’], [‘1’..’9’], [‘9’], [‘3’]],

[[‘4’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘5’], [‘6’]],

[[‘1’..’9’], [‘1’..’9’], [‘5’], [‘3’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’]],

[[‘1’..’9’], [‘1’..’9’], [‘6’], [‘1’], [‘1’..’9’], [‘1’..’9’], [‘9’], [‘1’..’9’], [‘1’..’9’]]]

map cp

cp
 (

m
a

p
cp

)

expand :: Matrix Choices -> [Grid]
 [[[a]]] -> [[[a]]]
expand = cp . map cp

Haskell Overview 18 Young Won Lim
4/26/17

Matrix Choices Example

 [cp [[‘1’..’9’], [‘1’..’9’], [‘4’], [‘1’..’9’], [‘1’..’9’], [‘5’], [‘7’], [‘1’..’9’], [‘1’..’9’]],

cp [[‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘9’], [‘4’], [‘1’..’9’], [‘1’..’9’]],

cp [[‘3’], [‘6’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘8’]],

cp [[‘7’], [‘2’], [‘4’], [‘1’..’9’], [‘6’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’]],

cp [[‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘4’], [‘1’..’9’], [‘2’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’]],

cp [[‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘8’], [‘1’..’9’], [‘1’..’9’], [‘9’], [‘3’]],

cp [[‘4’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘5’], [‘6’]],

cp [[‘1’..’9’], [‘1’..’9’], [‘5’], [‘3’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’], [‘1’..’9’]],

cp [[‘1’..’9’], [‘1’..’9’], [‘6’], [‘1’], [‘1’..’9’], [‘1’..’9’], [‘9’], [‘1’..’9’], [‘1’..’9’]]]

cp [[1, 2, 3], [2], [1, 3]]
[[1, 2, 1], [1, 2, 3], [2, 2, 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]]

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

Haskell Overview 19 Young Won Lim
4/26/17

Matrix Choices Example

cp [[1, 2, 3], [2], [1, 3]]
[[1, 2, 1], [1, 2, 3], [2, 2, 1], [2, 2, 3], [3, 2, 1], [3, 2, 3]]

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

[], [], [],

[], [], [],

[], [], [],

[], [], [],

[], [], [],

[], [], [],

[], [], [],

[], [], [],

[], [], [],

 [[],

 [],

 [],

 [],

 [],

 [],

 [],

 [],

 []]

row1 choices

row2 choices

row3 choices

row4 choices

row5 choices

row6 choices

row7 choices

row8 choices

row9 choices

Bird’s Sudoku
Specifications (1A) 20 Young Won Lim

4/26/17

[Grid]

[],
[],
[],
[],
[],
[],
[],
[],
[],

,

[],
[],
[],
[],
[],
[],
[],
[],
[],

,

[],
[],
[],
[],
[],
[],
[],
[],
[],

,

[],
[],
[],
[],
[],
[],
[],
[],
[],

9 rows

9 elements
per each row

type Grid =

Matrix Digit

[Row Digit]

[[Digit]]

Bird’s Sudoku
Specifications (1A) 21 Young Won Lim

4/26/17

Expand

> solve1 :: Grid -> [Grid]
> solve1 = filter valid . expand . choices

> type Choices = [Digit]

> choices :: Grid -> Matrix Choices
> choices = map (map choice)
> where choice d | blank d = digits

> | otherwise = [d]

> expand :: Matrix Choices -> [Grid]
> expand = cp . map cp

> cp :: [[a]] -> [[a]]
> cp [] = [[]]
> cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

digits :: [Digit]
digits = ['1'..'9']
blank :: Digit -> Bool
blank = (== '0')

Bird’s Sudoku
Specifications (1A) 22 Young Won Lim

4/26/17

Specification (1)

solve1 :: Grid -> [Grid]
solve1 = filter valid . expand . choices

type Choices = [Digit]

choices :: Grid -> Matrix Choices
choices = map (map choice)
 where choice d | blank d = digits

 | otherwise = [d]

expand :: Matrix Choices -> [Grid]
expand = cp . map cp

cp :: [[a]] -> [[a]]
cp [] = [[]]
cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

digits :: [Digit]
digits = ['1'..'9']
blank :: Digit -> Bool
blank = (== '0')

Bird’s Sudoku
Specifications (1A) 23 Young Won Lim

4/26/17

Specification (2)

valid :: Grid -> Bool
valid g = all nodups (rows g) &&
 all nodups (cols g) &&
 all nodups (boxs g)

nodups :: Eq a => [a] -> Bool
nodups [] = True
nodups (x:xs) = x `notElem` xs && nodups xs

