
1 Young Won Lim
12/26/19

Monad P3 : Mutable Data Structures (1D)

2 Young Won Lim
12/26/19

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Mutable Data Structures
(1D)

3 Young Won Lim
12/26/19

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps

Mutable Data Structures
(1D)

4 Young Won Lim
12/26/19

Arrays, hash tables and any other mutable data structures

are defined in the same way - for each of them,

there's an operation that creates new "mutable values"

and returns a reference to it.

Then special read and write operations in the IO monad are used.

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Mutable data structures

Mutable Data Structures
(1D)

5 Young Won Lim
12/26/19

mport Data.Array.IO

main = do arr <- newArray (1,10) 37 :: IO (IOArray Int Int)

 a <- readArray arr 1

 writeArray arr 1 64

 b <- readArray arr 1

 print (a, b)

Here, an array of 10 elements with 37 as the initial value

at each location is created.

After reading the value of the first element (index 1)

into 'a' this element's value is changed to 64

and then read again into 'b'

As you can see by executing this code,

'a' will be set to 37 and 'b' to 64.

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Mutable arrays

Mutable Data Structures
(1D)

6 Young Won Lim
12/26/19

In most implementations of lazy evaluation,

values are represented at runtime as pointers

to either their value, or code for computing their value.

This extra level of indirection,

together with any extra tags needed by the runtime,

is known as a box.

https://wiki.haskell.org/Arrays

Box

pointer value

pointer code

Mutable Data Structures
(1D)

7 Young Won Lim
12/26/19

The default boxed arrays consist of many of these boxes,

each of which may compute its value separately.

This allows for many neat tricks,

 like recursively defining an array's elements

in terms of one another, or

only computing the specific elements of the array

which are ever needed.

However, for large arrays, it costs a lot in terms of overhead,

and if the entire array is always needed, it can be a waste.

https://wiki.haskell.org/Arrays

Boxed Arrays

Mutable Data Structures
(1D)

8 Young Won Lim
12/26/19

Unboxed arrays are more like arrays in C -

they contain just the plain values

without this extra level of indirection,

for example, an array of 1024 values of type Int32

will use only 4 kb of memory.

Moreover, indexing of such arrays can be significantly faster.

https://wiki.haskell.org/Arrays

UnBoxed Arrays

Mutable Data Structures
(1D)

9 Young Won Lim
12/26/19

First, unboxed arrays can be made

only of plain values having a fixed size

- Int, Word, Char, Bool, Ptr, Double, etc.

custom unboxed arrays

for other simple types, including enumerations.

But Integer, String and

any other types defined with variable size

cannot be elements of unboxed arrays.

https://wiki.haskell.org/Arrays

UnBoxed Arrays – only for simple types

Mutable Data Structures
(1D)

10 Young Won Lim
12/26/19

Second, without that extra level of indirection,

all of the elements in an unboxed array

must be evaluated when the array is evaluated,

so you lose the benefits of lazy evaluation.

Indexing the array to read just one element

will construct the entire array. (all elements evaluated)

This is not much of a loss if you will eventually need the whole array,

may be too expensive if you only ever need specific values.

https://wiki.haskell.org/Arrays

UnBoxed Arrays – all elements are evaluated

Mutable Data Structures
(1D)

11 Young Won Lim
12/26/19

Accessing only one element

will construct the entire array

this fact prevents unboxed arrays

from recursively defining the array elements

in terms of each other

Nevertheless, unboxed arrays are

a very useful optimization instrument,

and are recommended to be used as much as possible.

https://wiki.haskell.org/Arrays

UnBoxed Arrays – no recursive definition

Mutable Data Structures
(1D)

12 Young Won Lim
12/26/19

array library supports two array varieties -

lazy boxed arrays

strict unboxed arrays

A parallel array implements something intermediate:

strict boxed immutable arrays

This keeps the flexibility of

using any data type as an array element

while making both creation of and access to

such arrays much faster.

https://wiki.haskell.org/Arrays

Array Library Types

Mutable Data Structures
(1D)

13 Young Won Lim
12/26/19

Parallel array creation is implemented as

one imperative loop

that fills all the array elements,

while accesses to array elements

don't need to check the box

https://wiki.haskell.org/Arrays

Parallel Arrays – creation and access

Mutable Data Structures
(1D)

14 Young Won Lim
12/26/19

It should be obvious that parallel arrays

are not efficient in cases where

the calculation of array elements is relatively complex

and most elements will not be used.

parallel arrays don't support the IArray interface,

which means that you can't write generic algorithms

which work both with Array and the parallel array constructor.

https://wiki.haskell.org/Arrays

Parallel Arrays – drawbacks

Mutable Data Structures
(1D)

