Z Transform (H.1) Definition

20170208

Copyright (c) 2016 - 2017 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Based on
Complex Analysis for Mathematics and Engineering
J. Mathews

Z - Transform

$$\frac{\chi(z)}{\chi(z)} = \sum_{k=-\infty}^{+\infty} \chi[k] z^{-k}$$

$$= |r| e^{j2\pi r}$$

$$= |r| e^{j2\pi r}$$

$$X[n] \longleftrightarrow X(z)$$

One Sided Z-transform

$$X(z) = \sum_{k=0}^{+\infty} x[k]z^{-k}$$

Inverse 2- Transform

$$X(z) = Z[\{x_n\}_{n=0}^{\infty}]$$

$$= \sum_{n=0}^{\infty} x_n z^{-n}$$

$$= \sum_{n=0}^{\infty} x[n] z^{-n}$$

$$X[n] \longrightarrow X(z)$$

$$\chi_{\eta} = \chi[\eta]$$

$$= \frac{1}{2\pi i} \int_{C} \chi(z) z^{n+1} dz$$

$$\chi_{[n]} \leftarrow \chi_{(z)}$$

Admissible Form of z-transform

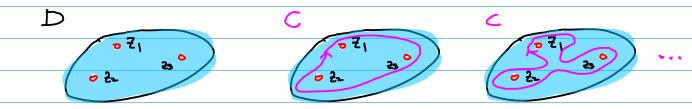
$$\chi(z) = \sum_{n=0}^{\infty} \chi(n) z^{-n}$$

$$X(z) = \frac{P(z)}{Q(z)} = \frac{b_0 + b_1 z' + b_2 z^2 + \dots + b_{p1} z^{p1} + b_p z^p}{\alpha_0 + \alpha_1 z' + \alpha_2 z^2 + \dots + \alpha_{q1} z^{q1} + \alpha_q z^q}$$

Residue Theorem

- D: Simply connected domain
- C: Simple closed contour (CCW) in D
- if f(z) is analytic inside c and on c except at the points [21, 22, ..., 2k] in C

then
$$\frac{1}{2\pi i} \int_{C} f(z) dz = \sum_{j=1}^{k} Res(f(z), z_{j})$$



Integration of a function of a complex var.

$$\oint_{c} f(z)dz = 2\pi i \sum_{k=1}^{n} Res(f(z), Z_{k})$$
finite number k of

Singular points Z_{k}

residue theorem

$$\oint_{c} f(z)dz = 0 \quad \text{if } f(z) \text{ is analytic within and on } C$$

$$\text{No singularity}$$

$$\oint_{C} f(z)dz = 0 \quad \text{if } f(z) = F'(z) \quad \text{on } C$$

$$: F(z) \text{ is an antiderivative of } f(z)$$

$$fundamental \quad \text{theorem of } calculus$$

Thomas J. Cavicchi Digital Signal Processing, Wiley, 2000 $\oint_{C} f(z)dz = 0 \quad \text{if } f(z) \text{ is continuous in } D \text{ and}$ f(z) = F'(z): F(z) is an antiderivative of f(z)fundamental theorem of calculus

Series Expansion

can expand f(2) about any point Z_m over powers of $(2-Z_m)$

whether or not f(2) is singular at 2m or at other points between 2 and 2m

$$f(z) = \sum_{n=N_1}^{\infty} a_n^{(n)} (z - z_n)^n$$

- D Laurent Series Expansion of f(z) at zm general (n) - depend on f(z) and zm
- 2 z-transform of $a_n^{[m]}$ general m_i depend on f(z) $z_m = 0$
- 3 Taylor Series Expansion of f(z) at zm
 positive (n) depend on f(z) and zm (n,70)
- Marlaurin Series Expansion of f(z) at z_m positive f(z) = dz pend on f(z) f(z) = dz

$$f(z) = \sum_{n=n}^{\infty} a_n^{(n)} (z - z_m)^n$$

n, >0 pas powers

	Laurent Series	3 Taylor Series
$z_{m} = 0$	② Z-tromsform	@ MacLaurin Series

 \times Expansion of f(2) about any point Z_m over powers of $(2-Z_m)$

$$f(z) = \sum_{n=n_i}^{\infty} a_n^{(m)} (z - z_m)^n$$

$$\alpha_n^{(m)} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_m)^{n_m}} dz$$

for general f(2)

$$a_n^{(m)} = \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_n)^{n}}, z_k\right)$$

for general fla)

$$\alpha_{lm}^{u} = \frac{u_{l}}{l} + \frac{u_{l}}{l} + \frac{u_{l}}{l} > 0$$

for analytic f(2) within C

analytic
$$f(z) \longrightarrow \frac{f(\overline{z})}{(\overline{z}-\overline{z}_n)^{n+1}}$$
 has a pole at \overline{z}_n
order of $n+1$

Thomas J. Cavicchi Digital Signal Processing, Wiley, 2000

$$f(z) = \sum_{n=N_1}^{\infty} a_n^{(m)} (z - z_m)^n$$

Zm: possible poles of f(z)
not necessarily poles

$$\alpha_{n}^{(m)} = \frac{1}{2\pi i} \begin{cases} \frac{f(z')}{(z'-z_{m})^{n+1}} dz' \\ = \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z-z_{m})^{n+1}}, z_{k} \right) \end{cases} \xrightarrow{\xi_{k}} : poles of \frac{f(z)}{(z-z_{m})^{n+1}}$$

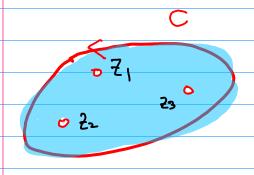
$$= \frac{N!}{1 + (\nu)} (\xi^{\nu}) \qquad \lambda^{1} > 0$$

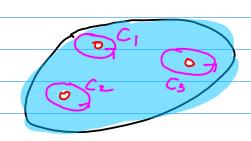
within 2

Residue Theorem and Laurent Series

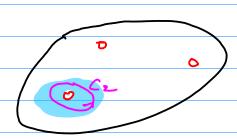
assumed there are (m) singularities (poles) of f(z) in a region

at Cm is taken to enclose only one pole 2m

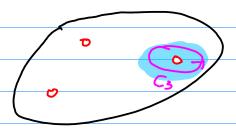




 $\alpha_n^{\{1\}}$ expanded at \mathcal{Z}_i $C_i \text{ encloses } \mathcal{Z}_i \text{ only }$ $\widetilde{\alpha}_{-i}^{\{1\}} = \text{Res}(f(z), \mathcal{Z}_i)$

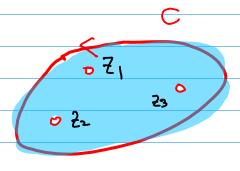


 $\mathcal{Q}_{n}^{\{2\}}$ expanded at \mathbb{Z}_{2} $\mathcal{C}_{2} \text{ encloses } \mathbb{Z}_{2} \text{ only}$ $\widetilde{\mathcal{Q}}_{-1}^{\{2\}} = \operatorname{Res}(f(z), \mathbb{Z}_{2})$

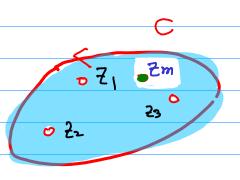


 $\mathcal{A}_{n}^{\{3\}}$ expanded at \mathcal{E}_{3} $\mathcal{C}_{s} = \text{encloses} \quad \mathcal{E}_{3} = \text{only}$ $\widetilde{\mathcal{A}}_{-1}^{\{3\}} = \text{Res}(f(z), \mathcal{E}_{3})$

Series Expansion at Zm



$$f(z) = \sum_{n=n_1}^{\infty} \alpha_n^{(n)} (z - z_n)^n$$



$$\alpha_{n}^{(m)} = \frac{1}{2\pi i} \begin{cases} \frac{f(z)}{(z-z_{m})^{n}} dz \\ \frac{f(z)}{(z-z_{m})^{n}} dz \end{cases}$$

$$= \sum_{k} \text{Res} \left(\frac{f(z)}{(z-z_{m})^{n}}, z_{k} \right)$$

Let Z1, Z2, Z3 poles of f(Z)

Then the poles of $\frac{f(z)}{(z-z_n)^{n}}$

$$f(z) = \sum_{n=n_1}^{\infty} d_n^{(n)} (z - z_n)^n$$

$$f(z) = \sum_{k=n_1}^{\infty} d_k^{(n)} (z - z_n)^k$$
for a given n

$$f(z) = \sum_{k=n_1}^{\infty} d_k^{(n)} (z - z_n)^k$$

$$f(z) = \sum_{k=n_1}^{\infty} d_k^{(n)} (z - z_n)^{k-n-1} \frac{1}{4} \sum_{i \text{ index variable}} n \cdot i \cdot i \text{ fixed Value}$$