[],
[],
[],
[],
[],
[],
[],
[],
[],

,

[],
[],
[],
[],
[],
[],
[],
[],
[],

,

[],
[],
[],
[],
[],
[],
[],
[],
[],

,

Grid = Matrix Digit

[Row Digit]

[[Digit]]

g

Bird’s Sudoku
Specifications (1A) 24 Young Won Lim

4/26/17

Specification (3)

rows :: Matrix a -> [Row a]
rows = id

cols :: Matrix a -> [Row a]
cols [xs] = [[x] | x <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)

boxs :: Matrix a -> [Row a]
boxs = map ungroup . ungroup .

map cols .
 group . map group

Bird’s Sudoku
Specifications (1A) 25 Young Won Lim

4/26/17

group and ungroup

ungroup = concat

group [] = []
group (x:y:z:xs) = [x,y,z] : group xs

 [x, y, z, xs] [[x, y, z], group xs]

Bird’s Sudoku
Specifications (1A) 26 Young Won Lim

4/26/17

rows and cols

rows :: Matrix a -> [Row a]
rows :: Matrix a -> Matrix a
rows = id

cols :: Matrix a -> [Row a]
cols :: Matrix a -> Matrix a
cols [xs] = [[x] | x <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)

type Matrix a = [Row a] [[a]]
type Row a = [a]

id : identity function
If a matrix is given by a list of its rows
tt returns the same matrix

transpose of a matrix

Bird’s Sudoku
Specifications (1A) 27 Young Won Lim

4/26/17

cols

cols :: Matrix a -> [Row a]
cols :: Matrix a -> Matrix a
cols [xs] = [[x] | x <- xs]
cols (xs:xss) = zipWith (:) xs (cols xss)

[],
[],
[],
[],
[],
[],
[],
[],
[],

[],
[],

[],
[],

[],
[],
[],
[],
[],

[],
[],
[],
[],
[],
[],
[],
[],
[],

Bird’s Sudoku
Specifications (1A) 28 Young Won Lim

4/26/17

boxs

boxs :: Matrix a -> [Row a]
boxs :: Matrix a -> Matrix a
boxs = map ungroup .

ungroup .
map cols .

 group .
map group

ungroup :: [[a]] -> [a]
ungroup = concat takes a grouped list and ungroups it

group [] = []
group (x:y:z:xs) = [x,y,z]:group xs splits a list into groups of three
group xs = take 3 xs : group (drop 3 xs)

type Matrix a = [Row a] [[a]]
type Row a = [a]

Haskell Overview 29 Young Won Lim
4/26/17

group.map group

type Grid = Matrix Digit [Row Digit] [[Digit]]

 [[‘5’, ‘3’, ‘4’, ‘6’, ‘7’, ‘8’, ‘9’, ‘1’, ‘2’],

[‘6’, ‘7’, ‘2’, ‘1’, ‘9’, ‘5’, ‘3’, ‘4’, ‘8’],

[‘1’, ‘9’, ‘8’, ‘3’, ‘4’, ‘2’, ‘5’, ‘6’, ‘7’],

[‘8’, ‘5’, ‘9’, ‘7’, ‘6’, ‘1’, ‘4’, ‘2’, ‘3’],

[‘4’, ‘2’, ‘6’, ‘8’, ‘5’, ‘3’, ‘7’, ‘9’, ‘1’],

[‘7’, ‘1’, ‘3’, ‘9’, ‘2’, ‘4’, ‘8’, ‘5’, ‘6’],

[‘9’, ‘6’, ‘1’, ‘5’, ‘3’, ‘7’, ‘2’, ‘8’, ‘4’],

[‘2’, ‘8’, ‘7’, ‘4’, ‘1’, ‘9’, ‘6’, ‘3’, ‘5’],

[‘3’, ‘4’, ‘5’, ‘2’, ‘8’, ‘6’, ‘1’, ‘7’, ‘9’]]