15 Young Won Lim
12/26/19

https://wiki.haskell.org/Arrays

Array Types

Immutable
Instance

Iarray a e

IO Monad
Instance

MArray a e IO

ST Monad
Instance

MArray a e ST

Array
DiffArray IOArray STArrayStandard

UArray
DiffUArray

IOUArray
StorableArray STUArrayUnboxed

lazy boxed arrays

strict unboxed arrays

Immutable Mutable

Mutable Data Structures
(1D)

16 Young Won Lim
12/26/19

Haskell'98 supports just one array constructor type,

namely Array, which gives you immutable boxed arrays.

https://wiki.haskell.org/Arrays

Array constructor

Mutable Data Structures
(1D)

17 Young Won Lim
12/26/19

Immutable means that these arrays,

like any other pure functional data structure,

have contents fixed at construction time.

You can't modify them, only query.

There are modification operations,

but they just return new arrays and

don't modify the original one.

This makes it possible to use Arrays

in pure functional code along with lists.

https://wiki.haskell.org/Arrays

Immutable Array

Mutable Data Structures
(1D)

18 Young Won Lim
12/26/19

Boxed means that array elements

are just ordinary Haskell (lazy) values,

which are evaluated on demand,

and can even contain bottom (undefined) values.

https://wiki.haskell.org/Arrays

Boxed Array

Mutable Data Structures
(1D)

19 Young Won Lim
12/26/19

the typeclass Iarray (immutable array)

Data.Array.Iarray

defines the same operations that were defined

for Array in Haskell'98

Data.Array

The big difference is that

it is now a typeclass and

there are 4 array type constructors,

each implements these interface:

Array, UArray, DiffArray, and DiffUArray.

https://wiki.haskell.org/Arrays

Immutable Array

Mutable Data Structures
(1D)

20 Young Won Lim
12/26/19

the type class MArray (mutable array)

Data.Array.MArray

contains operations to update array elements in-place.

Mutable arrays are very similar to IORefs,

only they contain multiple values.

Type constructors for mutable arrays are

IOArray and IOUArray

operations which create, update and query these arrays

all belong to the IO monad:

https://wiki.haskell.org/Arrays

Mutable Array

Mutable Data Structures
(1D)

21 Young Won Lim
12/26/19

In the same way that IORef has its more general cousin STRef,

IOArray has a more general version STArray

(and similarly, IOUArray corresponds to STUArray).

These array types allow one to work with

mutable arrays in the ST monad:

https://wiki.haskell.org/Arrays

Mutable Array

Mutable Data Structures
(1D)

22 Young Won Lim
12/26/19

Haskell provides indexable arrays,

which may be thought of as functions

whose domains are isomorphic to contiguous subsets of the integers.

Functions restricted in this way can be implemented efficiently;

in particular, a programmer may reasonably expect

rapid access to the components.

To ensure the possibility of such an implementation,

arrays are treated as data, not as general functions.

https://www.haskell.org/hugs/pages/libraries/base/Data-Array.html

Immutable non-strict arrays

Mutable Data Structures
(1D)

23 Young Won Lim
12/26/19

Since most array functions involve the class Ix,

this module is exported from Data.Array

so that modules need not import both Data.Array and Data.Ix.

https://www.haskell.org/hugs/pages/libraries/base/Data-Array.html

Immutable non-strict arrays

Mutable Data Structures
(1D)

24 Young Won Lim
12/26/19

The Ix class is used to map a contiguous subrange of values

in a type onto integers.

It is used primarily for array indexing

(see Data.Array, Data.Array.IArray and Data.Array.MArray).

The first argument (l,u) of each of these operations is

a pair specifying the lower and upper bounds

of a contiguous subrange of values.

https://www.haskell.org/hugs/pages/libraries/base/Data-Ix.html

Ix class

Mutable Data Structures
(1D)

25 Young Won Lim
12/26/19

Arrays with unboxed elements. Instances of IArray

are provided for UArray with certain element types

(Int, Float, Char, etc.; see the UArray class for a full list).

A UArray will generally be more efficient

(in terms of both time and space) than the equivalent Array

with the same element type.

http://hackage.haskell.org/package/array-0.4.0.0/docs/Data-Array-Unboxed.html

UArray (1)

Mutable Data Structures
(1D)

26 Young Won Lim
12/26/19

However, UArray is strict in its elements -

so don't use UArray if you require

the non-strictness that Array provides.

