Z Transform (H.1) Definition

20170131

Copyright (c) 2016-2017 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Based on
Complex Analysis for Mathematics and Engineering
J. Mathews
z - Transform

$$
\begin{aligned}
& X(z)=\sum_{k=-\infty}^{+\infty} x[k] z^{-k} \\
& X[n]
\end{aligned}
$$

$$
z=|r| e_{i 0}^{j 2 \pi F}
$$

$$
=|r| e^{j 8}
$$

One sided z-transform

$$
X(z)=\sum_{k=0}^{+\infty} x[k] z^{-k}
$$

Inverse z-Transform

$$
\begin{aligned}
X(z) & =Z\left[\left\{x_{n}\right\}_{n=0}^{\infty}\right] \quad x[n] \Leftrightarrow X(z) \\
& =\sum_{n=0}^{\infty} x_{n} z^{-n} \\
& =\sum_{n=0}^{\infty} x[n] z^{-n}
\end{aligned}
$$

$$
\begin{aligned}
x_{n} & =x[n] \\
& =Z^{-1}[X(z)] \\
& =\frac{1}{2 \pi i} \int_{C} x(z) z^{n-1} d z
\end{aligned}
$$

Admissible Form of z-transform

$$
X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}
$$

$X(z)$: admissible z-transform
if $x(z)$ is a rational function

$$
X(z)=\frac{P(z)}{Q(z)}=\frac{b_{0}+b_{1} z^{\prime}+b_{2} z^{2}+\cdots+b_{p-1} z^{p-1}+b_{p} z^{p}}{a_{0}+a_{1} z^{\prime}+a_{2} z^{2}+\cdots+a_{q-1} z^{q-1}+a_{q} z^{q}}
$$

$P(z)$: a polynomial of degree p
$Q(z)$: a polynomial of degree q

Residue Theorem

D: Simply connected domain
C: simple closed contom $C(C(W)$ in D
if $f(z)$ is analytic inside C and on C except at the points $z_{1}, z_{2}, \cdots, z_{k}$ in C
then

$$
\frac{1}{2 \pi i} \int_{c} f(z) d z=\sum_{j=1}^{k} \operatorname{Res}\left(f(z), z_{j}\right)
$$

singular points of $f(z)=\quad z_{1}, z_{2}, \cdots, z_{k}$

Integration of a function of a complex var.

$$
\oint_{c} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f(z), z_{k}\right)
$$

finite number k of Singular points z_{k}

residue theorem

$$
\oint_{c} f(z) d z=0 \quad \text { if } f(z)=F^{\prime}(z) \text { on } C
$$

: $F(z)$ is an antiderivative of $f(z)$ fundamental theorem of calculus
$\oint_{c} f(z) d z=0$ if $f(z)$ is andytic within and on C no singularity
$\oint_{c} f(z) d z=0$ if $f(z)$ is continuous in D and $f(z)=F^{\prime}(z)$: $F(z)$ is an antiderivative of $f(z)$ fundamental theorem of calculus
$\oint_{c} f(z) d z=0$ if $f(z)$ is andytic within and on C no singularity
can expand $f(z)$ about any point z_{m} over powers of $\left(z-z_{m}\right)$
whether or not $f(z)$ is singular at z_{m} or at other points between z and z_{m}

$$
f(z)=\sum_{n=n_{1}}^{\infty} a_{n}^{\left\{m_{\}}\right.}\left(z-z_{m}\right)^{n}
$$

(1) Laurent Series Expansion of $f(z)$ at z_{m} general n_{1} - de pend on $f(z)$ and z_{m}
(2) z-transform of $a_{n}^{\{m\}}$
general n_{1} - de pend on $f(z)$

$$
z_{m}=0
$$

(3) Taylor Series Expansion of $f(z)$ at z_{m} positive n_{1} - de pend on $f(z)$ and $z_{m} \quad(n,>0)$
(4) Maclaurin Series Expansion of $f(z)$ at z_{m}
positive n_{1}-de pend on $f(z)$

$$
z_{m}=0
$$

* Expansion of $f(z)$ about any point Z_{m} over powers of $\left(z-z_{m}\right)$

$$
f(z)=\sum_{n=n_{1}}^{\infty} a_{n}^{\{m\}}\left(z-z_{m}\right)^{n}
$$

$$
\begin{array}{ll}
a_{n}^{\left[m_{3}\right.}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{m}\right)^{n+1}} d z & \text { for general } f(z) \\
a_{n}^{[m]}=\sum_{k} \operatorname{Res}\left(\frac{f(z)}{\left(z-z_{m}\right)^{n+1}}, z_{k}\right) & \text { for general } f(z) \\
a_{n}^{[m]}=\frac{1}{n!} f^{(n)}\left(z_{m}\right) \quad n_{1} \geqslant 0 & \text { for analytic } f(z) \text { within } c
\end{array}
$$

analytic $f(z) \longrightarrow \frac{f(z)}{\left(z-z_{n}\right)^{n+4}}$ has a pole at $z_{\text {In }}$ order of $n+1$

Thomas J. Cavicchi
Digital Signal Processing, Wiley, 2000

$$
f(z)=\sum_{n=n_{1}}^{\infty} a_{n}^{s_{3}}\left(z-z_{m}\right)^{n}
$$

z_{m} : possible poles of $f(z)$ not necessarily poles

$$
\begin{aligned}
a_{n}^{[m\}} & =\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{m}\right)^{n+1}} d z^{\prime} \\
& =\sum_{k} \operatorname{Res}\left(\frac{f(z)}{\left(z-z_{m}\right)^{n+1}}, z_{k}\right) \\
& =\frac{1}{n!} f^{(n)}\left(z_{m}\right) \quad n_{1} \geqslant 0
\end{aligned}
$$

Residue Theorem
assumed there are (m) Singularities (poles) of $f(z)$ in a region C_{m} is taken to enclose only one pole z_{m}

