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Some class of graphs (1)

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

Complete graph
A complete graph is a graph in which each pair of vertices is joined by an edge. 
A complete graph contains all possible edges.

Connected graph
In an undirected graph, an unordered pair of vertices {x, y} is called connected 
if a path leads from x to y. Otherwise, the unordered pair is called disconnected.

Bipartite graph
A bipartite graph is a graph in which the vertex set can be 
partitioned into two sets, W and X, so that no two vertices in W 
share a common edge and no two vertices in X share a common edge. 
Alternatively, it is a graph with a chromatic number of 2.



Graph Overview (1A) 4 Young Won Lim
5/11/18

Complete Graphs

https://en.wikipedia.org/wiki/Complete_graph
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Connected Graphs

https://en.wikipedia.org/wiki/Connectivity_(graph_theory)

This graph becomes 
disconnected when the 
right-most node in the 
gray area on the left is 
removed

This graph becomes 
disconnected when the 
dashed edge is removed.

With vertex 0 this graph 
is disconnected, the 
rest of the graph is 
connected.
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Bipartite Graphs

https://en.wikipedia.org/wiki/Bipartite_graph

Example of a bipartite 
graph without cycles A complete bipartite graph 

with m = 5 and n = 3

A graph with an odd 
cycle transversal of size 
2: removing the two 
blue bottom vertices 
leaves a bipartite graph.
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Complete Graphs

https://en.wikipedia.org/wiki/Gallery_of_named_graphs
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Complete Bipartite Graphs

https://en.wikipedia.org/wiki/Gallery_of_named_graphs
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Star Graphs

https://en.wikipedia.org/wiki/Gallery_of_named_graphs
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Wheel Graphs

https://en.wikipedia.org/wiki/Gallery_of_named_graphs
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Some class of graphs (2)

Planar graph
A planar graph is a graph whose vertices and edges can be drawn in a plane 
such that no two of the edges intersect.

Cycle graph
A cycle graph or circular graph of order n ≥ 3 is a graph in which the vertices 
can be listed in an order v1, v2, …, vn such that the edges are 
the {vi, vi+1} where i = 1, 2, …, n − 1, plus the edge {vn, v1}. 
Cycle graphs can be characterized as connected graphs 
in which the degree of all vertices is 2. 
If a cycle graph occurs as a subgraph of another graph, it is a cycle or circuit in that graph.

Tree
A tree is a connected graph with no cycles.

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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Planar  Graphs

https://en.wikipedia.org/wiki/Planar_graph

A planar graph and its dual
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Cycle  Graphs

https://en.wikipedia.org/wiki/Cycle_graph
https://en.wikipedia.org/wiki/Gallery_of_named_graphs

https://en.wikipedia.org/wiki/Cycle_graph
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Tree Graphs

https://en.wikipedia.org/wiki/Cycle_graph
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Hypercube 

https://en.wikipedia.org/wiki/Hypercube

A hypercube can be defined by increasing the 
numbers of dimensions of a shape:

    0 – A point is a hypercube of dimension zero.
    1 – If one moves this point one unit length, it 
will sweep out a line segment, which is a unit 
hypercube of dimension one.
    2 – If one moves this line segment its length 
in a perpendicular direction from itself; it sweeps 
out a 2-dimensional square.
    3 – If one moves the square one unit length in 
the direction perpendicular to the plane it lies on, 
it will generate a 3-dimensional cube.
    4 – If one moves the cube one unit length into 
the fourth dimension, it generates a 4-
dimensional unit hypercube (a unit tesseract).

Tesseract
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Gray Code 

https://en.wikipedia.org/wiki/Gray_code

Tesseract
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Adjacency Lists

https://en.wikipedia.org/wiki/Adjacency_list
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Incidence Matrix

https://en.wikipedia.org/wiki/Incidence_matrix
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Adjacency Matrix

https://en.wikipedia.org/wiki/Adjacency_matrix
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Hamiltonian Path

https://en.wikipedia.org/wiki/Path_(graph_theory)

https://en.wikipedia.org/wiki/Path_(graph_theory
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Minimum Spanning Tree

https://en.wikipedia.org/wiki/Minimum_spanning_tree
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Seven Bridges of Königsberg

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

The problem was to devise a walk through the city that 
would cross each of those bridges once and only once.
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Shortest path problem

https://en.wikipedia.org/wiki/Shortest_path_problem



Graph Overview (1A) 24 Young Won Lim
5/11/18

Traveling salesman problem  

https://en.wikipedia.org/wiki/Travelling_salesman_problem
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Simple Graph

https://en.wikipedia.org/wiki/Travelling_salesman_problem

A simple graph is an undirected graph 
without multiple edges or loops. 

the edges form a set (rather than a multiset)
each edge is an unordered pair of distinct vertices. 

can define a simple graph to be a set V of vertices 
together with a set E of edges, 

E are 2-element subsets of V

with n vertices, 
the degree of every vertex is at most n − 1
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Multi-Graph

https://en.wikipedia.org/wiki/Travelling_salesman_problem

A multigraph, as opposed to a simple graph, is an 
undirected graph in which multiple edges (and 
sometimes loops) are allowed.
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Multiple Edges

https://en.wikipedia.org/wiki/Travelling_salesman_problem

● multiple edges 
● parallel edges
● Multi-edges

are two or more edges 
that are incident to the same two vertices 

A simple graph has no multiple edges.
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Loop

https://en.wikipedia.org/wiki/Travelling_salesman_problem

● a loop
● a self-loop
● a buckle

is an edge that connects a vertex to itself. 

A simple graph contains no loops.
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Walks

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

For a graph G= (V, E), a walk is defined as a sequence 

of alternating vertices and edges such as 

where each edge 

The length of this walk is 

Edges are allowed to be repeated

v0, e1, v1, e2, ⋯ , ek , vk

ei = {vi−1 , v i}

k
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v1
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CABCDE
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e i=e j for some i , j
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Open / Closed Walks

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A walk is considered to be closed if the starting vertex is 
the same as the ending vertex. 

Otherwise open
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Open / Closed Walks

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A walk is considered to be closed if the starting vertex is 
the same as the ending vertex. 

Otherwise open

v0

e1

v1

e2

v2

e3

v3

ek

vk = v0

⋯

B

E D

A

C

ABCDE

ABCDCBE

ABCDAclosed walk

open walk

open walk



Graph Overview (1A) 32 Young Won Lim
5/11/18

Trails

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A trail is defined as a walk with no repeated edges.
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Paths

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A path is defined as a open trail with no repeated vertices.
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Cycles

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A cycle is defined as a closed trail with no repeated 
vertices except the start/end vertex
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Circuits

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

A circuit is defined as a closed trail with possibly repeated 
vertices but with no repeated edges
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Walk, Trail, Path, Circuit, Cycle

open walks closed walks

trails circuits

path cycle

e i ≠ e j e i ≠ e j

v i ≠ v j v i ≠ v j

v0 ≠ vk v0 = vk
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Walk, Trail, Path, Circuit, Cycle

Vertices Edges

    Walk     may   may   (Closed/Open)
          repeat repeat
 

    Trail     may  cannot  (Open)
          repeat repeat 

    Path     cannot  cannot   (Open)
          repeat repeat 

    Circuit may  cannot   (Closed)
     repeat repeat 

    Cycle    cannot  cannot  (Closed)
         repeat repeat 

https://math.stackexchange.com/questions/655589/what-is-difference-between-cycle-path-and-circuit-in-graph-theory
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