Because the IArray interface provides operations

overloaded on the type of the array,

it should be possible to just change the array type

being used by a program from say Array to UArray

to get the benefits of unboxed arrays

(don't forget to import Data.Array.Unboxed instead of Data.Array).

http://hackage.haskell.org/package/array-0.4.0.0/docs/Data-Array-Unboxed.html

UArray (1)

Mutable Data Structures
(1D)

27 Young Won Lim
12/26/19

https://wiki.haskell.org/Arrays

Mutable arrays

Immutable
Instance

Iarray a e

IO Monad
Instance

MArray a e IO

ST Monad
Instance

MArray a e ST

Array
DiffArray IOArray STArrayStandard

UArray
DiffUArray

IOUArray
StorableArray STUArrayUnboxed

Mutable Data Structures
(1D)

28 Young Won Lim
12/26/19

The Ix library defines a type class of array indices:

class (Ord a) => Ix a where

 range :: (a,a) -> [a]

 index :: (a,a) a -> Int

 inRange :: (a,a) -> a -> Bool

https://www.haskell.org/tutorial/arrays.html

Index Types

Mutable Data Structures
(1D)

29 Young Won Lim
12/26/19

 The range operation takes a bounds pair and produces

the list of indices lying between those bounds, in index order.

For example,

range (0,4) => [0,1,2,3,4]

range ((0,0),(1,2)) => [(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)]

The inRange predicate determines whether an index lies

between a given pair of bounds.

(For a tuple type, this test is performed component-wise.)

https://www.haskell.org/tutorial/arrays.html

Index Types (1)

Mutable Data Structures
(1D)

30 Young Won Lim
12/26/19

 Finally, the index operation allows a particular element of an array

to be addressed: given a bounds pair and an in-range index,

the operation yields the zero-origin ordinal of the index

within the range; for example:

index (1,9) 2 => 1

index ((0,0),(1,2)) (1,1) => 4

https://www.haskell.org/tutorial/arrays.html

Index Types (2)

Mutable Data Structures
(1D)

31 Young Won Lim
12/26/19

Haskell's monolithic array creation function forms

an array from a pair of bounds and a list of index-value pairs

(an association list):

array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b

Here, for example, is a definition of an array of

the squares of numbers from 1 to 100:

squares = array (1,100) [(i, i*i) | i <- [1..100]]

https://www.haskell.org/tutorial/arrays.html

Array Creation (1)

Mutable Data Structures
(1D)

32 Young Won Lim
12/26/19

 Array subscripting is performed with the infix operator !,

and the bounds of an array can be extracted with the function bounds:

squares!7 => 49

bounds squares => (1,100)

We might generalize this example by parameterizing

the bounds and the function to be applied to each index:

mkArray :: (Ix a) => (a -> b) -> (a,a) -> Array a b

mkArray f bnds = array bnds [(i, f i) | i <- range bnds]

Thus, we could define squares as mkArray (\i -> i * i) (1,100).

https://www.haskell.org/tutorial/arrays.html

Array Creation (2)

Mutable Data Structures
(1D)

33 Young Won Lim
12/26/19

Many arrays are defined recursively; that is,

with the values of some elements depending on the values of others.

 Here, for example,

we have a function returning an array of Fibonacci numbers:

fibs :: Int -> Array Int Int

fibs n = a where a = array (0,n) ([(0, 1), (1, 1)] ++

 [(i, a!(i-2) + a!(i-1)) | i <- [2..n]])

https://www.haskell.org/tutorial/arrays.html

Array Creation (3)

Mutable Data Structures
(1D)

34 Young Won Lim
12/26/19

Another example of such a recurrence is the n by n wavefront matrix,

in which elements of the first row and first column all have

the value 1 and other elements are sums of their neighbors

to the west, northwest, and north:

wavefront :: Int -> Array (Int,Int) Int

wavefront n = a where

 a = array ((1,1),(n,n))

 ([((1,j), 1) | j <- [1..n]] ++

 [((i,1), 1) | i <- [2..n]] ++

 [((i,j), a!(i,j-1) + a!(i-1,j-1) + a!(i-1,j))

 | i <- [2..n], j <- [2..n]])

https://www.haskell.org/tutorial/arrays.html

Array Creation (4)

Mutable Data Structures
(1D)

35 Young Won Lim
12/26/19

We can relax the restriction that an index appear at most once

 in the association list by specifying how to combine

multiple values associated with a single index;

the result is called an accumulated array:

accumArray :: (Ix a) -> (b -> c -> b) -> b -> (a,a) -> [Assoc a c] -> Array a b

https://www.haskell.org/tutorial/arrays.html

Accumulation (1)

Mutable Data Structures
(1D)

36 Young Won Lim
12/26/19

hist :: (Ix a, Integral b) => (a,a) -> [a] -> Array a b

hist bnds is = accumArray (+) 0 bnds [(i, 1) | i <- is, inRange bnds i]