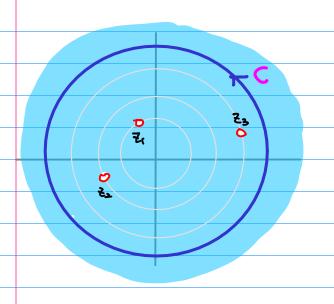
$$f(z) = \sum_{k=n_1}^{\infty} d_k^{(n)} (z - z_n)^{k-n-1} dz$$

$$= \sum_{k=n_1}^{\infty} d_k^{(n)} (z - z_n)^{k-n-1} dz$$

$$= \sum_{k=n_1}^{\infty} d_k^{(n)} (z - z_n)^{k-n-1} dz$$

$$f(z) = \sum_{k$$

Series Expansion at Z=0



$$f(z) = \sum_{n=N_1}^{\infty} \alpha_n^{(m)} z^n$$

$$\alpha_n^{(m)} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z^{nH}} dz$$

$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{z^{nH}}, z_k\right)$$

Poles Zx

$$\mathcal{N} \geqslant 0$$
 $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, 0$
 $\mathcal{N} < 0$ $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$

Residue & Series Expansion at Zm

expansion at 2m

$$\eta = -1$$
 $\gamma + 1 = 0$ $(z - z_n)^{n+1} = 1$

$$\alpha_{n}^{(m)} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_{m})^{nH}} dz \qquad \alpha_{-1}^{(m)} = \frac{1}{2\pi i} \oint_{C} f(z) dz$$

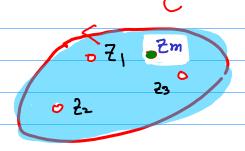
$$= \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z-z_{m})^{nH}}, z_{k} \right) \qquad = \sum_{k} \operatorname{Res} \left(f(z), z_{k} \right)$$

$$= \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_{m})^{nH}} dz \qquad \int_{-1}^{m} = \frac{1}{2\pi i} \oint_{C} f(z) dz$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z-z_{m})^{nH}}, z_{k} \right) \qquad = \sum_{k} \operatorname{Res} \left(f(z), z_{k} \right)$$

$$\alpha_{-1}^{(m)} = \frac{1}{2\pi i} \oint_{C} f(z) dz = \sum_{k} Res(f(z), z_{k})$$

$$\alpha_{-1}^{[m]} = \Re(f(z), z_{\mu_1}) = \sum_{k} \Re(f(z), z_{k})$$



$$f(z) = \sum_{n=N_1}^{\infty} a_n^{(m)} (z - z_m)^n$$

$$\alpha_n^{(m)} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_m)^{nm}} dz$$

$$= \sum_k \operatorname{Res}\left(\frac{f(z)}{(z-z_m)^{nm}}, z_k\right)$$

Residue -> Laurent Senes -> anulus region

if c encloses only one pole to,

and the expansion at that pole zo is assumed,

then

$$a_{-1}^{(0)} = \frac{1}{2\pi i} \oint_{C_0} f(\overline{z}) d\overline{z} = \operatorname{Res}(f(\overline{z}), \overline{z}_0)$$

Let
$$\widetilde{A}_{-1}^{[m]} = \operatorname{Res}(f(z), z_m)$$
 notation \bigcirc

the vesidue of f(z) at Zm

Using Cm which is in the analus Roc

$$f(z) = \sum_{n=-\infty}^{\infty} Q_n^{(n)} (z - z_n)^n$$

$$\widetilde{Q}_{-1}^{\{1\}} = \Re \{f(z), \overline{z}_1\} \qquad f(\overline{z}) = \sum_{n=-\infty}^{\infty} Q_n^{\{1\}} (\overline{z} - \overline{z}_1)^n$$

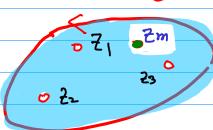
$$= \frac{1}{2\pi i} \oint_{C_1} f(z) d\overline{z}$$

$$\widetilde{\mathcal{L}}_{-1}^{\{2\}} = \operatorname{Res}(f(z), z_2) \qquad f(z) = \sum_{n=-\infty}^{\infty} \mathcal{L}_{n}^{\{2\}} (z - z_2)^{n}$$

$$= \frac{1}{2\pi i} \oint_{C2} f(z) dz$$

$$\widetilde{\mathcal{A}}_{-1}^{\frac{5}{2}} = \Re \left\{ f(z), \overline{z} \right\} \qquad f(\overline{z}) = \sum_{n=-10}^{10} \mathcal{A}_{n}^{\frac{5}{2}} (\overline{z} - \overline{z})^{n}$$

$$= \frac{1}{2\pi i} \oint_{C_{3}} f(\overline{z}) d\overline{z}$$



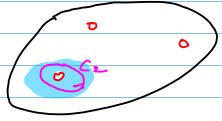
$$f(z) = \sum_{n=n_1}^{\infty} a_n^{\{m\}} (z - z_m)^n$$

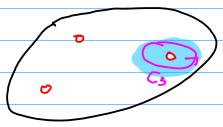
$$\alpha_{n}^{\{m\}} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_{m})^{n_{M}}} dz$$

$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_{m})^{n_{M}}}, z_{k}\right)$$

$$\alpha_{-1}^{(m)} = \frac{1}{2\pi i} \oint_{C} f(z) dz$$

$$= \sum_{k} \operatorname{Res} (f(z), z_{k})$$

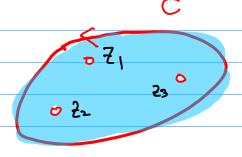


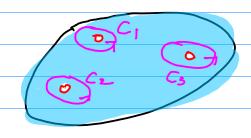


$$\widetilde{\mathcal{C}}_{-1}^{\{1\}} = \operatorname{Res}(f(z), \overline{z}_1)$$
 $\widetilde{\mathcal{C}}_{-1}^{\{2\}} = \operatorname{Res}(f(z), \overline{z}_2)$ $\widetilde{\mathcal{C}}_{-1}^{\{3\}} = \operatorname{Res}(f(z), \overline{z}_3)$

$$\alpha_{-1}^{[m]} = \widetilde{\alpha}_{-1}^{[l]} + \widetilde{\alpha}_{-1}^{[2]} + \widetilde{\alpha}_{-1}^{[3]}$$

$$A_{-1}^{(m)} = \operatorname{Res}(f(z), z_1) + \operatorname{Res}(f(z), z_2) + \operatorname{Res}(f(z), z_3)$$





$$\oint_{C} f(z) dz = 2\pi j \sum_{k=1}^{M} \widetilde{\alpha}_{-1}^{(k)} = 2\pi j \sum_{k=1}^{M} \operatorname{Res}(f(z), z_{k})$$

residue theorem

$$\Delta_n = \sum_{k=1}^{M} Res \left(\frac{f(z)}{(z-z_n)^{n+1}}, z_k \right)$$

Laurent coefficient

C encloses & poles

Che encloses only the b-th pole

The residue of the k-th pole enclosed by C, Zk

$$f(z) = \sum_{n=0}^{\infty} Q_n^{\{n\}} (z - z_m)^n$$

$$Q_n^{(m)} = \frac{1}{2\pi i} \oint_C \frac{f(\xi')}{(\xi' - \xi_m)^{n+i}} d\xi'$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(\xi)}{(\xi - \xi_m)^{n+i}}, \xi_n \right)$$

C is in the same region of analyticity of f(z) typically a circle centered on Zm

 Z_k within C: Singularities of $\frac{f(z)}{(z-z_n)^{n+1}}$

 $n = n_{f,m}$ depends on f(z), z_m

 a_n depends on f(z), E_m , region of analyticity

Whether f(z) is singular at z=zm or not or at other points between z and zm We can expand f(z) about any point zm over powers of (z-zm).