$a_{n}^{[1]}$ expanded at Z_{1}
C_{1} encloses Z_{1} only

$$
\tilde{a}_{-1}^{\{1\}}=\operatorname{Res}\left(f(z), z_{1}\right)
$$

$a_{n}^{[2]}$ expanded at z_{2}
C_{2} encloses Z_{2} only $\tilde{a}_{-1}^{\{2\}}=\operatorname{Res}\left(f(z), z_{2}\right)$

$a_{n}^{\{3\}}$ expanded at z_{3} C_{3} encloses Z_{3} only $\tilde{a}_{-1}^{\{3\}}=\operatorname{Res}\left(f(z), z_{3}\right)$

$$
n=-1
$$

$$
\begin{aligned}
a_{n}^{\{m\}} & =\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{n}\right)^{n+1}} d z \\
& =\sum_{k} \operatorname{Res}\left(\frac{f(z)}{\left(z-z_{n}\right)^{n+1}}, z_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
a_{-1}^{\{m\}} & =\frac{1}{2 \pi i} \oint_{C} f(z) d z \\
& =\sum_{k} \operatorname{Res}\left(f(z), z_{k}\right)
\end{aligned}
$$

$$
a_{-1}^{\sum_{-1}}=\frac{1}{2 \pi i} \oint_{C} f(z) d z=\sum_{k} \operatorname{Res}\left(f(z), z_{k}\right)
$$

if C encloses only one pole

$$
\begin{aligned}
& a_{-1}^{[0]}=\frac{1}{2 \pi i} \oint_{C_{0}} f(z) d z=\operatorname{Res}\left(f(z), z_{0}\right) \\
& \tilde{a}_{-1}^{\{m\}}=\operatorname{Res}\left(f(z), z_{n}\right)
\end{aligned}
$$

the residue of $f(z)$ at z_{m} using C_{m}

$\tilde{a}_{-1}^{\{i\}}=\operatorname{Res}\left(f(z), z_{1}\right)$

$$
\tilde{a}_{-1}^{\{2\}}=\operatorname{Res}\left(f(z), z_{2}\right)
$$

$$
\tilde{a}_{-1}^{\{3\}}=\operatorname{Res}\left(f(z), z_{3}\right)
$$

$$
\oint_{C} f(z) d z=2 \pi j \sum_{k=1}^{M} \tilde{a}_{-1}^{\{k\}}=2 \pi j \sum_{j=1}^{M} \operatorname{Res}\left(f(z), z_{k}\right)
$$

residue theorem

$$
a_{n}=\sum_{k=1}^{M} \operatorname{Res}\left(\frac{f(z)}{\left(z-z_{n}\right)^{n+1}}, z_{n}\right)
$$

Laurent coefficient
C encloses k poles
C_{k} encloses only the k-th pile
$\tilde{a}_{-1}^{\text {in }}$ the residue of the k-th pole enclosed by $C_{2} z_{k}$

$$
\begin{aligned}
f(z) & =\sum_{n=n_{1}}^{\infty} a_{n}^{s m\}}\left(z-z_{m}\right)^{n} \\
a_{n}^{s m\}} & =\frac{1}{2 \pi i} \oint_{c} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{m}\right)^{n+1}} d z^{\prime} \\
& =\sum_{k} \operatorname{Res}\left(\frac{f(z)}{\left(z-z_{m}\right)^{n+1}}, z_{k}\right)
\end{aligned}
$$

C is in the same region of analyticity of $f(z)$ typically a circle centered on z_{m}
z_{k} within C : singularities of $\frac{f(z)}{\left(z-z_{m}\right)^{n+1}}$
$n_{1}=n_{f, m}$ depends on $f(z), z_{m}$
$a_{n}^{\{m\}}$ depends on $f(z), z_{m}$, region of analyticity

Whether $f(z)$ is singular at $z=z_{m}$ or not or at other points between z and z_{m} We can expand $f(z)$ about any point $z \mathrm{zm}$ over powers of $\left(z-z_{m}\right)$.

$$
\begin{aligned}
f(z) & =\sum_{n=n_{1}}^{\infty} a_{n}^{\{m\}}\left(z-z_{m}\right)^{n} \\
a_{n}^{\{m\}} & =\frac{1}{2 \pi i} \oint_{c} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{m}\right)^{n+1}} d z^{\prime} \\
& =\sum_{k} \operatorname{Res}\left(\frac{f(z)}{\left(z-z_{m}\right)^{n+1}}, z_{n}\right)
\end{aligned}
$$

z_{k} within C : singularities of $\frac{f(z)}{\left(z-z_{n}\right)^{n+1}}$

$$
\begin{cases}\text { poles of } f(z) \cup \quad & n=z_{m} \\ \text { poles of } f(z) & n<0 \\ & n<0\end{cases}
$$

$$
\operatorname{Res}\left(f_{1} z_{1}\right)+\operatorname{Res}\left(f_{1} z_{1}\right)+\operatorname{Res}\left(f_{1} z_{m}\right)
$$

$$
\begin{aligned}
\operatorname{Res}\left(f_{1} z_{1}\right)+\operatorname{Res}\left(f_{1} z_{1}\right) & +\operatorname{Res}\left(f_{1} z_{3}\right) \\
& +\operatorname{Res}\left(f_{1} z_{m}\right)
\end{aligned}
$$

$$
\operatorname{Res}\left(f_{1} z_{1}\right)+\operatorname{Res}\left(f_{1} z_{1}\right)+\operatorname{Res}\left(f_{1} z_{m}\right)
$$

$$
\begin{aligned}
& \operatorname{Res}\left(f_{1} z_{1}\right)+\operatorname{Res}\left(f_{1} z_{1}\right)+\operatorname{Res}\left(f_{1} z_{3}\right) \\
&+\operatorname{Res}\left(f_{1} z_{m}\right) \\
&(n \geqslant 0)
\end{aligned}
$$

$$
\begin{align*}
f(z) & =\sum_{n=n_{1}}^{\infty} a_{n}^{\{m\}}\left(z-z_{m}\right)^{n} \\
a_{n}^{\{m\}} & =\frac{1}{2 \pi i} \oint_{c} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{n}\right)^{n+1}} d z^{\prime} \tag{O}\\
& =\sum_{k} \operatorname{Res}\left(\frac{f(z)}{\left(z-z_{n}\right)^{n+1}}, z_{n}\right)
\end{align*}
$$

