HW Butterfly FFT
 z-Transform Properties

20200406 Mon

https://en.wikiversity.org/wiki/Complex_Analysis_in_plain_view Geometric Series Examples

Applications (A.pdf, B.pdf)

Copyright (c) 2016-2020 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Combinations of a and z -- common ratio in a geometric series

the same formula, different representations

Geometric Series

the same formula with different ROCs
different Geometric Series

geometric series
starting with
a unit term
non-shifted range $u(n), u(-n)$
geometric series starting with a non-unit term
shifted range

$$
u(n-1), u(-n-1)
$$

the same formula with different ROCs
common ratio
causal $u(n)$
$a z$

$$
a^{0} z^{0}+a^{1} z^{1}+a^{2} z^{2}+\cdot \cdot
$$

anti-causal u(-n)

causal $u(n)$

the same
left shifted u(-n-1) common ratio

$$
-\frac{a^{-1} z^{-1}}{1-a^{-1} z^{-1}} \quad|z|>a^{-1}
$$

$$
-\left(a^{-1} z^{-1}+a^{-2} z^{-2}+a^{-3} z^{-3}+\cdots\right)
$$

right shifted $u(n-1)$

$$
-\frac{a z}{1-a z} \quad|z|<a^{-1}
$$

$-\left(a^{\prime} z^{1}+a^{2} z^{2}+a^{3} z^{3}+\cdots\right)$
left shifted u(-n-1)

$$
\begin{array}{r}
-\frac{a z^{-1}}{1-a z^{-1}} \quad|z|>a \\
-\left(a^{1} z^{-1}+a^{2} z^{-2}+a^{3} z^{-3}+\cdots\right)
\end{array}
$$

right shifted $u(n-1)$

$$
-\frac{a^{-1} z}{1-a^{-1} z} \quad|z|<a
$$

$-\left(a^{-1} z^{1}+a^{-2} z^{2}+a^{-3} z^{3}+\cdots\right)$
geometric series
starting with
a unit term
non-shifted range $u(n), u(-n)$
geometric series
starting with
a non-unit term
shifted range $u(n-1), u(-n-1)$

Geometric Power Series Property (1)

Each representation has it own ROC (Region of Convergence)

common ratio$a z$	$\longrightarrow\|z\|<a^{-1}$	ROC
common	$a^{-1} z^{-1}$	$\longrightarrow\|z\|>a^{-1}$
ratio	ROC	
common ratio$a^{-1} z$	$\longrightarrow\|z\|<a$	ROC
common	$a z^{-1} \longrightarrow\|z\|>a$	ROC
ratio		

Geometric Power Series Property (2)

Starting terms

geometric series
 starting with
 a unit term

geometric series
starting with
a non-unit term
(common ratio)

$$
\begin{array}{|c|c|}
\hline \frac{1}{1-a z} \\
\frac{1}{1-a^{-1} z^{-1}} \\
\frac{1}{1-a^{-1} z} \\
\frac{1}{1-a z^{-1}} \\
\hline
\end{array} \left\lvert\, \begin{array}{|c}
-\frac{a^{\prime} z^{\prime}}{1-a^{\prime} z^{\prime}} \\
-\frac{a z}{1-a z} \\
-\frac{a z^{-1}}{1-a z^{-1}} \\
-\frac{a^{\prime} z}{1-a^{\prime} z} \\
\hline
\end{array}\right.
$$

related to shifting

Geometric Power Series Property (3)

Complementary Ranges

Shifted Ranges

right shfited range

Geometric Power Series Property (4)

$\mathrm{u}(\mathrm{n})$ complementary $\mathrm{u}(-\mathrm{n}-1)$ symmetric $\mathrm{u}(\mathrm{n}-1)$
$u(-n)$ complementary $u(n-1)$ symmetric $u(-n-1)$

shifted

Geometric Power Series Property (5)

non-shifted range $u(n), u(-n)$
geometric series starting with
a unit term
shifted range
u(n-1), u(-n-1)
geometric series starting with
a non-unit term (common ratio)

	1		$a^{\prime} z^{\prime}$	
$z \quad u(n)$	1-az		$1-a^{\prime} z^{\prime \prime}$	$\mathrm{u}(-\mathrm{n}-1)$
	1		$a z$	
$z^{-1} \quad u(-n)$	$\frac{1-a^{-1} z^{-1}}{}$		1-az	$u(n-1)$
	$\frac{1}{1-2}$		$a z^{-1}$	
$z \quad u(n)$	$1-a^{-1} z$		1-az'	u(-n-1)
	1	itted	$a^{\prime} z$	
$z^{-1} \quad u(-n)$	$\frac{1-a z^{-1}}{}$		$\frac{1-a^{\prime} z}{}$	$u(n-1)$

Geometric Power Series Property (6)
*

$$
\begin{aligned}
& u(n) \longrightarrow u(n-1) \\
& u(-n-1) \longrightarrow u(-n)
\end{aligned}
$$

(lIz)
Left Shifted

$$
\begin{array}{ll}
\mathrm{u}(\mathrm{n}-1) & \longrightarrow \mathrm{u}(\mathrm{n}) \\
\mathrm{u}(-\mathrm{n}) & \longrightarrow \mathrm{u}(-\mathrm{n}-1)
\end{array}
$$

$$
\begin{aligned}
& a^{n} \longrightarrow a^{n+1} \\
& a^{n} \longrightarrow a^{-n+1}
\end{aligned}
$$

/a
Left Shifted

$$
\begin{aligned}
& a^{n} \longrightarrow a^{n-1} \\
& a^{n} \longrightarrow a^{-n-1}
\end{aligned}
$$

Geometric Power Series Property (7)