 [[[[‘5’, ‘3’, ‘4’], [‘6’, ‘7’, ‘8’], [‘9’, ‘1’, ‘2’]],

 [[‘6’, ‘7’, ‘2’], [‘1’, ‘9’, ‘5’], [‘3’, ‘4’, ‘8’]],

 [[‘1’, ‘9’, ‘8’], [‘3’, ‘4’, ‘2’], [‘5’, ‘6’, ‘7’]]],

[[[‘8’, ‘5’, ‘9’], [‘7’, ‘6’, ‘1’], [‘4’, ‘2’, ‘3’]],

 [[‘4’, ‘2’, ‘6’], [‘8’, ‘5’, ‘3’], [‘7’, ‘9’, ‘1’]],

 [[‘7’, ‘1’, ‘3’], [‘9’, ‘2’, ‘4’], [‘8’, ‘5’, ‘6’]]],

[[[‘9’, ‘6’, ‘1’], [‘5’, ‘3’, ‘7’], [‘2’, ‘8’, ‘4’]],

 [[‘2’, ‘8’, ‘7’], [‘4’, ‘1’, ‘9’], [‘6’, ‘3’, ‘5’]],

 [[‘3’, ‘4’, ‘5’], [‘2’, ‘8’, ‘6’], [‘1’, ‘7’, ‘9’]]]]

map group

g
ro

u
p

Haskell Overview 30 Young Won Lim
4/26/17

map cols. group . map group

type Grid = Matrix Digit [Row Digit] [[Digit]]

 [[[[‘5’, ‘3’, ‘4’], [‘6’, ‘7’, ‘2’], [‘1’, ‘9’, ‘8’]],

 [[‘6’, ‘7’, ‘8’], [‘1’, ‘9’, ‘5’], [‘3’, ‘4’, ‘2’]],

 [[‘9’, ‘1’, ‘2’], [‘3’, ‘4’, ‘8’], [‘5’, ‘6’, ‘7’]]],

[[[‘8’, ‘5’, ‘9’], [‘4’, ‘2’, ‘6’], [‘7’, ‘1’, ‘3’]],

 [[‘7’, ‘6’, ‘1’], [‘8’, ‘5’, ‘3’], [‘9’, ‘2’, ‘4’]],

 [[‘4’, ‘2’, ‘3’], [‘7’, ‘9’, ‘1’], [‘8’, ‘5’, ‘6’]]],

[[[‘9’, ‘6’, ‘1’], [‘2’, ‘8’, ‘7’], [‘3’, ‘4’, ‘5’]],

 [[‘5’, ‘3’, ‘7’], [‘4’, ‘1’, ‘9’], [‘2’, ‘8’, ‘6’]],

 [[‘2’, ‘8’, ‘4’], [‘6’, ‘3’, ‘5’], [‘1’, ‘7’, ‘9’]]]]

 [[[[‘5’, ‘3’, ‘4’], [‘6’, ‘7’, ‘8’], [‘9’, ‘1’, ‘2’]],

 [[‘6’, ‘7’, ‘2’], [‘1’, ‘9’, ‘5’], [‘3’, ‘4’, ‘8’]],

 [[‘1’, ‘9’, ‘8’], [‘3’, ‘4’, ‘2’], [‘5’, ‘6’, ‘7’]]],

[[[‘8’, ‘5’, ‘9’], [‘7’, ‘6’, ‘1’], [‘4’, ‘2’, ‘3’]],

 [[‘4’, ‘2’, ‘6’], [‘8’, ‘5’, ‘3’], [‘7’, ‘9’, ‘1’]],

 [[‘7’, ‘1’, ‘3’], [‘9’, ‘2’, ‘4’], [‘8’, ‘5’, ‘6’]]],

[[[‘9’, ‘6’, ‘1’], [‘5’, ‘3’, ‘7’], [‘2’, ‘8’, ‘4’]],

 [[‘2’, ‘8’, ‘7’], [‘4’, ‘1’, ‘9’], [‘6’, ‘3’, ‘5’]],

 [[‘3’, ‘4’, ‘5’], [‘2’, ‘8’, ‘6’], [‘1’, ‘7’, ‘9’]]]]

Haskell Overview 31 Young Won Lim
4/26/17

ungroup . map cols . group . map group

type Grid = Matrix Digit [Row Digit] [[Digit]]

 [[[[‘5’, ‘3’, ‘4’], [‘6’, ‘7’, ‘2’], [‘1’, ‘9’, ‘8’]],

 [[‘6’, ‘7’, ‘8’], [‘1’, ‘9’, ‘5’], [‘3’, ‘4’, ‘2’]],

 [[‘9’, ‘1’, ‘2’], [‘3’, ‘4’, ‘8’], [‘5’, ‘6’, ‘7’]]],

[[[‘8’, ‘5’, ‘9’], [‘4’, ‘2’, ‘6’], [‘7’, ‘1’, ‘3’]],

 [[‘7’, ‘6’, ‘1’], [‘8’, ‘5’, ‘3’], [‘9’, ‘2’, ‘4’]],

 [[‘4’, ‘2’, ‘3’], [‘7’, ‘9’, ‘1’], [‘8’, ‘5’, ‘6’]]],

[[[‘9’, ‘6’, ‘1’], [‘2’, ‘8’, ‘7’], [‘3’, ‘4’, ‘5’]],

 [[‘5’, ‘3’, ‘7’], [‘4’, ‘1’, ‘9’], [‘2’, ‘8’, ‘6’]],

 [[‘2’, ‘8’, ‘4’], [‘6’, ‘3’, ‘5’], [‘1’, ‘7’, ‘9’]]]]