Laurent's Theorem
f : analytic within the annular domain D

$$
r<\left|z-z_{0}\right|<R
$$

then

$$
\begin{aligned}
& f(z)=\sum_{k=-\infty}^{+\infty} a_{k}\left(z-z_{0}\right)^{k}, \text { valid for } r<\left|z-z_{0}\right|<R \\
& a_{k}=\frac{1}{2 \pi i} \oint_{c} \frac{f(s)}{\left(s-z_{0}\right)^{k+1}} d s, \quad k=0, \pm 1, \pm 2, \cdots
\end{aligned}
$$

C: a simple closed curve
that lies entirely within D
that encloses z_{0}

$$
\begin{aligned}
& a_{-1}=\frac{1}{2 \pi i} \oint_{c} f(s) d s \quad \oint_{c} f(s) d s=2 \pi \dot{c} \cdot a_{-1} \\
& a_{-1}=\frac{1}{2 \pi i} \oint_{c} f(s) d s=\operatorname{Res}\left(f(z), z_{0}\right) \\
& \\
& = \begin{cases}\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z) & \text { (simple }) \\
\frac{1}{(n-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{n-1}}{d z^{n-1}}\left(z-z_{0}\right)^{n} f(z) & \text { (order } n)\end{cases}
\end{aligned}
$$

Which poles of $f(z)$ lie between the print of evaluation z and the point z. about which the expansion is formed
$\frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{0}\right)}$ is analytic between $c_{1} \& C_{2}$
deformation theorem $c_{1}-c_{2}$ coincide common contour C

Cauchy's Residue Theorem
$f(z)$: analytic on and within C
except a finite number of singnlen points $z_{1}, z_{2}, \cdots, z_{n}$ within C
then

$$
\int_{c} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f(z), z_{k}\right)
$$

D: a simply connected domain
C: a simple closed contour in D

z_{1}

$$
\begin{array}{ll}
f(z)=\sum_{k=-\infty}^{+\infty} a_{k}\left(z-z_{1}\right)^{k} & a_{-1}^{(13}=\frac{1}{2 \pi i} \oint_{c_{1}} f(s) d s=\operatorname{Res}\left(f(x), z_{1}\right) \\
f(z)=\sum_{k=-\infty}^{+\infty} a_{k}\left(z-z_{2}\right)^{k} & a_{-1}^{[3]}=\frac{1}{2 \pi i} \oint_{c_{2}} f(s) d s=\operatorname{Res}\left(f\left(x, z_{2}\right)\right. \\
f(z)=\sum_{k=-\infty}^{+\infty} a_{k}\left(z-z_{3}\right)^{k} & a_{-1}^{13}=\frac{1}{2 \pi i} \oint_{c_{3}} f(s) d s=\operatorname{Res}\left(f\left(v, z_{3}\right)\right.
\end{array}
$$

z_{1}
Laurent series expansion at $z_{\text {i }}$

$$
\begin{aligned}
& f(z)=\sum_{k=-\infty}^{+\infty} a_{k}\left(z-z_{1}\right)^{k} \\
& a_{-1}^{[1]}=\frac{1}{2 i} \oint_{c_{1}} f(s) d s=\operatorname{Res}\left(f(z), z_{1}\right)
\end{aligned}
$$

z_{2}
Laurent series expansion at z_{2}

$$
\begin{aligned}
& f(z)=\sum_{k=-\infty}^{+\infty} a_{k}\left(z-z_{2}\right)^{k} \\
& a_{-1}^{[23}=\frac{1}{2 \pi i} \oint_{c_{2}} f(s) d s=\operatorname{Res}\left(f(z), z_{2}\right)
\end{aligned}
$$

z_{3}
Laurent series expansion at z_{3}

$$
\begin{aligned}
& f(z)=\sum_{k=-\infty}^{+\infty} a_{k}\left(z-z_{3}\right)^{k} \\
& a_{-1}^{[3]}=\frac{1}{2 \pi i} \oint_{c_{3}} f(s) d s=\operatorname{Res}\left(f(z), z_{3}\right)
\end{aligned}
$$

$$
\int_{c} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left(f(z), z_{k}\right)
$$

Different D, Different Laurent Series

z-transform

$$
f(z)=\frac{12}{z(2-z)(1+z)}=\frac{4}{z}\left(\frac{1}{1+z}+\frac{1}{2-z}\right)
$$

pole: $z=0, z=2, z=-1$

$$
\begin{aligned}
& 0<|z|<1 \\
& f(z)=-3+9 z / 2-15 z^{2} / 4+33 z^{3} / 8+\cdots+6 / z \\
& |z|>2 \\
& \frac{1}{1+z}=\frac{1}{z} \frac{1}{\left(1+z^{-4}\right)} \quad \frac{1}{2+z}=-\frac{1}{z} \frac{1}{1-2 z^{-1}} \\
& f(z)=-\left(12 / z^{3}\right)\left(1+1 / z+3 / z^{2}+5 / z^{3}+11 / z^{4}+\cdots\right)
\end{aligned}
$$

$$
0<|z|<1
$$

$$
f(z)=-3+9 z / 2-15 z^{2} / 4+33 z^{3} / 8+\cdots+6 / z
$$

$$
|z|>2
$$

$$
\frac{1}{1+z}=\frac{1}{z} \frac{1}{\left(1+z^{-1}\right)} \quad \frac{1}{2+z}=-\frac{1}{z} \frac{1}{1-2 z^{-1}}
$$

$$
f(z)=\frac{-1}{(z-1)(z-2)}
$$

$$
\begin{gathered}
f(z)=\frac{-1}{(z-1)(z-2)}=\frac{1}{z-1}-\frac{1}{z-2} \\
D_{1}:|z|<1 \\
D_{2}: 1<|z|<2 \\
D_{3}: 2<|z|
\end{gathered}
$$