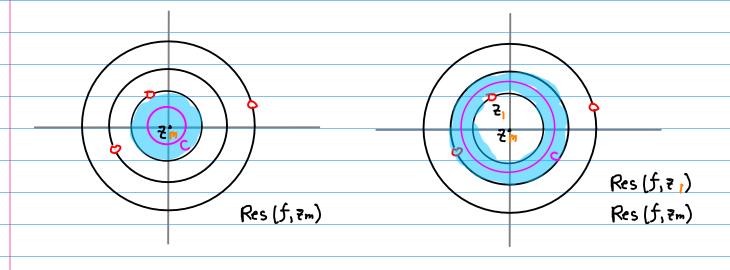
$$f(z) = \sum_{n=1}^{\infty} \alpha_n (z - z_m)^n$$

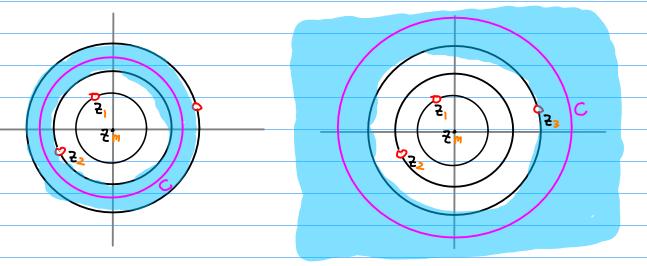
$$Q_n^{(m)} = \frac{1}{2\pi i} \oint_C \frac{\int (\xi')}{(\xi' - \xi_n)^{n+i}} d\xi'$$

$$= \sum_{k} \operatorname{Res} \left(\frac{\int (\xi)}{(\xi - \xi_n)^{n+i}} , \xi_n \right)$$

$$Z_k$$
 within C : Singularities of $\frac{f(z)}{(z-z_n)^{n+1}}$

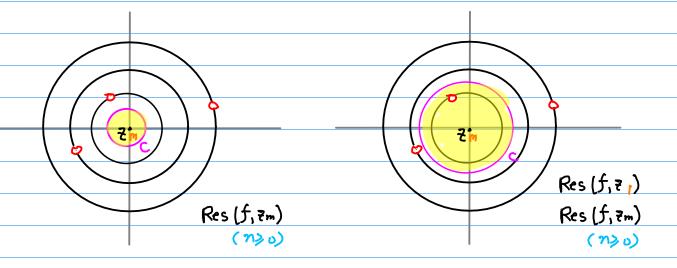
$$\begin{cases} poles & \text{of } f(z) & \text{otherwise} \\ poles & \text{of } f(z) & \text{otherwise} \end{cases} \quad \forall z = z, \quad \forall z = z,$$

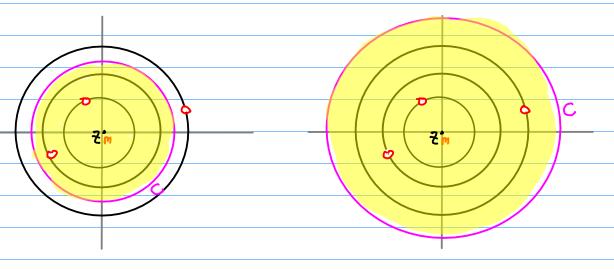




Res (f, ?,) + Res (f, ?,) + Res (f, ?m)

Res (f, 7,) + Res (f, 7,) + Res (f, 7)
+ Res (f, 7m)



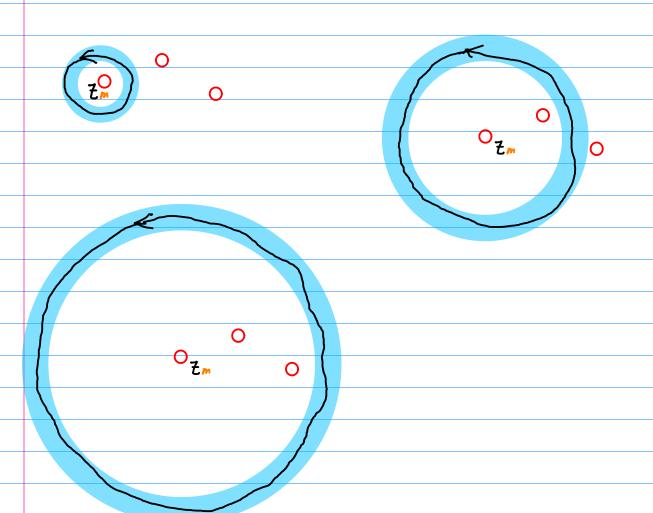


Res (f, 71) + Res (f, 71) + Res (f, 73) + Res (f, 7m)

$$f(z) = \sum_{n=1}^{\infty} \alpha_n (z - z_m)^n$$

$$Q_n = \frac{1}{2\pi i} \oint_C \frac{f(z')}{(\bar{z}' - \bar{z}_n)^{n+i}} dz'$$

$$= \sum_{k} Res\left(\frac{f(z)}{(\bar{z} - \bar{z}_n)^{n+i}}, \bar{z}_n\right)$$



then

$$f(z) = \sum_{k=0}^{\infty} \alpha_k (z-z_0)^k$$
, valid for $r < |z-z_0| < R$

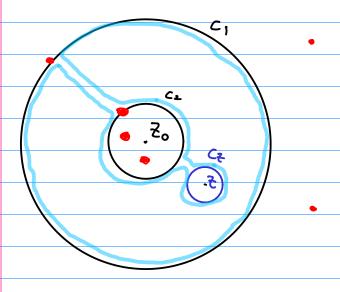
$$A_{k} = \frac{1}{2\pi i} \oint_{C} \frac{f(s)}{(s-z_{0})^{k+1}} ds, \qquad k=0,\pm 1,\pm 2,\cdots$$

C: a simple closed curve
that lies entirely within D
that encloses Zo

$$\alpha_{j} = \frac{1}{2\pi i} \oint_{C} f(s) ds \qquad \oint_{C} f(s) ds = 2\pi i \cdot \alpha_{j}$$

$$A_{-1} = \frac{1}{2\pi i} \oint_{C} f(s) ds = Res(f(z), z_{\bullet})$$

$$= \begin{cases} \lim_{\xi \to z} (z - z_0) f(\xi) & \text{(simple)} \\ \frac{1}{(n-1)!} \lim_{\xi \to z_0} \frac{d^{h-1}}{d\xi^{n-1}} (z - z_0)^n f(\xi) & \text{(order n)} \end{cases}$$



20: expansion point

Z: evaluation point

which poles of fire lie between the point of evaluation & and the point 2. about which the expansion is formed

f(?') is analytic between C, & (2

deformation theorem Ci - Cz Coincide

Common contour c

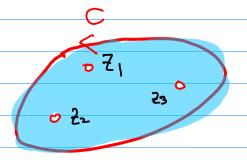
Cauchy's Residue Theorem

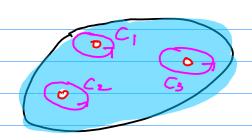
then

$$\int_{c} f(2) d2 = 2\pi i \sum_{k=1}^{n} Res(f(2), Z_{k})$$

D: a simply connected domain

C: a simple closed contour in D



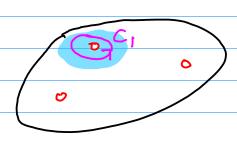


$$f(z) = \sum_{k=-\infty}^{\infty} \alpha_k (z-z_i)^k \qquad \alpha_{-i}^{(1)} = \frac{1}{2\pi i} \oint_{C_i} f(s) ds = \operatorname{Res}(f(v), z_i)$$

$$f(z) = \sum_{k=-\infty}^{+\infty} \alpha_{k} (z-z_{2})^{k} \qquad \alpha_{-1}^{(2)} = \sum_{k=-\infty}^{+\infty} f(s) ds = \text{Res}(f(z), z_{2})$$

$$f(z) = \sum_{k=-\infty}^{+\infty} \alpha_{k} (z-z_{s})^{k} \qquad \alpha_{j}^{(3)} = \frac{1}{2\pi i} \oint_{C_{3}} f(s) ds = \text{Res} (f(z), z_{s})$$

Laurent series expansion at Zi

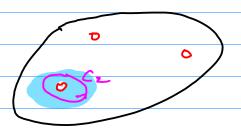


$$f(z) = \sum_{i=1}^{\infty} \alpha_{i}(z-z_{i})^{k}$$

$$A_{-1}^{(1)} = \frac{1}{2\pi i} \oint_{C_1} f(s) ds = \text{Res}(f(v), Z_1)$$

₽<mark>7</mark>

Laurent series expansion at Z

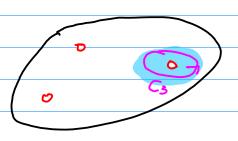


$$f(z) = \sum_{k=0}^{\infty} \alpha_k (z - z_k)^k$$

$$A_{-1}^{(2)} = \frac{1}{2\pi i} \oint_{C_2} f(s) ds = \text{Res}(f(2), Z_2)$$

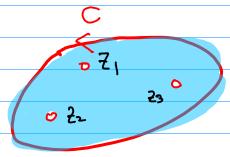
75

Laurent series expansion at 25

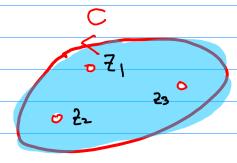


$$f(z) = \sum_{k=0}^{+\infty} \alpha_k (z-z_k)^k$$

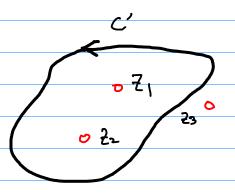
$$a_{-1}^{(s)} = \frac{1}{2\pi i} \oint_{C_3} f(s) ds = \text{Res}(f(v), Z_2)$$



$$\int_{C} f(2) d2 = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f(2), 2k)$$

