Graph Overview (1A)

Copyright (c) 2015-2018 Young W. Lim.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.
This document was produced by using LibreOffice and Octave.

Some class of graphs (1)

Complete graph

A complete graph is a graph in which each pair of vertices is joined by an edge. A complete graph contains all possible edges.

Connected graph

In an undirected graph, an unordered pair of vertices $\{x, y\}$ is called connected if a path leads from x to y. Otherwise, the unordered pair is called disconnected.

Bipartite graph

A bipartite graph is a graph in which the vertex set can be partitioned into two sets, W and X , so that no two vertices in W share a common edge and no two vertices in X share a common edge. Alternatively, it is a graph with a chromatic number of 2.

Complete Graphs

https://en.wikipedia.org/wiki/Complete_graph

Connected Graphs

This graph becomes disconnected when the right-most node in the gray area on the left is removed

This graph becomes disconnected when the dashed edge is removed.

With vertex 0 this graph is disconnected, the rest of the graph is connected.

Bipartite Graphs

Example of a bipartite graph without cycles

A graph with an odd cycle transversal of size 2: removing the two blue bottom vertices leaves a bipartite graph.

Complete Graphs

Complete Bipartite Graphs

Star Graphs

Wheel Graphs

Some class of graphs (2)

Planar graph

A planar graph is a graph whose vertices and edges can be drawn in a plane such that no two of the edges intersect.

Cycle graph

A cycle graph or circular graph of order $\mathrm{n} \geq 3$ is a graph in which the vertices
can be listed in an order v1, v2, ..., vn such that the edges are
the $\{v i, v i+1\}$ where $i=1,2, \ldots, n-1$, plus the edge $\{v n, v 1\}$.
Cycle graphs can be characterized as connected graphs in which the degree of all vertices is 2 .
If a cycle graph occurs as a subgraph of another graph, it is a cycle or circuit in that graph.

Tree

A tree is a connected graph with no cycles.

Planar Graphs

A planar graph and its dual

Cycle Graphs

C_{3}

C_{4}

A directed cycle graph of length 8

Tree Graphs

A labeled tree with 6 vertices and 5 edges.

A path graph on 6 vertices

https://en.wikipedia.org/wiki/Cycle_graph

Hypercube

A hypercube can be defined by increasing the numbers of dimensions of a shape:

0 - A point is a hypercube of dimension zero.
1 - If one moves this point one unit length, it
 will sweep out a line segment, which is a unit hypercube of dimension one.

2 - If one moves this line segment its length in a perpendicular direction from itself; it sweeps out a 2-dimensional square.

3 - If one moves the square one unit length in the direction perpendicular to the plane it lies on, it will generate a 3-dimensional cube.

4 - If one moves the cube one unit length into the fourth dimension, it generates a 4dimensional unit hypercube (a unit tesseract).

Tesseract

Gray Code

Tesseract

Adjacency Lists

The graph pictured above has this adjacency list representation:
a
adjacent to
:---
c

Incidence Matrix

$$
\begin{array}{|l|l|l|l|l|}
\hline & \mathbf{e}_{1} & \mathbf{e}_{\mathbf{2}} & \mathbf{e}_{\mathbf{3}} & \mathbf{e}_{\mathbf{4}} \\
\hline \mathbf{1} & 1 & 1 & 1 & 0 \\
\hline \mathbf{2} & 1 & 0 & 0 & 0 \\
\hline \mathbf{3} & 0 & 1 & 0 & 1 \\
\hline \mathbf{4} & 0 & 0 & 1 & 1 \\
\hline
\end{array}=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Adjacency Matrix

Hamiltonian Path

A hypercube graph showing a b Hamiltonian path in red, and a longest induced path in bold black.

One possible Hamiltonian cycle through every vertex of a dodecahedron is shown in red - like all platonic solids, the dodecahedron is
Hamiltonian

The above as a twodimensional planar graph

Minimum Spanning Tree

A planar graph and its minimum spanning \square tree. Each edge is labeled with its weight, which here is roughly proportional to its length.