(1) $D_{1} \quad|z|<1, \quad\left|\frac{z}{2}\right|<1$

$$
\begin{aligned}
f(z) & =\frac{1}{z-1}-\frac{1}{z-2}=\frac{-1}{1-z}+\frac{1}{2} \frac{1}{1-\left(\frac{z}{2}\right)} \\
& =-\sum_{n=0}^{\infty} z^{n}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}=\sum_{n=0}^{\infty}\left(2^{-n+1}-1\right) z^{n} \quad|z|<1
\end{aligned}
$$

(2) $D_{2} \quad 1<|z|<2 \Rightarrow \quad\left|\frac{1}{z}\right|<1, \quad\left|\frac{z}{2}\right|<1$

$$
\begin{aligned}
f(z) & =\frac{1}{z-1}-\frac{1}{z-2}=\frac{1}{z} \cdot \frac{1}{1-\left(\frac{1}{z}\right)}+\frac{1}{2} \frac{1}{1-\left(\frac{(}{2}\right)} \\
& =\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}} \\
& =\sum_{n=1}^{\infty} \frac{1}{z^{n}}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}
\end{aligned}
$$

(3) $D_{3} \quad 2<|z| \quad\left|\frac{2}{z}\right|<1 \quad\left|\frac{1}{z}\right|<1$

$$
\begin{aligned}
f(z) & =\frac{1}{z-1}-\frac{1}{z-2}=\frac{1}{z} \frac{1}{1-\left(\frac{1}{2}\right)}-\frac{1}{z} \frac{1}{1-\left(\frac{2}{z}\right)} \\
& =\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}-\sum_{n=0}^{\infty} \frac{2^{n}}{z^{n-n}}=\sum_{n=0}^{\infty} \frac{1-2^{n}}{z^{n+1}} \\
& =\sum_{n=1}^{\infty} \frac{1-2^{n-1}}{z^{n}}
\end{aligned}
$$

$$
f(z)=\frac{-1}{(z-1)(z-2)}
$$

(1) $D_{1} \quad|z|<1, \quad\left|\frac{z}{2}\right|<1$

$$
\begin{aligned}
f(z) & =\frac{1}{z-1}-\frac{1}{z-2}=\frac{-1}{1-z}+\frac{1}{2} \frac{1}{1-\left(\frac{z}{2}\right)} \\
& =-\sum_{n=0}^{\infty} z^{n}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}=\sum_{n=0}^{\infty}\left(2^{-n+1}-1\right) z^{n} \quad|z|<1 \\
a_{n} & =\quad \frac{f(z)}{z^{n+1}}=\frac{1}{(z-1)(z-2) z^{n+1}} \quad \frac{1}{z-1}-\frac{1}{z-2} \\
a_{n} & =\sum_{n=1}^{M} \operatorname{Res}\left(\frac{f(z)}{\left(z-z_{n}\right)^{n+1}}, z_{n}\right)=\operatorname{Res}\left(\frac{-1}{(z-1)(z-2) z^{n+1}}, 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=\sum_{k=1}^{M} \operatorname{Res}\left(\frac{f(z)}{\left(z-z_{n}\right)^{n+1}}, z_{n}\right)=\operatorname{Res}\left(\frac{-1}{(z-1)(z-2) z^{n+1}}, 0\right) \\
& \frac{1}{(n-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{n-1}}{d z^{n-1}}\left(z-z_{0}\right)^{n} f(z)(\operatorname{orden} n) \\
& \frac{d}{d z}\left((z-1)^{-1}-(z-2)^{-1}\right)=(-1)\left((z-1)^{-2}-(z-2)^{-2}\right) \\
& \frac{d^{2}}{d z^{2}}\left((z-1)^{-1}-(z-2)^{-1}\right)=(-1)(-2)\left((z-1)^{-3}-(z-2)^{-3}\right) \\
& \frac{d^{3}}{d z^{2}}\left((z-1)^{-1}-(z-2)^{-1}\right)=(-1)(-2)(-3)\left((z-1)^{-4}-(z-2)^{-4}\right) \\
& \frac{d^{n}}{d z^{n}}\left((z-1)^{-1}-(z-2)^{-1}\right)=(-1)^{n} n!\left((z-1)^{-n-1}-(z-2)^{-n-1}\right) \\
& \begin{array}{r}
\frac{1}{n!} \lim _{z \rightarrow 0} \frac{d^{n}}{d z^{n}}\left((z-1)^{-1}-(z-2)^{-1}\right)=(-1)^{n} \lim _{z \rightarrow 0}\left((z-1)^{-n-1}-(z-2)^{-n-1}\right) \\
=(-1)^{n}\left((-1)^{-n-1}-(-2)^{-n-1}\right) \\
=-1+2^{-n-1} \\
\quad \begin{array}{r}
a_{n}=-1+2^{-n-1} \quad(n \geqslant 0)
\end{array} \\
=-\sum_{n=0}^{\infty} z^{n}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}=\sum_{n=0}^{\infty}\left(2^{-n+1}-1\right) z^{n} \quad|z|<1
\end{array}
\end{aligned}
$$

$$
f(z)=\frac{-1}{(z-1)(z-2)}
$$

(2) $D_{2} \quad 1<|z|<2 \Rightarrow \quad\left|\frac{1}{z}\right|<1, \quad\left|\frac{z}{2}\right|<1$

$$
\begin{aligned}
f(z) & =\frac{1}{z-1}-\frac{1}{z-2}=\frac{1}{z} \cdot \frac{1}{1-\left(\frac{1}{z}\right)}+\frac{1}{2} \frac{1}{1-\left(\frac{\pi}{2}\right)} \\
& =\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}} \\
& =\sum_{n=1}^{\infty} \frac{1}{z^{n}}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}
\end{aligned}
$$

$$
f(z)=\frac{-1}{(z-1)(z-2)}
$$

(3) $D_{3} \quad 2<|z| \quad\left|\frac{2}{z}\right|<1 \quad\left|\frac{1}{z}\right|<1$