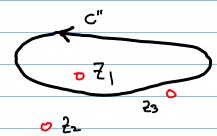


$$\int_{c}^{c} f(2) d2 = 2\pi i \operatorname{Res}(f(2), Z_{1}) + 2\pi i \operatorname{Res}(f(2), Z_{2}) + 2\pi i \operatorname{Res}(f(2), Z_{2})$$

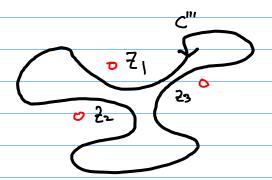


$$\int_{C'} f(z) dz = 2\pi i \operatorname{Res}(f(z), z_1)$$

$$+ 2\pi i \operatorname{Res}(f(z), z_2)$$



$$\int_{C''} f(z) dz = 2\pi i \operatorname{Res}(f(z), Z_i)$$



$$\int_{c''} f(z) dz = 0$$

Inverse z-Transform
$$X[n] = \frac{1}{2\pi i} \int_C X(z) z^m dz$$

$$\chi(s) = \sum_{k=0}^{\infty} \chi_k z^{-k}$$

$$Z^{n+} X(z) = \left(\sum_{k=0}^{\infty} x_k z^{-k}\right) z^{n+} \qquad \int z^{n+} LHs dz = \int kHs z^{n+} dz$$

$$=\sum_{k=0}^{\infty}\chi_{k} z^{-k+n-l} \qquad \boxed{[0,\infty)=[0,n+]\cup[n]\cup[n+l,\infty)}$$

$$= \sum_{k=0}^{N-1} \chi_{k} z^{-k+n-1} + \sum_{k=1}^{N} \chi_{k} z^{-k+n-1} + \sum_{k=n+1}^{\infty} \chi_{k} z^{-k+n-1}$$

$$= \sum_{k=0}^{N-1} \chi_{k} z^{-k+n-1} + \frac{\chi_{n}}{z!} + \sum_{k=n+1}^{\infty} \frac{\chi_{k}}{z^{k-n+1}}$$

$$\int_{C} \chi(z) z^{n-1} dz = \int_{R=0}^{\infty} \chi_{k} z^{-k+n-1} dz + \int_{C} \frac{\chi_{n}}{z^{1}} dz + \int_{C} \frac{\chi_{n}}{z^{2}} dz + \int_{C} \frac{\chi_{n}}{z^{2}} dz + \int_{C} \frac{\chi_{n}}{z^{2}} dz$$

$$= \int_{R=0}^{\infty} \chi_{k} z^{-k+n-1} dz + \chi_{n} \int_{C} \frac{1}{z^{1}} dz + \int_{R=n+1}^{\infty} \chi_{k} \int_{C} \frac{1}{z^{2}} \frac{1}{z^{2}} dz + \int_{R=n+1}^{\infty} \chi_{k} z^{2} dz$$

$$= \int_{R=0}^{\infty} \chi_{k} z^{-k+n-1} dz + \chi_{n} z^{2} dz + \int_{R=n+1}^{\infty} \chi_{k} z^{2} dz +$$

$$\chi[v] = \frac{1}{2\pi i} \left[\chi(\xi) \xi_{v-1} \, ds \right]$$

Z-transform

$$\chi[n] = \frac{1}{2\pi i} \oint_{C} f(z) z^{n-1} dz$$

$$= \sum_{k} \operatorname{Res} (f(z) z^{n-1}, z_{k})$$

no Zi: poles of f(t)

M= D Z: poles of f(E) + ₹=0 マペーを)=支

x[n] includes U[n] -> X[z] contains Z on its numerator

Also, think about modified partial fraction X[2]

Laurent Expansion

expansion at 2m

$$\alpha_{n}^{[m]} = \frac{1}{2\pi i} \left\{ \frac{f(z)}{(z-z_{m})^{nH}} dz \right\}$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z-z_{m})^{nH}}, z_{k} \right) = \sum_{k} \operatorname{Res} \left(\frac{f(z)}{z^{nH}}, z_{k} \right)$$

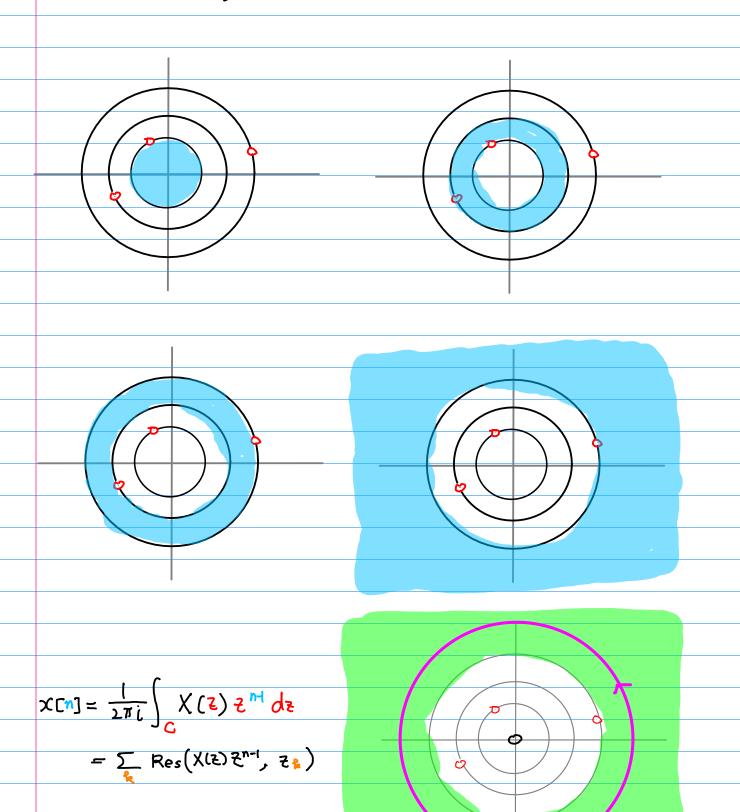
$$= \frac{1}{2\pi i} \oint_{C} \frac{1}{(z-z_{N})^{nH}} dz$$

$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{(z-z_{N})^{nH}}, z_{k}\right)$$

$$= \sum_{k} \operatorname{Res}\left(\frac{f(z)}{z^{nH}}, z_{k}\right)$$

$$\alpha_{-n}^{(0)} = \frac{1}{2\pi i} \oint_{C} f(z) z^{n-1} dz \qquad \alpha_{-n}^{(0)} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{z^{n+1}} dz \\
= \sum_{k} \operatorname{Res} \left(f(z) z^{n-1}, z_{k} \right) \qquad = \sum_{k} \operatorname{Res} \left(\frac{f(z)}{z^{n+1}}, z_{k} \right)$$

Different D, Different Laurent Series



2-transform

$$f(5) = \frac{(5-1)(5-5)}{-1}$$

Complex Variables and Ap Brown & Churchill

$$f(z) = \frac{-1}{(z-1)(z-1)} = \frac{1}{z-1} - \frac{1}{z-2}$$

D1: 121 <1

Dz: 1 < |2| <2

P3: 2< |2|

$$f(z) = \frac{1}{z-1} - \frac{1}{z-2} = \frac{-1}{1-z} + \frac{1}{z} + \frac{1}{z}$$

$$= -\sum_{n=0}^{\infty} \xi^n + \sum_{n=0}^{\infty} \frac{\xi^n}{2^{n+1}} = \sum_{n=0}^{\infty} (2^{-n-1} - 1)\xi^n \quad |\xi| < |\xi|$$

$$f(z) = \frac{1}{z^{-1}} - \frac{1}{z^{-2}} = \frac{1}{z} \cdot \frac{1}{1 - (\frac{1}{z})} + \frac{1}{z} \cdot \frac{1}{1 - (\frac{3}{z})}$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} + \sum_{n=0}^{\infty} \frac{z^{n}}{z^{n+1}}$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^{n}} + \sum_{n=0}^{\infty} \frac{z^{n}}{z^{n+1}}$$

(3)
$$D_3$$
 $2 < |2|$ $\left| \frac{2}{2} \right| < \left| \frac{1}{2} \right| < \right|$

