```
[> restart:with(DEtools):with(plots) :assume (n, integer) :
```

Problem : $\quad u_{x x}=u_{t t}+10$ and $u(0, t)=0$ and $u(1, t)=0$, ICs $u(x, 0)=0$ and $u_{t}(x, 0)=x(1-x)$

By using $u(x, t)=w(x, t)+v(x)$ we can break the problem up into two problems.
$w_{x x}+v_{x x}=w_{t t}+10$ with $w(x, 0)+v(x)=0, w_{t}(x, 0)=x(1-x), w(0, t)+v(0)=0$, $w(1, t)+v(1)=0$

Problem 1: $v_{x x}=10 v(0)=0 \quad v(1)=0$ gives the solution $v(x)=5 \cdot x^{2}-5 \cdot x$
$\overline{\mid}>\mathrm{v}:=\mathrm{x}->5 * \mathrm{x}^{\wedge} 2-5 * \mathrm{x}$;
Problem 2: Find the solution to $w_{x x}=w_{t t}$ with $w(x, 0)=-v(x), w_{t}(x, 0)=x(1-x), w(0, t)=0$, $w(1, t)=0$

$$
w(x, t)=X(x) \cdot T(t) \text { substitute into PDE } \frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}}{T}=\text { constant }
$$

Case I: constant $>0 X(x)=0$ trivial solution.
Case II: constant $=0$ again $X(x)=0$ trivial solution
Case III: constant $<0$
$X^{\prime \prime}-\lambda^{2} X=0 \quad$ leads to $X(x)=c_{1} \cos (\lambda \cdot x)+c_{2} \cdot \sin (\lambda \cdot x)$ using the BCs, $X(0)=0$ and $X(1)=0$ the equation becomes $X(x)=0=\sin (\lambda)$ from which we deduce that $\lambda_{n}=n \cdot \pi$

$$
\begin{align*}
& \text { [> lambda:=n*Pi; } \\
& \lambda:=n \sim \pi  \tag{2}\\
& \mathrm{x}:=(\mathrm{n}, \mathrm{x})->\sin (\operatorname{lambda} \mathrm{x}) \text {; } \\
& X:=(n, x) \rightarrow \sin (\lambda x) \tag{3}
\end{align*}
$$

Next find to the solution for $\frac{T^{\prime \prime}}{T}=-\lambda^{2}$, using the lambda from above the solution is another sine cosine pair.

$$
T_{n}(t)=a_{n} \cdot \cos \left(\lambda_{n} \cdot t\right)+b_{n} \cdot \sin \left(\lambda_{n} \cdot t\right)
$$

$$
\begin{gather*}
>T:=(\mathrm{n}, \mathrm{t})->(\mathrm{a}(\mathrm{n}) * \cos (\text { lambda*t })+\mathrm{b}(\mathrm{n}) * \sin (\text { lambda*t })) ; \\
T:=(n, t) \rightarrow a(n) \cos (\lambda t)+b(n) \sin (\lambda t) \tag{4}
\end{gather*}
$$

Each product $w_{n}(x, t)=X_{n}(x) \cdot T_{n}(t)$ is a solution of the pde $w_{x x}=w_{t t} w(0, t)=0, w(1, t)=0$ a sum of these products is also a solution. Using the Fourier Series approach the solution is presented as.

$$
w(x, t)=\sum_{n=1}^{\infty} \sin \left(\lambda_{n} \cdot x\right) \cdot\left(a_{n} \cdot \cos \left(\lambda_{n} \cdot t\right)+b_{n} \cdot \sin \left(\lambda_{n} \cdot t\right)\right)
$$