$$
\begin{aligned}
f(z) & =\frac{1}{z-1}-\frac{1}{z-2}=\frac{1}{z} \frac{1}{1-\left(\frac{1}{z}\right)}-\frac{1}{z} \frac{1}{1-\left(\frac{2}{z}\right)} \\
& =\sum_{n=0}^{\infty} \frac{1}{z^{n n}}-\sum_{n=0}^{\infty} \frac{2^{2^{n}}}{z^{n}}=\sum_{n=0}^{\infty} \frac{1-2^{n}}{z^{n+1}} \\
& =\sum_{n=1}^{\infty} \frac{1-2^{n-1}}{z^{n}}
\end{aligned}
$$

$$
f(z)=\frac{-1}{(z-1)(z-2)}
$$

$$
\begin{aligned}
& x[n] \\
& =\frac{1}{2 \pi i} \int_{C} X(z) z^{n-1} d z \\
& =\sum_{j=1}^{k} \operatorname{Res}\left(X(z) z^{n-1}, z_{j}\right)
\end{aligned}
$$

$$
\begin{gathered}
X(z)=\frac{-1}{(z-1)(z-2)} \\
X(z) z^{n-1}=\frac{-1}{(z-1)(z-2)} z^{n-1} \\
\operatorname{Res}\left(X(z) z^{n-1}, 1\right)=\left.(z-1) \frac{-1}{(z-1)(z-2)} z^{n-1}\right|_{z=1}=1 \\
\operatorname{Res}\left(X(z) z^{n-1}, 2\right)=\left.(z-2) \frac{-1}{(z-1)(z-2)} z^{n-1}\right|_{z=2}=-2^{n-1} \\
x[n]=1-2^{n-1}
\end{gathered}
$$

ROC (Region of Convergence)

$$
\begin{aligned}
& |z|>2 \Rightarrow \frac{2}{|z|}<1 \\
& \left(\frac{2}{z}\right)^{0}+\left(\frac{2}{z}\right)^{1}+\left(\frac{2}{z}\right)^{2}+\cdots>\frac{1}{1-\frac{2}{z}}
\end{aligned}
$$

Converge

$$
\begin{aligned}
& |z|>2 \Rightarrow \frac{1}{|z|}<1 \\
& \left(\frac{1}{z}\right)^{0}+\left(\frac{1}{z}\right)^{1}+\left(\frac{1}{z}\right)^{2}+\cdots>\frac{1}{1-\frac{1}{z}}
\end{aligned}
$$

Converge

$$
\begin{aligned}
& f(z)=\frac{1}{z-1}-\frac{1}{z-2}=\frac{1}{z} \frac{1}{1-\left(\frac{1}{z}\right)}-\frac{1}{z} \frac{1}{1-\left(\frac{2}{z}\right)} \\
&=\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}-\sum_{n=0}^{\infty} \frac{2^{n}}{z^{n+1}}=\sum_{n=0}^{\infty} \frac{1-2^{n}}{z^{n+1}} \\
&=\sum_{n=1}^{\infty} \frac{1-2^{n-1}}{z^{n}} \\
&\left(\begin{array}{l}
\left(\frac{1}{z}\right)+\left(\frac{1}{z}\right)^{2}+\left(\frac{1}{z}\right)^{3}+\cdots \\
+\frac{1}{2}\left\{\left(\frac{2}{z}\right)+\left(\frac{2}{z}\right)^{2}+\left(\frac{2}{z}\right)^{3}+\cdots\right\} \quad \frac{1}{z-1}-\frac{1}{z-2}=\frac{-1}{(z+1)(z-2)} \\
\left(1-2^{0}\right) z^{-1}
\end{array}+\left(1-2^{1}\right) z^{-2}+\left(1-2^{2}\right) z^{-3}+\cdots \quad \text { converge } \quad \frac{-1}{(z-1)(z-2)} \quad(|z|>2)\right. \\
& x[n]=1-2^{n-1} \quad x(z)=\frac{-1}{(z-1)(z-2)} \quad(|z|>2)
\end{aligned}
$$

causal $x[n]=0 \quad(n<0) \quad$ anti-causal $x[n]=0 \quad(n>0)$

Roc: outside a circle

Roc: inside a circle

$$
\begin{aligned}
& f(z)=\sum_{n=n_{1}}^{\infty} a_{n}^{\{m\}}\left(z-z_{m}\right)^{n} \\
& f(z)=\sum_{n=n_{1}}^{\infty} a_{n} z^{n} \quad z_{m}=0 \quad a_{n}^{\{0\}} \rightarrow a_{n}
\end{aligned}
$$

Laurent Series at $z=0$

$$
f(z)=\cdots+a_{-2} z^{-2}+a_{11} z^{-1}+a_{0} z^{0}+a_{1} z^{1}+a_{2} z^{2}+a_{3} z^{3}+\cdots
$$

z-trans form

Bi-causal

$$
X(z)=\cdots+x[-1] z^{2}+x[-1] z^{1}+x[0] z^{0}+x[1] z^{-1}+x[2] z^{-2}+x[3] z^{-3}+\cdots
$$

Causal $X(z)=$

$$
x[0] z^{0}+x[1] z^{-1}+x[2] z^{-2}+x[3] z^{-3}+\cdots
$$

$A_{n} t_{i}$-causal

$$
\begin{aligned}
& X(z)=\cdots+x[-2] z^{2}+x[-1] z^{1}+x[0] z^{0} \\
& a_{n} \leftrightarrow x[-n] \\
& a_{-n} \leftrightarrow x[n]
\end{aligned}
$$

$$
\begin{aligned}
f(z) & =\sum_{n=n_{1}}^{\infty} a_{n}^{\{m\}}\left(z-z_{m}\right)^{n} \\
a_{n}^{\{m\}} & =\frac{1}{2 \pi i} \oint_{c} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{m}\right)^{n+1}} d z^{\prime} \\
& =\sum_{k} \operatorname{Res}\left(\frac{f(z)}{\left(z-z_{m}\right)^{n+1}}, z_{k}\right)
\end{aligned}
$$

analytic at z_{m}

$$
n_{1} \geqslant 0
$$

general $n_{1} \quad z_{m}=0$
singular at z_{m}
general n_{1}
general $n_{1} \quad z_{m}=0$