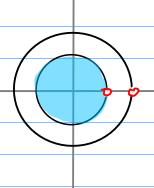
$$f(z) = \frac{1}{z-1} - \frac{1}{z-2} = \frac{1}{z} \frac{1}{1-(\frac{1}{z})} - \frac{1}{z} \frac{1}{1-(\frac{1}{z})}$$

$$= \sum_{h=0}^{\infty} \frac{1}{z^{h+1}} - \sum_{n=0}^{\infty} \frac{2^n}{z^{h+1}} = \sum_{n=0}^{\infty} \frac{1-2^n}{z^{n+1}}$$

$$= \sum_{k=0}^{\infty} \frac{1-2^{k+1}}{z^k}$$

$$f(5) = \frac{(5-1)(5-5)}{-1}$$

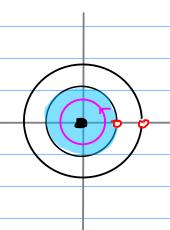
$$\frac{\mathcal{Z}_{M+1}}{f(s)} = \frac{(s-1)(s-r)S_{M+1}}{-1}$$



$$f(z) = \frac{1}{|z-1|} - \frac{1}{|z-2|} = \frac{-1}{|z-2|} + \frac{1}{2} \frac{1}{|z-2|}$$

$$= -\sum_{n=0}^{\infty} z^n + \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} = \sum_{n=0}^{\infty} (2^{-n-1} - 1)z^n \quad |z| < |z|$$

$$\Delta_n = \sum_{k=1}^{M} \text{Res}\left(\frac{f(\xi)}{(\xi - \xi_n)^{n+1}}, \xi_n\right) = \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 0\right)$$



$$\Delta_{n} = \sum_{k=1}^{M} \operatorname{Res}\left(\frac{f(z)}{(z-z_{n})^{n+1}}, z_{k}\right) = \operatorname{Res}\left(\frac{-1}{(z-1)(z-2)z^{n+1}}, 0\right)$$

n>0 then the pole 2=0

$$\frac{d^{\frac{1}{2}}}{d^{\frac{1}{2}}}\left((\xi + 1)^{-1} - (\xi - 5)^{-1} \right) = (-1)\left((\xi + 1)^{-2} - (\xi - 5)^{-2} \right)$$

$$\frac{d^{\frac{1}{2}}}{d^{\frac{1}{2}}}\Big((\frac{1}{2}+1)^{-1}-(\frac{1}{2}-2)^{-1}\Big)=(-1)(-1)\Big((\frac{1}{2}+1)^{-3}-(\frac{1}{2}-2)^{-3}\Big)$$

$$\frac{d^{3}}{d^{2}}\left((2+1)^{-1}-(2-2)^{-1}\right)=(-1)(-2)(-3)\left((2+1)^{4}-(2-2)^{-4}\right)$$

$$\frac{d^{2n}}{d^{2n}} \Big((\xi - 1)^{-1} - (\xi - 2)^{-1} \Big) = (-1)^{n} M \Big[(\xi - 1)^{-n-1} - (\xi - 2)^{-n-1} \Big]$$

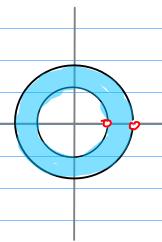
$$\frac{1}{\eta!} \lim_{z \to 0} \frac{d^{n}}{dz^{n}} \left((z + 1)^{-1} - (z + 2)^{-1} \right) = (-1)^{n} \lim_{z \to 0} \left((z + 1)^{-n-1} - (z + 2)^{-n-1} \right)$$

$$= (-1)^{n} \left((-1)^{-n-1} - (-2)^{-n-1} \right)$$

$$= -1 + 2^{-n-1}$$

$$f(z) = \sum_{n=1}^{\infty} Q_n z^n = \sum_{n=0}^{\infty} (z^{-n-1} - 1) \overline{z}^n$$

$$f(5) = \frac{(5-1)(5-5)}{-1}$$



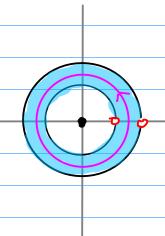
$$f(z) = \frac{1}{z^{-1}} - \frac{1}{z^{-2}} = \frac{1}{z} \cdot \frac{1}{1 - (\frac{z}{z})} + \frac{1}{z} \frac{1}{1 - (\frac{z}{z})}$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} + \sum_{n=0}^{\infty} \frac{z^{n}}{z^{n+1}}$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^{n}} + \sum_{n=0}^{\infty} \frac{z^{n}}{z^{n+1}}$$

$$\Delta_{n} = \sum_{k=1}^{M} \text{Res}\left(\frac{f(\xi)}{(\xi - \xi_{m})^{n+1}}, \xi_{k}\right) = \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 0\right)$$

$$+ \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 1\right)$$



$$\Delta_{n} = \sum_{k=1}^{M} \text{Res}\left(\frac{f(\xi)}{(\xi - \xi_{m})^{n+1}}, \xi_{k}\right) = \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 0\right)$$

$$+ \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 1\right)$$

$$+ \frac{1}{(n-1)!} \lim_{\xi \to \xi_{0}} \frac{d^{n-1}}{d\xi^{n-1}} (\xi - \xi_{0})^{n} f(\xi) \quad (\text{order } n)$$

$$+ \frac{1}{\eta!} \lim_{\xi \to 0} \frac{d^{n}}{d\xi^{n}} ((\xi - 1)^{-1} - (\xi - 2)^{-1}) = (-1)^{n} \lim_{\xi \to 0} ((\xi - 1)^{-n-1} - (\xi - 2)^{-n-1})$$

$$= (-1)^{n} ((-1)^{-n-1} - (-2)^{-n-1})$$

$$= -1 + 2^{-n-1}$$

$$\operatorname{Res}\left(\frac{-1}{(\xi-1)(\xi-2)Z^{\eta+1}}, 0\right) = -1 + 2^{-\eta-1} \quad (n > 0)$$

$$\operatorname{Res}\left(\frac{-1}{(\xi-1)(\xi-2)Z^{\eta+1}}, 1\right) = \lim_{z \to 1} (\xi-1)\frac{-1}{(\xi-1)(\xi-2)Z^{\eta+1}} = 1$$

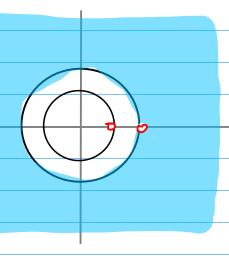
M=-3	N= -5	n=-1	N=O	n=1	m = 2	
_ص	0	0	ーノナスト	1+2-2	-1 + 2 ⁻³	Res (f(2)
τ	ı	ſ	ľ	1	Ţ	Res(f(2) , 1)
t	(١	21	2-2	2 ⁻³	

$$\begin{cases} \Delta_n = 2^{-n-1} & n > 0 \\ \Delta_n = 1 & n < 0 \end{cases} \begin{cases} 2^{-n-1} \not Z^n \\ \not Z^{-n} \end{cases}$$

$$f(z) = \sum_{n=1}^{\infty} \frac{1}{z^n} + \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$$

$$f(5) = \frac{(5-1)(5-5)}{-1}$$

$$\boxed{3} \quad \mathsf{D}_3 \qquad \mathsf{2} < |\mathsf{E}| \qquad \left| \frac{\mathsf{2}}{\mathsf{E}} \right| < | \qquad \left| \frac{\mathsf{1}}{\mathsf{E}} \right| < |$$

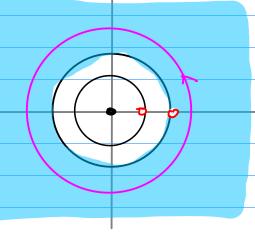


$$f(z) = \frac{1}{z-1} - \frac{1}{z-2} = \frac{1}{z} \frac{1 - (\frac{1}{z})}{1 - (\frac{1}{z})} - \frac{1}{z} \frac{1}{1 - (\frac{1}{z})}$$

$$= \sum_{h=0}^{\infty} \frac{1}{z^{h+1}} - \sum_{n=0}^{\infty} \frac{2^n}{z^{h+1}} = \sum_{n=0}^{\infty} \frac{1 - 2^n}{z^{n+1}}$$

$$= \sum_{n=0}^{\infty} \frac{1 - 2^{n+1}}{z^n}$$

$$\Delta_{n} = \sum_{k=1}^{M} \text{Res}\left(\frac{f(\xi)}{(\xi - \xi_{n})^{n+1}}, \xi_{k}\right) = \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 0\right) + \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 1\right) + \text{Res}\left(\frac{-1}{(\xi - 1)(\xi - 2)\xi^{n+1}}, 1\right)$$



$$Res\left(\frac{-1}{(\xi-1)(\xi-2)\xi^{n+1}}, 0\right) = -1 + 2^{-n-1} \quad (n > 0)$$

$$Res\left(\frac{-1}{(\xi-1)(\xi-2)\xi^{n+1}}, 1\right) = \lim_{z \to 1} (\xi-1) \frac{-1}{(\xi-1)(\xi-2)\xi^{n+1}} = 1$$