The coefficients $a_{n}$ and $b_{n}$ are found by using the initial conditions for the homogeneous problem $w_{x x}=w_{t t}$. Use the initial condition $w(x, 0)=-v(x)$ to find $a_{n}$. The process is to set $t=0$ and then $w(x$,
$0)=f(x)-v(x)$, in this problem $f(x)=0$. Then each side is multiplied by the eigenfunction $X_{n}(x)$ and integrated of the length of the interval. Using orthogonality the resulting equation will allow us to solve for $a_{n}$ as shown below.

$$
\begin{aligned}
& w(x, 0)=f(x)-v(x)=-5 \cdot x^{2}+5 \cdot x=\sum_{n=1}^{\infty} \sin \left(\lambda_{n} \cdot x\right) \cdot a_{n} \\
& a_{n}=\frac{\int_{0}^{1}\left(-5 \cdot x^{2}+5 \cdot x\right) \cdot \sin \left(\lambda_{n} \cdot x\right) \mathrm{d} x}{\int_{0}^{1} \sin ^{2}\left(\lambda_{n} \cdot x\right) \mathrm{d} x}
\end{aligned}
$$

$$
\begin{equation*}
a:=n \rightarrow \frac{\int_{0}^{1}(-v(x) \sin (\lambda x)) d x}{\int_{0}^{1} \sin (\lambda x)^{2} d x} \tag{5}
\end{equation*}
$$

The $b_{n}$ coefficients are found in the same manner as the $a_{n}$ except the second boundary condition is used.
$w_{t}(x, t)=\sum_{n=1}^{\infty} \sin \left(\lambda_{n} \cdot x\right) \cdot\left(-a_{n} \cdot \lambda_{n} \cdot \sin \left(\lambda_{n} \cdot t\right)+b_{n} \cdot \lambda_{n} \cdot \cos \left(\lambda_{n} \cdot t\right)\right)$
use the initial conditions to find the coefficients $w(x, 0)=x \cdot(1-x)$

$$
\begin{align*}
& w_{t}(x, 0)=g(x)=x \cdot(1-x)=\sum_{n=1}^{\infty} \sin \left(\lambda_{n} \cdot x\right) \cdot b_{n} \cdot \lambda_{n} \\
& b_{n}=\frac{1}{\lambda_{n}} \frac{\int_{0}^{1}(x \cdot(1-x)) \cdot \sin \left(\lambda_{n} \cdot x\right) \mathrm{d} x}{\int_{0}^{1} \sin ^{2}\left(\lambda_{n} \cdot x\right) \mathrm{d} x} \\
& \lceil>g:=x \rightarrow x \cdot(1-x) \\
& g:=x \rightarrow x(1-x)  \tag{7}\\
& {[>\mathrm{b}:=\mathrm{n}->\operatorname{int}(\mathrm{g}(\mathrm{x}) * \sin (\operatorname{lambda*} \mathrm{x}), \mathrm{x}=0 \ldots 1) /(\operatorname{lambda*int}(\sin (\operatorname{lambda} \mathrm{x})} \\
& \text { ^2, } x=0 \text {. 1) ) ; } \\
& b:=n \rightarrow \frac{\int_{0}^{1} g(x) \sin (\lambda x) \mathrm{d} x}{\lambda\left(\int_{0}^{1} \sin (\lambda x)^{2} \mathrm{~d} x\right)}  \tag{8}\\
& -\frac{4\left(-1+(-1)^{n \sim}\right)}{n \sim^{4} \pi^{4}}  \tag{9}\\
& {[>u:=(x, t) \rightarrow v(x)+\operatorname{sum}(X(n, x) * T(n, t), n=1 \ldots 4) ;} \\
& u:=(x, t) \rightarrow v(x)+\sum_{n=1}^{4} X(n, x) T(n, t)  \tag{10}\\
& {[>\operatorname{plot} 3 \mathrm{~d}(\mathrm{u}(\mathrm{x}, \mathrm{t}), \mathrm{x}=0 \ldots 1, \mathrm{t}=0 . .3 \text {, axes=box,title="Constant applied }} \\
& \text { force"); }
\end{align*}
$$