Taylor Series
Maclaurin Series

Laurent Series
z-Transform

$$
\begin{aligned}
f(z) & =\sum_{n=n_{1}}^{\infty} a_{n}^{\{m\}}\left(z-z_{m}\right)^{n} \\
a_{n}^{\{m\}} & =\frac{1}{2 \pi i} \oint_{c} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{m}\right)^{n+1}} d z^{\prime} \\
& =\sum_{k} \operatorname{Res}\left(\frac{f(z)}{\left(z-z_{m}\right)^{n+1}}, z_{k}\right)
\end{aligned}
$$

$$
z_{m}=0 \quad a_{-n}^{\{0\}}=h(n) \quad n \rightarrow-n
$$

$$
\begin{aligned}
H(z) & =\sum_{n=n_{1}}^{\infty} h(-n) z^{n} \\
h(n) & =\frac{1}{2 \pi i} \oint_{c} \frac{H\left(z^{\prime}\right)}{z^{\prime n+1}} d z^{\prime} \\
& =\sum_{k} \operatorname{Res}\left(\frac{H(z)}{z^{n+1}}, z_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
H(z) & =\sum_{n=-\infty}^{\infty} h(n) z^{-n} \\
h(n) & =\frac{1}{2 \pi i} \oint_{c} H\left(z^{\prime}\right) z^{\prime n-1} d z^{\prime} \\
& =\sum_{k} \operatorname{Res}\left(H(z) z^{n-1}, z_{n}\right)
\end{aligned}
$$

C is in the same region of analyticity of $f(z)$ typically a circle centered on z_{m}

$$
z_{k} \text { within } C: \text { singularities of } \frac{f(z)}{\left(z-z_{m}\right)^{n+1}}
$$

C is in the same region of analyticity of $H(z)$ typically a circle centered on z_{m}
generally a circle centered on the origin may enclose any or all singularities of $H(Z)$ often the unit circle
Z_{k} within C : singularities of $H(z) z^{n-1}$

$$
\begin{array}{rlrl}
H(z) & =\sum_{n=-\infty}^{\infty} h(n) z^{-n} & & z \in R \cdot O, C \\
h(n) & =\frac{1}{2 \pi i} \oint_{c} H\left(z^{\prime}\right) z^{n-1} d z^{\prime} & C \text { in R.O.C. } \\
& =\sum_{k} \operatorname{Res}\left(H(z) z^{n-1}, z_{n}\right)
\end{array}
$$

(1) a power series representation of a function $f(z)$ of a complex variable z
(2) a transform $H(z)$ of a sequence of 1

$$
\begin{aligned}
x(z) & =\frac{z}{z-\frac{1}{2}} \quad \text { pole } z_{0}=\frac{1}{2} \\
x[n] & =\operatorname{Res}\left(x(z) z^{n-1}, z_{0}\right)=\operatorname{Res}\left(\frac{z}{z-\frac{1}{2}} z^{n-1}, \frac{1}{2}\right) \\
& =\operatorname{Res}\left(\frac{z^{n}}{z-\frac{1}{2}}, \frac{1}{2}\right)=\lim _{z \rightarrow \frac{1}{2}}\left(z-\frac{1}{2}\right) \frac{z^{n}}{z-\frac{1}{2}}=\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

$$
\begin{aligned}
x[n]= & \frac{1}{2^{n}} \quad n \geqslant 0 \\
& \left(\frac{1}{2}\right)^{0} z^{0}+\left(\frac{1}{2}\right)^{1} z^{-1}+\left(\frac{1}{2}\right)^{2} z^{-2}+\left(\frac{1}{2}\right)^{3} z^{-3}+\cdots=\frac{1}{1-\left(\frac{1}{2} z^{-1}\right)} \\
& =\frac{z}{z-\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& x_{x_{s, c}(t)=\sum_{n=-\infty}^{+\infty} x(n) \delta_{c}(t-n \Delta t)} \\
& X_{s, c}(s)=\mathcal{L}\left\{x_{s, c}(t)\right\}=\int_{-\infty}^{\infty} \sum_{n=-\infty}^{+\infty} x(n) \delta_{c}(t-n \Delta t) e^{-s t} d t \\
& =\sum_{n=-\infty}^{+\infty} x(n) \int_{-\infty}^{\infty} \delta_{c}(t-n \Delta t) e^{-s t} d t \\
& =\sum_{n=-\infty}^{+\infty} x(n) e^{-s n \Delta t} \quad e^{s \Delta t} \triangleq z \\
& X_{s, c}(s)=\left.\sum_{n=-\infty}^{+\infty} x(n) z^{-n}\right|_{z=e^{s s t}} \\
& X_{r, c}(s)=\left.X(z)\right|_{z=e^{s o t}}
\end{aligned}
$$

$$
X_{r, c}(s)=\mathcal{L}\left\{x_{s, c}(t)\right\}=\left.X(z)\right|_{z=e^{s s t}}
$$

$x_{s, c}(t)$ an impulse train
whose coefficients are given by $x[n]=x_{c}(n \Delta t)$
z-transform: a special Laurent series

$$
\begin{aligned}
& z_{m}=0 \quad a_{-n}^{\{0\}}=h(n) \quad n \rightarrow-n \\
& f(z)=\sum_{n=n_{1}}^{\infty} a_{n}^{\{m\}}\left(z-z_{m}\right)^{n} \\
& a_{n}^{\{m\}}=\frac{1}{2 \pi i} \oint_{c} \frac{f\left(z^{\prime}\right)}{\left(z^{\prime}-z_{m}\right)^{n+1}} d z^{\prime} \\
& \\
& =\sum_{k} \operatorname{Res}\left(\frac{f(z)}{\left(z-z_{m}\right)^{n+1}}, z_{n}\right)
\end{aligned}
$$