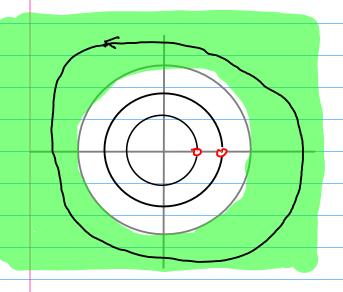
$$Res\left(\frac{-1}{(\xi-1)(\xi-2)\xi^{n+1}}, 2\right) = \lim_{z \to 2} (\xi-2) \frac{-1}{(\xi-1)(\xi-2)\xi^{n+1}} = -\frac{1}{2^{n+1}}$$

M=-3	N= -2	n=-1	N=O	n=1	m=2	
_ص	0	0	ーノナスト	1+2-2	-1 + 2 ⁻³	Res (f(2) , 0)
τ	l	ſ	ĵ	1	ţ	$\operatorname{Res}(\frac{f(t)}{2^{n+1}}, 1)$
-22	-2	-[-24	− 5 ₋₇	-2-3	Res(f(2) , 2)
[-22	1-2	6	٥	0	0	

$$\Delta_{n} = |-2^{-n+1}| \quad n < 0 \qquad = \sum_{n=1}^{\infty} \frac{|-2^{n+1}|}{z^{n}}$$

$$f(z) = \sum_{n=1}^{\infty} (1-2^{-n+1}) z^{n} = \sum_{n=1}^{\infty} \frac{|-2^{n-1}|}{z^{n}}$$

$$f(5) = \frac{(5-1)(5-5)}{-1}$$



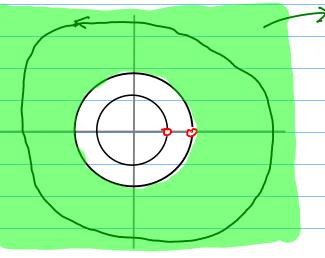
$$\begin{array}{rcl}
& \times & \text{[n]} \\
& = & \frac{1}{2\pi i} \int_{C} X(z) z^{n-1} dz \\
& = & \sum_{j=1}^{k} \text{Res}(X(z) z^{n-1}, z_{j})
\end{array}$$

$$\chi(2) = \frac{-1}{(2-1)(2-1)}$$

$$\chi(z) z^{n+} = \frac{-1}{(2-1)(2-1)} z^{n+}$$

Res
$$(X(2)2^{H})$$
) = $(2+1)\frac{-1}{(2+1)(2-1)}$ 2^{H} $|_{2=1} = 1$

Res
$$(X(z)z^{n},2) = (z-1)\frac{-1}{(z-1)(z-1)}z^{n}|_{z=2} = -2^{n-1}$$



> ROC (Region of Convergence)

$$\left(\frac{2}{z}\right)^0 + \left(\frac{2}{z}\right)^1 + \left(\frac{2}{z}\right)^2 + \cdots$$
Converge

$$\left(\frac{1}{\xi}\right)^0 + \left(\frac{1}{\xi}\right)^1 + \left(\frac{1}{\xi}\right)^2 + \cdots$$
 Converge

$$f(z) = \frac{1}{z^{-1}} - \frac{1}{z^{-2}} = \frac{1}{z} \frac{1}{1 - (\frac{1}{z})} - \frac{1}{z} \frac{1}{1 - (\frac{1}{z})}$$

$$= \sum_{h=0}^{\infty} \frac{1}{z^{h+1}} - \sum_{n=0}^{\infty} \frac{2^n}{z^{h+1}} = \sum_{n=0}^{\infty} \frac{1 - 2^n}{z^{n+1}}$$

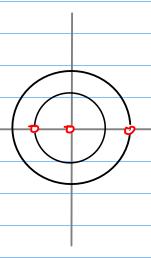
$$= \sum_{n=0}^{\infty} \frac{1 - 2^{n+1}}{z^n}$$

$$+\frac{1}{2}\left(\frac{5}{5}\right)+\left(\frac{5}{5}\right)^{\frac{1}{2}}+\left(\frac{5}{5}\right)^{\frac{1}{2}}+\cdots\right\} \qquad \qquad \frac{1}{1}-\frac{5-1}{1}-\frac{5-5}{1}=\frac{(54)(5-5)}{1}$$

$$X[n] = [-2^{n+1}] \times (2) = \frac{-1}{[2-1)(2-2)} (|2| > 2)$$

$$f(z) = \frac{12}{2(2-2)(1+2)} = \frac{4}{2} \left(\frac{1}{1+2} + \frac{1}{2-2} \right)$$

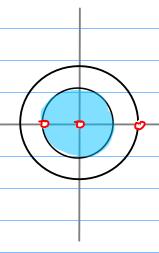
pole: ==0, ==2, ==-1



$$f(z) = -3 + 9z/2 - 15z^2/4 + 33z^3/8 + \cdots + 6/2$$

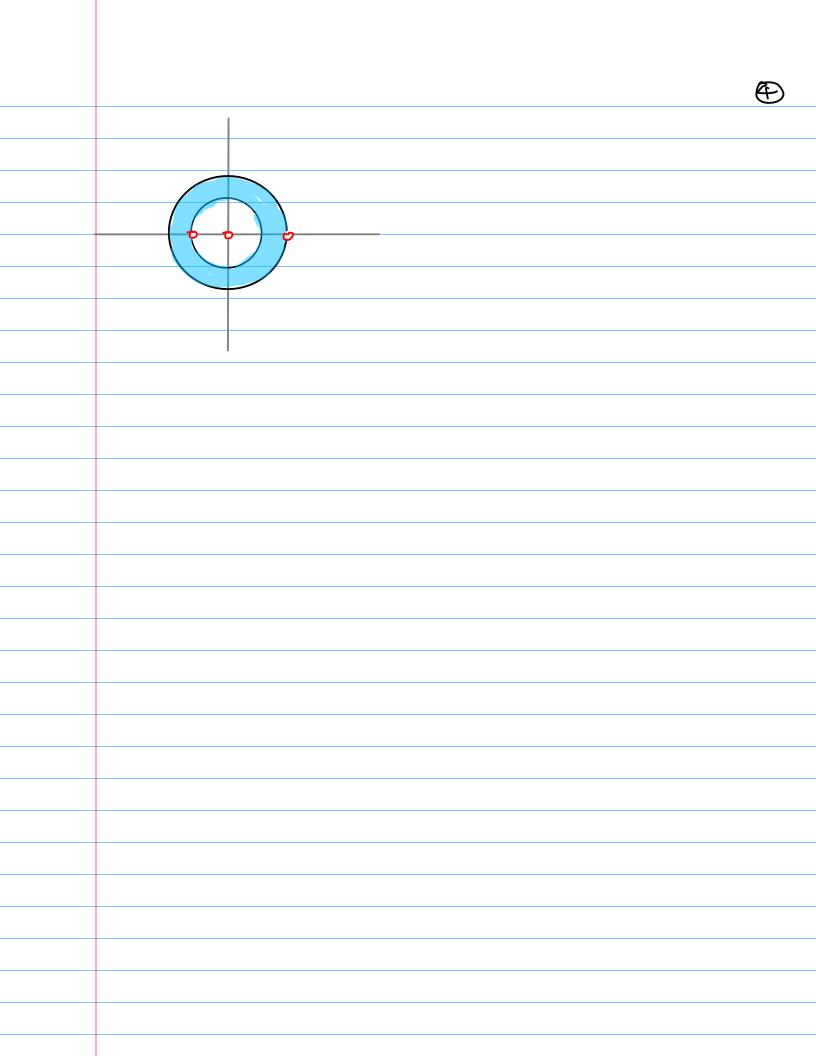
$$\frac{1}{1+\xi} = \frac{1}{\xi} \frac{(1+\xi^{-1})}{1} = -\frac{1}{\xi} \frac{1-2\xi^{-1}}{1-\xi^{-1}}$$

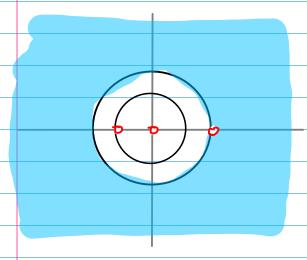
$$f(z) = -(12/z^3)(1+1/z+3/z^2+5/z^3+11/z^4+\cdots)$$



1>151>0

$$f(z) = -3 + 9z/2 - 15z^2/4 + 33z^3/8 + \cdots + 6/2$$

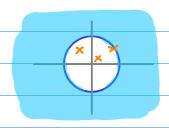


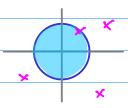


$$\frac{1}{1} = \frac{5}{1} \frac{(1+54)}{1}$$

$$\frac{1}{2t\xi} = -\frac{1}{\xi} \frac{1}{1-2\xi^{-1}}$$

causal x[n] = 0 (n<0) anti-causal x[n] = 0 (n>0)