 [[[‘5’, ‘3’, ‘4’], [‘6’, ‘7’, ‘2’], [‘1’, ‘9’, ‘8’]],

 [[‘6’, ‘7’, ‘8’], [‘1’, ‘9’, ‘5’], [‘3’, ‘4’, ‘2’]],

 [[‘9’, ‘1’, ‘2’], [‘3’, ‘4’, ‘8’], [‘5’, ‘6’, ‘7’]] ,

 [[‘8’, ‘5’, ‘9’], [‘4’, ‘2’, ‘6’], [‘7’, ‘1’, ‘3’]],

 [[‘7’, ‘6’, ‘1’], [‘8’, ‘5’, ‘3’], [‘9’, ‘2’, ‘4’]],

 [[‘4’, ‘2’, ‘3’], [‘7’, ‘9’, ‘1’], [‘8’, ‘5’, ‘6’]] ,

 [[‘9’, ‘6’, ‘1’], [‘2’, ‘8’, ‘7’], [‘3’, ‘4’, ‘5’]],

 [[‘5’, ‘3’, ‘7’], [‘4’, ‘1’, ‘9’], [‘2’, ‘8’, ‘6’]],

 [[‘2’, ‘8’, ‘4’], [‘6’, ‘3’, ‘5’], [‘1’, ‘7’, ‘9’]]]

ungroup

Haskell Overview 32 Young Won Lim
4/26/17

map ungroup . ungroup . map cols . group . map group

type Grid = Matrix Digit [Row Digit] [[Digit]]

 [[‘5’, ‘3’, ‘4’ , ‘6’, ‘7’, ‘2’ , ‘1’, ‘9’, ‘8’],

 [‘6’, ‘7’, ‘8’ , ‘1’, ‘9’, ‘5’ , ‘3’, ‘4’, ‘2’],

 [‘9’, ‘1’, ‘2’ , ‘3’, ‘4’, ‘8’ , ‘5’, ‘6’, ‘7’] ,

 [‘8’, ‘5’, ‘9’ , ‘4’, ‘2’, ‘6’ , ‘7’, ‘1’, ‘3’],

 [‘7’, ‘6’, ‘1’ , ‘8’, ‘5’, ‘3’ , ‘9’, ‘2’, ‘4’],

 [‘4’, ‘2’, ‘3’ , ‘7’, ‘9’, ‘1’ , ‘8’, ‘5’, ‘6’] ,

 [‘9’, ‘6’, ‘1’ , ‘2’, ‘8’, ‘7’ , ‘3’, ‘4’, ‘5’],

 [‘5’, ‘3’, ‘7’ , ‘4’, ‘1’, ‘9’ , ‘2’, ‘8’, ‘6’],

 [‘2’, ‘8’, ‘4’ , ‘6’, ‘3’, ‘5’ , ‘1’, ‘7’, ‘9’]]

 [[[‘5’, ‘3’, ‘4’], [‘6’, ‘7’, ‘2’], [‘1’, ‘9’, ‘8’]],

 [[‘6’, ‘7’, ‘8’], [‘1’, ‘9’, ‘5’], [‘3’, ‘4’, ‘2’]],

 [[‘9’, ‘1’, ‘2’], [‘3’, ‘4’, ‘8’], [‘5’, ‘6’, ‘7’]] ,

 [[‘8’, ‘5’, ‘9’], [‘4’, ‘2’, ‘6’], [‘7’, ‘1’, ‘3’]],

 [[‘7’, ‘6’, ‘1’], [‘8’, ‘5’, ‘3’], [‘9’, ‘2’, ‘4’]],

 [[‘4’, ‘2’, ‘3’], [‘7’, ‘9’, ‘1’], [‘8’, ‘5’, ‘6’]] ,

 [[‘9’, ‘6’, ‘1’], [‘2’, ‘8’, ‘7’], [‘3’, ‘4’, ‘5’]],

 [[‘5’, ‘3’, ‘7’], [‘4’, ‘1’, ‘9’], [‘2’, ‘8’, ‘6’]],

 [[‘2’, ‘8’, ‘4’], [‘6’, ‘3’, ‘5’], [‘1’, ‘7’, ‘9’]]]