Time Reversal \longleftarrow Laplace Transform
the transform functions
$X(s)=\int$ over negative powers $e^{-s t}$ for $t>0$
$X(z)=\int$ over negative powers z^{-n} for $n>0$
the time expansion functions
$x(t)=\int$ over negative powers $e^{-s t}$ for $t>0$
$x[n]=\int$ over negative powers z^{-n} for $n>0$

Time Reversal $\longleftarrow z^{-1}$: unit delay, char eq (modes in z^{*})

Stable system: $h[n]$ must be asbsolutely summable

$$
\begin{aligned}
&\left|e^{j \omega n}\right|=1 \\
&\left|z^{n}\right| \quad z=1 \\
& \infty>M_{n}>\sum_{n=-\infty}^{\infty}|h[n]| \quad \text { asolutely summable } \\
&=\sum_{n=-\infty}^{+\infty}\left|h[n] e^{-j \omega n}\right| \\
& \geqslant\left|\sum_{n=-\infty}^{+\infty} h[n] e^{-j \omega n}\right| \\
&=|H(z)|_{z=e^{j \omega}} \mid \\
& \infty>|H(z)|_{z=e^{j \omega}} \mid
\end{aligned}
$$

a stable system,
$H(z)$ must converge on the unit circle $|z|=1$
ROC (Region of Convergence) must include the unit circle
regardless of causality of $h[n]$

$$
\left.H(z)\right|_{1 z t=1}=H\left(e^{j \hat{\omega}}\right) \quad \text { DTFT of } h[n]
$$

discrete all stable sequence must have convergent DTFTs continuous all stable signal must have convergent CTFTs
$c \leftarrow$ unit circle $z=e^{j \hat{\omega}}$
$Z T^{-1} \quad D T F T^{-1} \quad$ identical formulas
$h[n]$ causal

$$
H(z)=\sum_{n=-\infty}^{+\infty} h[n] z^{-n}=\sum_{n=0}^{+\infty} h[n] z^{-n} \quad n \in[0, \infty)
$$

for finite values of n,
each term must be finite as long as $z \neq 0$
For the sum to converge,
$h[\eta] z^{-n}$ must vanish as $n \rightarrow \infty$

$$
|z|>r_{h} \quad z_{h}=r_{h} e^{j \theta}
$$

Z_{h}^{n} is the largest magnitude geometrically increasing component
$n^{m} z e^{n}$: the most general term for impulse responses
$n \rightarrow \infty \quad z_{l}{ }^{n}$ dominant over n^{m} for finite m

Geometric components - as poles

$$
Z\left\{z_{l}^{n} u[n]\right\}=\frac{1}{1-\left(\frac{z_{e}}{z}\right)}=\frac{z}{z-z_{e}}
$$

$R O C$ of a causal sequence $h[n]$ outside the radius of the longest magnitude pole of $H(z)$
$R O C$ of a causal signal $h(t)$ to the right of the rightmost pole of $H_{c}(s)$
if $h[n]$ is a stable, causal sequence, the unit circle must be included in the ROC

Causal $h[n]$
ROC: outside of
a circle

- Stable hin] all poles inside the unit circle ROC circle must be

smaller than the unit circle
\Rightarrow all the geometric components of $h[x]:$ modes must decay with increasing n
all the poles of $H(z)$ musk be within the unit circle all the poles of $H_{c}(s)$ must be in the left half plane
anti-Causal $h[n]$ ROC: in side of a circle
- Stable hin] all poles outside the unit circle ROC circle must be
 langer than the unit circle
\Rightarrow all the geometric components of $h[x]:$ modes must decay with decreasing n
- bi-causal $h[n]$
$h_{c}[n]+h_{\text {ac }}[n]$ outside inside max mag < min mag overlapped ROC
- Stable $h[n]$
all poles outside

the unit circle
ROC circle must include the unit circle
- bi-causal $h[n]$

$$
h[n]=h_{c}[n] \quad+h_{a c}[n]
$$

causal comp. anti-causal comp

outside a circle
$\max \operatorname{mag}<\min \operatorname{mag}$
overlapped ROC

$$
\max \operatorname{mag}>\min \operatorname{mag}
$$

non-overlapping ROC

x

- Stable $h[n]$
all poles outside the large circle inside the small circle
RoC circle must include the unit circle
only one annulus include the unit circle only one stable sequence

Existence of the z-Transform

$$
X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}=\sum_{n=0}^{\infty} \frac{x[n]}{z^{n}}
$$

the existence of the z-transform is guaranteed if

$$
|X(z)| \leqslant \sum_{n=0}^{\infty} \frac{|x[n]|}{\left|z^{n}\right|}<\infty \quad \text { for some }|z|
$$

any signal $x[x]$ that grows no faster than an exponential signal $r_{0}{ }^{n}$, for some r_{0} satisfies the above condition
if $|x[n]| \leqslant r_{0}^{n}$ for some r_{0} then $\quad|X(z)| \leqslant \sum_{n=0}^{\infty}\left(\frac{r_{0}}{|z|}\right)^{n}=\frac{1}{1-\frac{r}{1 \mid 1}} \quad|z|>r_{0}$ therefore $X(z)$ exists for $|z|>r_{0}$

Almost all practical signal satisfy this condition $|x[n]| \leqslant r_{0}^{n}$ for some r_{0} and z-transformable

Some signal modals (e.g. $r^{n^{2}}$) grows faster than the exponential signal r_{0}^{n} (for any r_{0}) and do not satisfy this condition and are not z-transformable

Such signals are of little practical on theoretical interest Even such signals over a finite interval are z-transformable

