Copyright (c) 2015 – 2018 Young W. Lim.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice and Octave.

Complete graph

A complete graph is a graph in which each pair of vertices is joined by an edge. A complete graph contains all possible edges.

Connected graph

In an undirected graph, an unordered pair of vertices $\{x, y\}$ is called connected if a path leads from x to y. Otherwise, the unordered pair is called disconnected.

Bipartite graph

A bipartite graph is a graph in which the vertex set can be partitioned into two sets, W and X, so that no two vertices in W share a common edge and no two vertices in X share a common edge. Alternatively, it is a graph with a chromatic number of 2.

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

Complete Graphs

4

https://en.wikipedia.org/wiki/Complete_graph

Connected Graphs

This graph becomes disconnected when the right-most node in the gray area on the left is removed

This graph becomes disconnected when the dashed edge is removed.

With vertex 0 this graph is disconnected, the rest of the graph is connected.

https://en.wikipedia.org/wiki/Connectivity_(graph_theory)

Bipartite Graphs

Example of a bipartite graph without cycles

A complete bipartite graph with m = 5 and n = 3

A graph with an odd cycle transversal of size 2: removing the two blue bottom vertices leaves a bipartite graph.

https://en.wikipedia.org/wiki/Bipartite_graph

6

Complete Graphs

 K_1

 K_3

 K_4

7

https://en.wikipedia.org/wiki/Gallery_of_named_graphs

Complete Bipartite Graphs

8

https://en.wikipedia.org/wiki/Gallery_of_named_graphs

https://en.wikipedia.org/wiki/Gallery_of_named_graphs

Graph Overview (1A)

Young Won Lim 5/11/18

Wheel Graphs

https://en.wikipedia.org/wiki/Gallery_of_named_graphs

Planar graph

A planar graph is a graph whose vertices and edges can be drawn in a plane such that no two of the edges intersect.

Cycle graph

A cycle graph or circular graph of order $n \ge 3$ is a graph in which the vertices can be listed in an order v1, v2, ..., vn such that the edges are the {vi, vi+1} where i = 1, 2, ..., n - 1, plus the edge {vn, v1}. Cycle graphs can be characterized as connected graphs in which the degree of all vertices is 2.

If a cycle graph occurs as a subgraph of another graph, it is a cycle or circuit in that graph.

Tree

A tree is a connected graph with no cycles.

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

Planar Graphs

A planar graph and its dual

https://en.wikipedia.org/wiki/Planar_graph

Cycle Graphs

https://en.wikipedia.org/wiki/Cycle_graph https://en.wikipedia.org/wiki/Gallery_of_named_graphs

Tree Graphs

https://en.wikipedia.org/wiki/Cycle_graph

A caterpillar

5

Hypercube

A hypercube can be defined by increasing the numbers of dimensions of a shape:

0 - A point is a hypercube of dimension zero. 1 - If one moves this point one unit length, it

will sweep out a line segment, which is a unit hypercube of dimension one.

2 – If one moves this line segment its length in a perpendicular direction from itself; it sweeps out a 2-dimensional square.

3 – If one moves the square one unit length in the direction perpendicular to the plane it lies on, it will generate a 3-dimensional cube.

4 – If one moves the cube one unit length into the fourth dimension, it generates a 4dimensional unit hypercube (a unit tesseract).

Tesseract

https://en.wikipedia.org/wiki/Hypercube

Gray Code

Tesseract

https://en.wikipedia.org/wiki/Gray_code

The graph pictured above has				
this adjacency list				
repr	representation:			
а	adjacent to	b, c		
b	adjacent to	a,c		
с	adjacent to	a,b		

https://en.wikipedia.org/wiki/Adjacency_list

Incidence Matrix

	e1	e ₂	e ₃	e 4		1.1	-	-	
1	1	1	1	0		$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	1	1	
2	1	0	0	0	=		0	0	
3	0	1	0	1			1	0	
4	0	0	1	1		(0	0	1	

https://en.wikipedia.org/wiki/Incidence_matrix

Adjacency Matrix

https://en.wikipedia.org/wiki/Adjacency_matrix

Hamiltonian Path

Hamiltonian path in red, and a longest induced path in bold black.