Roc: outside a circle Roc: inside a circle

bi-causal xcm]



overlapped ROC

$$\begin{cases}
f(z) = \sum_{n=0}^{\infty} a_n x_n \\
f(z) = \sum_{n$$

$$f(z) = \sum_{n=1}^{\infty} a_n^{\{n\}} (z - z_m)^n$$

$$Q_n^{\{m\}} = \frac{1}{2\pi i} \oint_C \frac{f(\xi')}{(\xi' - \xi_m)^{n+1}} d\xi'$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(\xi)}{(\xi - \xi_m)^{n+1}}, \xi_k \right)$$

analytic at Zm

n. >> 0

Taylor Series

general n, 2m = 0

MacLaurin Series

singular at Zm

general n,

Laurent Series

general n_i $\frac{2}{m} = 0$

Z - Transform

$$f(z) = \sum_{m=n_1}^{\infty} Q_n^{\{m\}} (z - z_m)^n$$

$$Q_n^{\{m\}} = \frac{1}{2\pi i} \oint_C \frac{f(z')}{(z' - z_m)^{n+i}} dz'$$

$$= \sum_{k} \operatorname{Res} \left(\frac{f(z)}{(z - z_m)^{n+i}}, z_m \right)$$

$$z_m = 0$$
 $a_{-n}^{\{0\}} = \beta(n)$ $n \rightarrow -n$

$$H(z) = \sum_{n=-\infty}^{\infty} R(-n) z^{n}$$

$$H(z) = \sum_{n=-\infty}^{\infty} R(n) z^{-n}$$

$$R(n) = \frac{1}{2\pi i} \oint_{c} \frac{H(z')}{z'^{n+1}} dz'$$

$$= \sum_{n=-\infty}^{\infty} Res\left(\frac{H(z)}{z^{n+1}}, z_{n}\right)$$

$$= \sum_{n=-\infty}^{\infty} Res\left(\frac{H(z)}{z^{n-1}}, z_{n}\right)$$

C is in the same region of analyticity of f(z) typically a circle centered on z_m

 \mathcal{E}_{k} within \mathcal{C} : Singularities of $\frac{f(z)}{(z-z_{m})^{n+1}}$

C is in the same region of analyticity of H(z) typically a circle centered on Zm

generally a circle centered on the origin may enclose any on all singularities of H(2) often the unit circle

Zk within C: singularities of H(z) zn-1

$$H(z) = \sum_{n=-\infty}^{\infty} k(n) z^{-n}$$
 $z \in R.0.0$

$$\beta(n) = \frac{1}{2\pi i} \oint_{C} H(\xi') \, \xi'^{n-1} \, d\xi' \qquad C \text{ in } R-0.C.$$

$$= \sum_{k} \operatorname{Res} \left(H(\xi) \, \xi^{n-1}, \, \xi_{k} \right)$$

- a power series representation
 of a function f(z) of a complex variable z
- a transform H(2) of a sequence of 1

$$X(z) = \frac{z}{z - \frac{1}{2}} \qquad \text{pole } z_0 = \frac{1}{2}$$

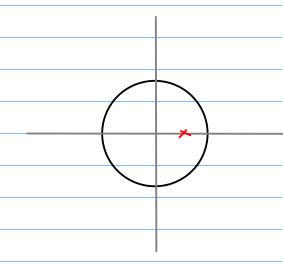
$$X[n] = \text{kes}\left(X(z)z^{n+1}, z_0\right) = \text{kes}\left(\frac{z}{z - \frac{1}{2}}z^{n+1}, \frac{1}{2}\right)$$

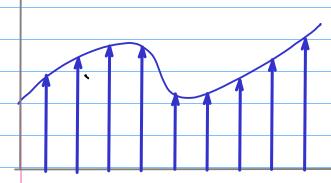
$$= \text{Res}\left(\frac{z^n}{z - \frac{1}{2}}, \frac{1}{2}\right) = \lim_{z \to \frac{1}{2}}(z - \frac{1}{2})\frac{z^n}{z - \frac{1}{2}} = \left(\frac{1}{2}\right)^n$$

$$X[n] = \frac{1}{2^{n}} \qquad N > 0$$

$$(\frac{1}{2})^{0} z^{0} + (\frac{1}{2})^{1} z^{-1} + (\frac{1}{2})^{2} z^{-2} + (\frac{1}{2})^{3} z^{-3} + \cdots = \frac{1}{1 - (\frac{1}{2} z^{-1})}$$

$$= \frac{z}{z - \frac{1}{2}}$$





X((t) continuous

Xs,c(t) sampled, continuous

$$\mathcal{I}_{s,c}(t) = \sum_{n=-\infty}^{+\infty} \chi(n) \, \delta_c(t-n\Delta t)$$

$$X_{s,\iota}(s) = X(i)$$
 $\xi = e^{sat}$

$$X_{s,c}(s) = \mathcal{L}\{T_{s,c}(t)\} = X(t)\Big|_{t=0}^{t=0}$$

$$T_{s,c}(t) \quad \text{an impulse train}$$

$$\text{whose (sefficients one given by } x[n] = x_{c}(n \text{ at})$$

Z-transform: a special Laurent series

$$\xi_{m} = 0 \qquad \begin{cases} 0 \\ \alpha_{-n} = \beta(n) \end{cases} \qquad n \to -\eta$$

$$f(z) = \sum_{n=n}^{\infty} Q_n (z - z_m)^n$$

$$Q_{n} = \frac{1}{2\pi i} \oint_{C} \frac{f(\xi')}{(\xi' - \xi_{m})^{n+1}} d\xi'$$

$$= \sum_{k} Res \left(\frac{f(\xi)}{(\xi - \xi_{m})^{n+1}}, \xi_{k} \right)$$

Time Reversal - Laplace Transform

the transform functions

$$X(s) = \int over negative powers e^{-st}$$
 for to $X(z) = \int over negative powers z^{-n}$ for $n > 0$

the time expansion functions

$$x(t) = \int oven negative powers e^{-st}$$
 for $t>0$
 $x(t) = \int oven negative powers e^{-n}$ for $n>0$

Time Reversal - Z-1: unit dulay, char eq (modes in Z*)

Stable System: him] must be asbsolutely summable

$$|\mathcal{Z}^n| = |\mathcal{Z}^n|$$

A Stable system,

H(Z) must converge on the unit circle |Z|=1

ROC (Region of Convergence) must include the unit circle

regardless of causality of R[m]

	$H(z)\Big _{z=1} = H(e^{j\widehat{\omega}})$ DTFT of R[r]
1. 4	Oll Stalle cogners a must be a consumer ATTT
discrete continuous	all stable sequence must have convergent DTFTs all stable signal must have convergent CTFTs
CON (111/08 M Z	om stable signar muse have convergent ciris
	C← unit circle ₹= ejû
	ZT DTFT identical formulas

hen] causal

$$H(z) = \sum_{n=-\infty}^{+\infty} h(n) z^{-n} = \sum_{n=0}^{+\infty} h(n) z^{-n} \quad n \in [0, \infty)$$

for finite values of n,

each term must be finite as long as 2+0

For the sum to convenge,

h[7] Z-1 must vanish as n > 00

| 2/ > ra Zh = ra e jo

Zh is the largest magnitude

geometrically increasing component

geometric components - as poles

$$Z\left\{z_{i}^{n}u(n)\right\} = \frac{1}{1-\left(\frac{2\epsilon}{E}\right)} = \frac{2}{2-2\epsilon}$$

ROC of a causal sequence h[n]
outside the radius of the langest magnitude pole of H(2)

ROC of a causal signal h(t)

to the right of the rightmost pole of Hc(s)

if h[n] is a Stable, causal sequence, the unit circle must be included in the ROC o Causal fi[n]

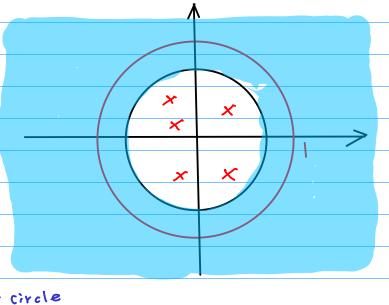
Roc: outside of a circle

· Stable h[n]

the unit circle

ROC circle must be

Smaller than the unit circle

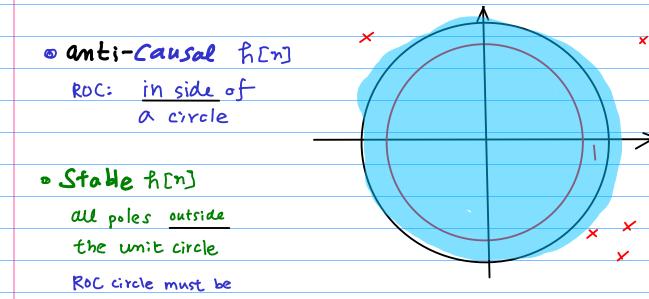


> all the geometric components of R[n]: modes

must decay with increasing n

all the poles of H(Z) must be within the unit circle

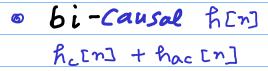
all the poles of He(s) must be in the left half plane