Region of Convergence
Laplace Transform $A e^{\alpha t} u(t) \quad \alpha>0$
z-Transform $A \alpha^{n} u[n] \quad|\alpha|>0$ PTFT (x)

$$
X(z)=A \sum_{n=-\infty}^{\infty} \alpha^{n} u[n] z^{-n}=A \sum_{n=0}^{\infty} \alpha^{n} z^{-n}=A \sum_{n=0}^{\infty}\left(\frac{\alpha}{z}\right)^{n}
$$

converge $\quad\left|\frac{\alpha}{z}\right|<1 \quad|z|>|\alpha|$
open exterior of a circle of radius $|\alpha|$
the sum of a geometric Series

$$
X(z)=A \frac{1}{1-\frac{\alpha}{z}}=\frac{A}{1-\alpha z^{-1}}=A \frac{z}{z-\alpha} \quad|z|>|\alpha|
$$

BT FT

$$
x(j \hat{\omega})=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \hat{L} n}
$$

DAFT

DTFT of the unit sequence $u[n]$

$$
X\left(e^{-j \hat{\omega} n}\right)=\sum_{n=-\infty}^{+\infty} u[n] e^{-j \hat{\omega} n}=\sum_{n=0}^{\infty} e^{-j \hat{\omega} n}
$$

not converge

$$
\begin{array}{lll}
\hat{\omega}=0 & \sum_{n=0}^{\infty} 1^{n} & \text { diverge } \\
\hat{\omega}=\pi & \sum_{n=0}^{\infty}(-1)^{n} & \text { oscillates } \\
\hat{\omega}=\frac{\pi}{2} & \sum_{n=0}^{\infty}(j)^{n} &
\end{array}
$$

The DTFTs of some commonly used functions do not exist in the strict sense.

But eventhough the DTFT does not exist, the z-transform does exist.

$$
\begin{aligned}
& X(z)=\sum_{n=-\infty}^{+\infty} u[n] z^{-n}=\sum_{n=0}^{\infty} z^{-n} \\
& |z|>1 \quad X(z)=\frac{z}{z-1}=\frac{1}{1-z^{-1}} \\
& X(z)=\frac{z}{z-1} \quad \text { pole } z=1, \quad \text { zero } z=0
\end{aligned}
$$

$X(z)=\frac{1}{1-z^{-1}} \quad$ useful when a system is synthesized from a z-domain transfer function
http://math.stackexchange.com/questions/1772285/dtft-of-the-unit-step-function

$$
\begin{aligned}
& \begin{array}{l}
u[x] \\
f[x]
\end{array} \\
& g[x] \\
& g[n]=\left\{\begin{aligned}
\frac{1}{2} & n \geqslant 0 \\
-\frac{1}{2} & n<0
\end{aligned}\right. \\
& u[x]=f[x]+g[x] \\
& \delta[n]=g[n]-g[n-1] \\
& 1=G\left(e^{j \hat{\omega}}\right)-e^{-j \omega} G\left(e^{j \hat{i}}\right) \\
& G\left(e^{j \hat{u}}\right)=\frac{1}{1-e^{-j \hat{\omega}}} \\
& F\left(e^{j \omega}\right)=\pi \sum_{h=-\infty}^{+\infty} \delta(\omega-2 \pi k) \quad \text { (jmpulse train) } \\
& u\left(e^{j \hat{\omega}}\right)=\frac{1}{1-e^{-j \hat{\omega}}}+\pi \sum_{h-\infty}^{+\infty} \delta(\omega-2 \pi k)
\end{aligned}
$$

Discrete Time Exponential r^{n}
continuous time exponential $e^{\lambda t}$

$$
\begin{aligned}
e^{\lambda t}=\gamma^{t} \quad\left(e^{\lambda}\right)^{t} & =\gamma^{t} \\
e^{\lambda} & =\gamma \\
\lambda & =\ln \gamma \\
e^{-0.3 t} & =(0.9408))^{t} \\
4^{t} & =e^{1.386 t}
\end{aligned}
$$

continuous time analysis $e^{\lambda t}$ discrete time analysis $\quad x^{n}$

$$
\begin{aligned}
e^{\lambda n}=\gamma^{n} \quad\left(e^{\lambda}\right)^{n} & =\gamma^{n} \\
e^{x} & =\gamma \\
\lambda & =\ln \gamma
\end{aligned}
$$

$e^{\lambda n}$
exponentially grows if $\operatorname{Re} \lambda \geqslant 0$ (λ in RHP)
exponentially decays if $\operatorname{Re} \lambda<0 \quad(\lambda$ in LHP)
oscillates on constant if $\operatorname{Re} \lambda=0$ (λ in image axis)
the location of λ in the complex plain indicates whether
(D) $e^{x t}$ will grow exponentially
(2) $e^{x t}$ will decay exponentially
(3) $e^{\lambda t}$ will oscillates with constant amplitude
constant signal: oscillation with zero frequency
$e^{j \Omega n} \quad \lambda=j \Omega \quad$ imaginary axis
Constant amplitude oscillating signal

$$
\begin{aligned}
& e^{j \Omega n}=\left(e^{j \Omega}\right)^{n}=\gamma^{n} \quad \gamma=e^{j \Omega} \quad|\gamma|=1 \\
& \lambda=j \Omega \text { imaginary axis } \rightarrow|\gamma|=1 \quad \text { unit circle }
\end{aligned}
$$

if r lies on the unit circle, γ^{n} oscillates with constant amplitude
the imaginary axis in the λ plane the unit circle in the γ plane
$e^{\lambda n} \quad \lambda=a+j b$ in the LHP $\quad(a<0)$ exponentially decaying

$$
\begin{aligned}
& r=e^{\lambda}=e^{a+j b}=e^{a} e^{j b} \\
& |\gamma|-\left|e^{\lambda}\right|=\left|e^{a}\right| \cdot\left|e^{j b}\right|=\left|e^{a}\right|=e^{a}
\end{aligned}
$$

$|r|=e^{a}<1 \quad$ inside the unit circle r^{n} : exponentially decaying
$|\gamma|=e^{a}>1 \quad$ outside the unit circle r^{n} : exponentially growing
λ-plane
the imaginary axis
the LHP
the RHP
r-plane
$\longrightarrow \quad$ the unit circle
inside of the unit circle outside of the unit circle