One possible Hamiltonian cycle through every vertex of a dodecahedron is shown in red – like all platonic solids, the dodecahedron is Hamiltonian

https://en.wikipedia.org/wiki/Path_(graph_theory)

Minimum Spanning Tree

This figure shows there may be more than one minimum spanning tree in a graph. In the figure, the two trees below the graph are two possibilities of minimum spanning tree of the given graph.

https://en.wikipedia.org/wiki/Minimum_spanning_tree

Seven Bridges of Königsberg

The problem was to devise a walk through the city that would cross each of those bridges once and only once.

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Shortest path problem

https://en.wikipedia.org/wiki/Shortest_path_problem

Traveling salesman problem

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Simple Graph

A simple graph is an undirected graph without multiple edges or loops.

the edges form a set (rather than a multiset) each edge is an unordered pair of distinct vertices.

can define a simple graph to be a **set V** of <u>vertices</u> together with a **set E** of <u>edges</u>,

E are <u>2-element</u> subsets of V

with **n** <u>vertices</u>, the **degree** of every <u>vertex</u> is <u>at most</u> n - 1

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Multi-Graph

A **multigraph**, as opposed to a **simple graph**, is an undirected graph in which **multiple edges** (and sometimes **loops**) are <u>allowed</u>.

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Multiple Edges

- multiple edges
- parallel edges
- Multi-edges

are <u>two or more</u> edges that are <u>incident</u> to the same two vertices

A **simple graph** has <u>no</u> multiple edges.

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Loop

- a loop
- a self-loop
- a buckle

is an edge that connects a vertex to itself.

A simple graph contains no loops.

https://en.wikipedia.org/wiki/Travelling_salesman_problem

Graph Overview (1A)

Young Won Lim 5/11/18

Walks

For a graph G= (V, E), a **walk** is defined as a sequence of <u>alternating</u> **vertices** and **edges** such as $v_{0,} e_{1,} v_{1,} e_{2,} \cdots, e_{k}$, v_{k}

where each edge
$$e_i = \{v_{i-1}, v_i\}$$

The length of this walk is k
Edges are allowed to be repeated
ABCDE
ABCDCBE
ABCCCBE
 $e_i = e_j \text{ for some } i, j$
 $e_k \\ e_i = e_j \text{ for some } i, j$

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

Open / Closed Walks

A walk is considered to be **closed** if the **starting** vertex is the <u>same</u> as the **ending** vertex.

Otherwise open

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

Graph Overview (1A)

30

Open / Closed Walks

A walk is considered to be **closed** if the **starting** vertex is the <u>same</u> as the **ending** vertex.

Otherwise open

C

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

Trails

A **trail** is defined as a **walk** with <u>no</u> <u>repeated</u> **edges**. $e_i \neq e_j$ for all *i*, *j*

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

Paths

A **path** is defined as a **open trail** with <u>no repeated</u> **vertices**. $e_i \neq e_j$ for all *i*, *j* $v_i \neq v_j$ for all *i*, *j*

path	closed trail	closed walk	ABCDA
path	open trail	open walk	ABCDE
path	open trail	open walk	ABCDCBE
path	open trail	open walk	BEDABC

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

Graph Overview (1A)

33

Young Won Lim 5/11/18 Cycles

A cycle is defined as a closed trail with <u>no repeated</u> vertices except the start/end vertex

 $e_i \neq e_j$ for all i, j $v_i \neq v_j$ for all i, j

cycle	circuit	closed walk	ABCDA
cycle	circuit	closed walk	ABCDEBDA

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

Circuits

A circuit is defined as a closed trail with possibly <u>repeated</u> vertices but with <u>no repeated</u> edges

 $e_i \neq e_j$ for all i, j $v_i = v_j$ for some i, j

http://mathonline.wikidot.com/walks-trails-paths-cycles-and-circuits

Graph Overview (1A)

35

Walk, Trail, Path, Circuit, Cycle

open walksclosed walkstrailscircuitspathcycle $v_i \neq v_j$ $v_i \neq v_j$ $e_i \neq e_j$ $e_i \neq e_j$

 $v_0 \neq v_k$ $v_0 \equiv v_k$

Walk, Trail, Path, Circuit, Cycle

	Vertices	Edges		
Walk	may repeat	may repeat	(Closed/Open)	
Trail	may repeat	<u>cannot</u> repeat	(Open)	
Path	<u>cannot</u> repeat	<u>cannot</u> repeat	(Open)	0000
Circuit	may repeat	<u>cannot</u> repeat	(Closed)	
Cycle	<u>cannot</u> repeat	<u>cannot</u> repeat	(Closed)	uit-in-graph-theory

References