> all the geometric components of R[n]: modes

must decay with decreasing n

larger than the unit circle



outside inside

max mag < min mag Overlapped ROC

· Stable h[n]

all poles outside

the unit circle

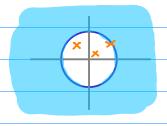
ROC circle must include the unit circle

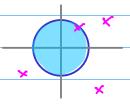
o bi-causal fi[n]

+ hac [n]

causal comp.

anti-causal comp

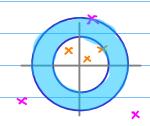




outside a circle

inside a circle

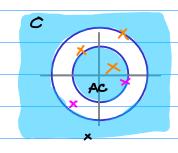
max mag < min mag



overlapped ROC

max mag > min mag

non-overlapping ROC



· Stable h[n]

all poles outside the large circle

inside the Small circle

ROC circle must include the unit circle

only one annulus include the unit circle

only one stable sequence

Existence of the z-Transform

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n} = \sum_{n=0}^{\infty} \frac{x[n]}{z^n}$$

the existence of the z-transform is guaranteed if

$$|\chi(\xi)| \leq \sum_{n=0}^{\infty} \frac{|\chi(n)|}{|\xi^n|} < \infty$$
 for some $|\xi|$

any signal X[n] that grows no faster than an exponential signal ron, for some rosatisfies the above condition

if |xcn3| ≤ ron for some ro

then
$$|X(z)| \leq \sum_{n=0}^{\infty} \left(\frac{r_0}{|z|}\right)^n = \frac{1}{1 - \frac{r_0}{|z|}}$$
 [21> r_0

therefore X(2) exists for 1217 %

Almost all practical signal satisfy this condition $|x[n]| \leq r_0^n$ for some r_0

and z-transformable

Some signal models (e.g. $r^{n^{2}}$) grows faster than the exponential signal r^{n} (for any r^{n}) and do not satisfy this condition and are not z-transformable

Such signals are of little practical on theoretical interest Even such signals over a finite interval are z-transformable

Region of Convergence

$$X(z) = A \sum_{n=-\infty}^{\infty} \propto^n u[n] z^{-n} = A \sum_{n=-\infty}^{\infty} \propto^n z^{-n} = A \sum_{n=-\infty}^{\infty} \left(\frac{\alpha}{z}\right)^n$$

Converge $\left|\frac{\alpha}{2}\right| < 1$ $\left|z\right| > |\alpha|$

open exterior of a circle of radius | \alpha|

the sum of a geometric series

$$\chi(z) = A \frac{1}{1 - \frac{c^2}{2}} = \frac{A}{1 - \alpha z^{-1}} = A \frac{z}{z - \alpha}$$
 $|z| > |\alpha|$

$$X(j\hat{u}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\hat{u}n}$$

DTFT

DTFT of the unit sequence u[n]

$$X(e^{-j\widehat{w}n}) = \sum_{n=-\infty}^{+\infty} U[n]e^{-j\widehat{w}n} = \sum_{n=0}^{\infty} e^{-j\widehat{w}n}$$

not converge

$$\hat{\omega} = 0 \qquad \sum_{n=0}^{\infty} 1^{n} \qquad d_{i} \text{verge}$$

$$\hat{\omega} = \pi \qquad \sum_{n=0}^{\infty} (-1)^{n} \qquad \text{oscillates}$$

$$\hat{\omega} = \frac{\pi}{2} \qquad \sum_{n=0}^{\infty} (j)^{n}$$

The DTFTs of some commonly used functions do not exist in the strict sense.

But even though the DTFT does not exist,
the z-transform does exist.

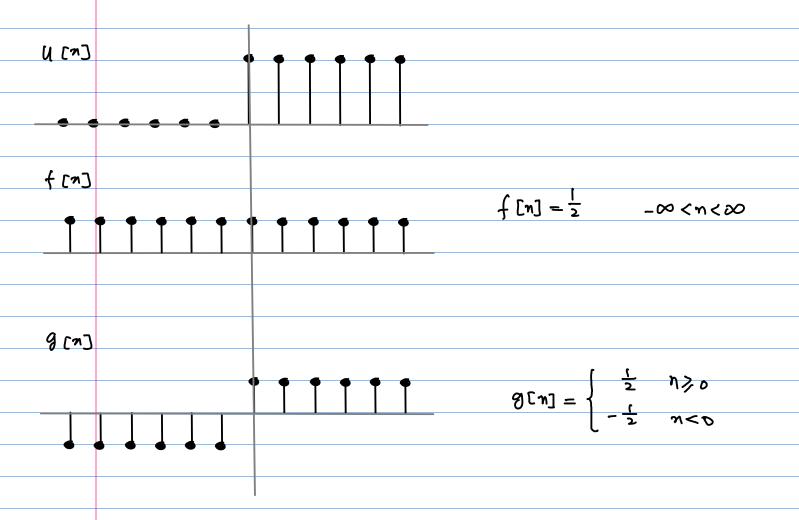
$$\chi(s) = \sum_{n=-\infty}^{+\infty} \mu(n) \, s^{-n} = \sum_{n=0}^{\infty} \, z^{-n}$$

$$|2|7|$$
 $X(4) = \frac{2}{2-1} = \frac{1}{|-2|^4}$

$$X(z) = \frac{z}{z-1}$$
 pole $z=0$, zero $z=0$

$$X(z) = \frac{1}{1-z^{-1}}$$
 Useful when a system is synthesized

From a z-domain transfer function



$$N[n] = f(n) + g(n)$$

$$S[n] = g(n) - g(n-1)$$

$$G(e^{j\hat{u}}) = \frac{1}{1 - e^{-j\hat{u}}}$$

$$F(e^{j\hat{\omega}}) = \pi \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k) \qquad (jmpulse train)$$

$$U(e^{j\hat{\omega}}) = \frac{1}{1 - e^{-j\hat{\omega}}} + \pi \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$$

Discrete Time Exponential rn

Continuous time exponential ext

$$e^{\lambda t} = \mathcal{V}^{t}$$
 $(e^{\lambda})^{t} = \mathcal{V}^{t}$

$$e^{\lambda} = \mathcal{V}$$

$$\lambda = \ln \mathcal{V}$$

$$e^{-0.3t} = (0.9408)^t$$

$$4^t = e^{1.38lt}$$

Continuous time analysis $e^{\lambda t}$ discrete time analysis χ^n

$$e^{\lambda h} = \mathcal{V}^{n} \qquad (e^{\lambda})^{n} = \mathcal{V}^{n}$$

$$e^{\lambda} = \mathcal{V}$$

$$\lambda = \ln \mathcal{V}$$

exn

exponentially grows if Re $\lambda > 0$ (λ in RHP) exponentially decays if Re $\lambda < 0$ (λ in LHP) oscillates on constant if Re $\lambda = 0$ (λ in imag axis)

the location of a in the complex plain indicates whether

Dext Will grow exponentially

@ exe will decay exponentially

3 ext will oscillates with constant amplitude

constant signal: oscillation with zero frequency

 $e^{j\Omega}$ $\lambda = j\Omega$ imaginary axis

(onstant complitude oscillating signal $e^{j\Re n} = (e^{j\Re n})^n = \mathcal{F}^n$ $\mathcal{F} = e^{j\Re n}$ | $\mathcal{F} = 1$ |

if I lies on the unit circle,

the imaginary axis in the 2 plane the unit circle in the 2 plane

exponentially deaying

$$F = e^{\lambda} = e^{a+jb} = e^{a}e^{jb}$$

$$|x| = |e^{\lambda}| = |e^{a}| |e^{jb}| = |e^{a}| = e^{a}$$

$$|x| = |e^{a}| = |e^{a}| |e^{jb}| = |e^{a}| = |e^{a}|$$

$$|x| = |e^{a}| = |e^{a}| |e^{jb}| = |e^{a}| = |e^{a}|$$

$$|x| = |e^{a}| = |e^{a}|$$

$$|x| = |e^{a}| = |e^{a}|$$

$$|x| = |e^{a}|$$

$$|x|$$

2-plane r-plane the imaginary axis the unit circle the LHP inside of the unit circle the RHP outside of the unit circle

