HW Butterfly FFT z-Transform Properties

20200406 Mon

https://en.wikiversity.org/wiki/Complex_Analysis_in_plain_view Geometric Series Examples Applications (A.pdf, B.pdf)

Copyright (c) 2016 - 2020 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Combinations of a and z -- common ratio in a geometric series

the same formula, different representations

Geometric Series

the same formula with different ROCs

different Geometric Series

the same formula with different ROCs

different Geometric Series

Geometric Power Series Property (1)

Each representation has it own ROC (Region of Convergence)

common	a 7	Z < U	ROC
ratio		•	
	- •		
common	4-12-	ミング	ROC
ratio			
	-1_	1 = 1	
common	4'8	Z < A	ROC
ratio			
common	az	Z > A	ROC
ratio			
1			

Geometric Power Series Property (2)

Starting terms

geometric series			
starting with			
a unit term			

geometric series starting with a non-unit term (common ratio)

related to shifting

Geometric Power Series Property (3)

Complementary Ranges

Shifted Ranges

right shfited range

Geometric Power Series Property (4)

Geometric Power Series Property (5)

non-shifted range u(n), u(-n)	shifted range u(n-1), u(-n-1)
geometric series starting with	geometric series starting with
a unit term	a non-unit term (common ratio)

		1	complementary	a'z'	
Z	u(n)	1-02		-a'z'	u(-n-1)
			complementary	az	
21	u(-n)	- Q-1 Z-1		1- UE	u(n-1)
			complementary	az'	
そ	u(n)	1-a-12		<u>az'</u> -az'	u(-n-1)
		1	complementary	Q'Z	
81	u(-n)	1-081		1-018	u(n-1)

そ u(n)		shifted	<u> </u>	u(-n-1)
દ ન u(-n)	1-0-12-1	shifted		u(n-1)
₹ u(n)	1-a-1Z	shifted	<u> </u>	u(-n-1)
-		shifted	<u> </u>	
٤ u(-n)	1-02		1- Q'Z	u(n-1)

Geometric Power Series Property (6)

(*z)	Right Shifted	$\begin{array}{ccc} u(n) & \longrightarrow & u(n-1) \\ u(-n-1) & \longrightarrow & u(-n) \end{array}$
(/z)	Left Shifted	$\begin{array}{ccc} u(n-1) & \longrightarrow & u(n) \\ u(-n) & \longrightarrow & u(-n-1) \end{array}$
*a	Right Shifted	$a^{n} \longrightarrow a^{n+1}$ $a^{n} \longrightarrow a^{n+1}$
/a	Left Shifted	$\begin{array}{ccc} \alpha^{n} & \longrightarrow \alpha^{n-1} \\ \alpha^{n} & \longrightarrow \alpha^{n-1} \end{array}$

Geometric Power Series Property (7)