map ungroup

Bird’s Sudoku
Specifications (1A) 33 Young Won Lim

4/26/17

boxs

a b c d

map group group

map cols

ungroupmap ungroup

e f g h

i j k l

m n o p

a b c d

e f g h

i j k l

m n o p

a b c d

e f g h

i j k l

m n o p

a b e f

c d g h

i j m n

k l o p

a b e f

c d g h

i j m n

k l o p

a b e f

c d g h

i j m n

k l o p

Bird’s Sudoku
Specifications (1A) 34 Young Won Lim

4/26/17

boxs

boxsa b c d

e f g h

i j k l

m n o p

a b e f

c d g h

i j m n

k l o p

a b c d

e f g h

i j k l

m n o p

a b e f

c d g h

i j m n

k l o p

boxs

Bird’s Sudoku
Specifications (1A) 35 Young Won Lim

4/26/17

cols

colsa b c d

e f g h

i j k l

m n o p

a e i m

b f j n

c g k o

d h l p

colsa b c d

e f g h

i j k l

m n o p

a e i m

b f j n

c g k o

d h l p

Bird’s Sudoku
Specifications (1A) 36 Young Won Lim

4/26/17

rows, cols, boxs

a b c d

e f g h

i j k l

m n o p

a b e f

c d g h

i j m n

k l o p

boxs

colsa b c d

e f g h

i j k l

m n o p

a e i m

b f j n

c g k o

d h l p

a b c d

e f g h

i j k l

m n o p

a b c d

e f g h

i j k l

m n o p

rows

Bird’s Sudoku
Specifications (1A) 37 Young Won Lim

4/26/17

nodups

nodups :: (Eq a) => [a] -> Bool
nodups [] = True
nodups (x:xs) = x `notElem` xs && nodups xs

notElem :: (Eq a) => a -> [a] -> Bool
notElem x xs = all (/= x) xs

all p = and . map p

nodups :: (Eq a) => [a] -> Bool
nodups [] = True
nodups (x:xs) = all (/=x) xs && nodups xs

all p = and . map p

Bird’s Sudoku
Specifications (1A) 38 Young Won Lim

4/26/17

nodups

 [‘6’, ‘7’, ‘2’, ‘1’, ‘9’, ‘5’, ‘3’, ‘4’, ‘8’]

 ‘6’, [‘7’, ‘2’, ‘1’, ‘9’, ‘5’, ‘3’, ‘4’, ‘8’]

 ‘6’, ‘7’, [‘2’, ‘1’, ‘9’, ‘5’, ‘3’, ‘4’, ‘8’]

 ‘6’, ‘7’, ‘2’, [‘1’, ‘9’, ‘5’, ‘3’, ‘4’, ‘8’]

 ‘6’, ‘7’, ‘2’, ‘1’, [‘9’, ‘5’, ‘3’, ‘4’, ‘8’]

 ‘6’, ‘7’, ‘2’, ‘1’, ‘9’, [‘5’, ‘3’, ‘4’, ‘8’]

 ‘6’, ‘7’, ‘2’, ‘1’, ‘9’, ‘5’, [‘3’, ‘4’, ‘8’]

nodups (x:xs) =
x `notElem` xs && nodups xs

notElem x xs = all (/= x) xs

all p = and . map p

Bird’s Sudoku
Specifications (1A) 39 Young Won Lim

4/26/17

nodups

 [‘6’, ‘7’, ‘2’, ‘1’, ‘9’, ‘5’, ‘3’, ‘4’, ‘8’]

 ‘6’, ‘7’, ‘2’, ‘1’, ‘9’, ‘5’, [‘3’, ‘4’, ‘8’]

 ‘6’, ‘7’, ‘2’, ‘1’, ‘9’, ‘5’, ‘3’, [‘4’, ‘8’]

 ‘6’, ‘7’, ‘2’, ‘1’, ‘9’, ‘5’, ‘3’, ‘4’, [‘8’]

 ‘6’, ‘7’, ‘2’, ‘1’, ‘9’, ‘5’, ‘3’, ‘4’, ‘8’ []

nodups (x:xs) =
x `notElem` xs && nodups xs

notElem x xs = all (/= x) xs

all p = and . map p

Young Won Lim
4/26/17

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf
[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