This figure shows there may be more than one minimum spanning tree in a graph. In the figure, the two trees below the graph are two possibilities of minimum spanning tree of the given graph.

Seven Bridges of Königsberg

Shortest path problem

Traveling salesman problem

Simple Graph

A simple graph is an undirected graph without multiple edges or loops.
the edges form a set (rather than a multiset)
each edge is an unordered pair of distinct vertices.

can define a simple graph to be a set \mathbf{V} of vertices together with a set E of edges,

E are 2-element subsets of V
with \mathbf{n} vertices, the degree of every vertex is at most $\mathbf{n - 1}$

Multi-Graph

A multigraph, as opposed to a simple graph, is an undirected graph in which multiple edges (and sometimes loops) are allowed.

Multiple Edges

- multiple edges
- parallel edges
- Multi-edges
are two or more edges that are incident to the same two vertices

A simple graph has no multiple edges.

Loop

- a loop
- a self-loop
- a buckle
is an edge that connects a vertex to itself.

A simple graph contains no loops.

Walks

For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, a walk is defined as a sequence of alternating vertices and edges such as $v_{0}, e_{1}, v_{1,}, e_{2}, \cdots, e_{k}, v_{k}$
where each edge $e_{i}=\left\{v_{i-1}, v_{i}\right\}$

The length of this walk is k

Edges are allowed to be repeated

$$
e_{i}=e_{j} \text { for some } i, j
$$

ABCDE
ABCDCBE

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

Open / Closed Walks

A walk is considered to be closed if the starting vertex is the same as the ending vertex.

Otherwise open

ABCDA

ABCDE
ABCDCBE

Open / Closed Walks

A walk is considered to be closed if the starting vertex is the same as the ending vertex.

Otherwise open

closed walk $A B C D A$
open walk $A B C D E$
open walk $A B C D C B E$

Trails

A trail is defined as a walk with no repeated edges. $\quad e_{i} \neq e_{j}$ for all i, j

closed trail	closed walk	ABCDA
open trail	open walk	$A B C D E$
open trail	open walk	$A B C D C B E$

Paths

A path is defined as a open trail with no repeated vertices.

$$
\begin{aligned}
& e_{i} \neq e_{j} \text { for all } i, j \\
& v_{i} \neq v_{j} \text { for all } i, j
\end{aligned}
$$

path	closed trail	closed walk	ABCDA
path	open trail	open walk	$A B C D E$
path	open trail	open walk	$A B C D C B E$
path	open trail	open walk	$B E D A B C$

Cycles

A cycle is defined as a closed trail with no repeated vertices except the start/end vertex

$$
\begin{aligned}
& e_{i} \neq e_{j} \text { for all } i, j \\
& v_{i} \neq v_{j} \text { for all } i, j
\end{aligned}
$$

cycle	circuit	closed walk	$A B C D A$
eycle	circuit	closed walk	$A B C D E B D A$

Circuits

A circuit is defined as a closed trail with possibly repeated vertices but with no repeated edges

$$
\begin{aligned}
& e_{i} \neq e_{j} \text { for all } i, j \\
& v_{i}=v_{j} \text { for some } i, j
\end{aligned}
$$

circuit	closed walk	$A B C D A$
circuit	closed walk	$A B C D E B D A$

Walk, Trail, Path, Circuit, Cycle

$\qquad v_{0} \neq v_{k}$	$v_{0}=v_{k}$
open walks	circuits
trails	cycle
$v_{i} \neq v_{j}$	$v_{i} \neq v_{j}$

Walk, Trail, Path, Circuit, Cycle

	Vertices	Edges		
Walk	may repeat	may repeat	(Closed/Open)	
Trail	may repeat	cannot repeat	(Open)	
Path	cannot repeat	cannot repeat	(Open)	$0-0-0$
Circuit	may repeat	cannot repeat	(Closed)	
Cycle https://math.stac	cannot repeat exchange.com/que	cannot repeat s/655589/what	(Closed) ence-between-cycle-path-and-c	

References

[1] http://en.wikipedia.org/
[2]