Suppose we have a collection of measurements on the interval [a,b),

 and we want to divide the interval into decades and count

 the number of measurements within each:

decades :: (RealFrac a) => a -> a -> [a] -> Array Int Int

decades a b = hist (0,9) . map decade

 where decade x = floor ((x - a) * s)

 s = 10 / (b - a)

https://www.haskell.org/tutorial/arrays.html

Accumulation (2)

Mutable Data Structures
(1D)

37 Young Won Lim
12/26/19

In addition to the monolithic array creation functions,

Haskell also has an incremental array update function,

written as the infix operator //; the simplest case,

an array a with element i updated to v, is written a // [(i, v)].

The reason for the square brackets is

that the left argument of (//) is an association list,

usually containing a proper subset of the indices of the array:

(//) :: (Ix a) => Array a b -> [(a,b)] -> Array a b

https://www.haskell.org/tutorial/arrays.html

Incremental Update (1)

Mutable Data Structures
(1D)

38 Young Won Lim
12/26/19

As with the array function, the indices in the association list must

 be unique for the values to be defined.

 For example, here is a function to interchange two rows of a matrix:

swapRows :: (Ix a, Ix b, Enum b) => a -> a -> Array (a,b) c -> Array (a,b) c

swapRows i i' a = a // ([((i ,j), a!(i',j)) | j <- [jLo..jHi]] ++

 [((i',j), a!(i ,j)) | j <- [jLo..jHi]])

 where ((iLo,jLo),(iHi,jHi)) = bounds a

swapRows i i' a = a // [assoc | j <- [jLo..jHi],

 assoc <- [((i ,j), a!(i',j)),

 ((i',j), a!(i, j))]]

 where ((iLo,jLo),(iHi,jHi)) = bounds a

https://www.haskell.org/tutorial/arrays.html

Incremental Update (2)

Mutable Data Structures
(1D)

39 Young Won Lim
12/26/19

matMult :: (Ix a, Ix b, Ix c, Num d) =>

 Array (a,b) d -> Array (b,c) d -> Array (a,c) d

matMult x y = array resultBounds

 [((i,j), sum [x!(i,k) * y!(k,j) | k <- range (lj,uj)])

 | i <- range (li,ui),

 j <- range (lj',uj')]

 where ((li,lj),(ui,uj)) = bounds x

 ((li',lj'),(ui',uj')) = bounds y

 resultBounds

 | (lj,uj)==(li',ui') = ((li,lj'),(ui,uj'))

 | otherwise = error "matMult: incompatible bounds"

https://www.haskell.org/tutorial/arrays.html

Matrix Multiplication (1)

Mutable Data Structures
(1D)

40 Young Won Lim
12/26/19

matMult x y = accumArray (+) 0 resultBounds

 [((i,j), x!(i,k) * y!(k,j))

 | i <- range (li,ui),

 j <- range (lj',uj')

 k <- range (lj,uj)]

 where ((li,lj),(ui,uj)) = bounds x

 ((li',lj'),(ui',uj')) = bounds y

 resultBounds

 | (lj,uj)==(li',ui') = ((li,lj'),(ui,uj'))

 | otherwise = error "matMult: incompatible bounds"

https://www.haskell.org/tutorial/arrays.html

Matrix Multiplication (2)

Mutable Data Structures
(1D)

41 Young Won Lim
12/26/19

genMatMult :: (Ix a, Ix b, Ix c) =>

 ([f] -> g) -> (d -> e -> f) ->

 Array (a,b) d -> Array (b,c) e -> Array (a,c) g

genMatMult sum' star x y =

 array resultBounds

 [((i,j), sum' [x!(i,k) `star` y!(k,j) | k <- range (lj,uj)])

 | i <- range (li,ui),

 j <- range (lj',uj')]

 where ((li,lj),(ui,uj)) = bounds x

 ((li',lj'),(ui',uj')) = bounds y

 resultBounds

 | (lj,uj)==(li',ui') = ((li,lj'),(ui,uj'))

 | otherwise = error "matMult: incompatible bounds"

https://www.haskell.org/tutorial/arrays.html

Matrix Multiplication (3)

Mutable Data Structures
(1D)

42 Young Won Lim
12/26/19

genMatMult :: (Ix a, Ix b, Ix c) =>

 ([f] -> g) -> (d -> e -> f) ->

 Array (a,b) d -> Array (b,c) e -> Array (a,c) g

genMatMult sum' star x y =

 array resultBounds

 [((i,j), sum' [x!(i,k) `star` y!(k,j) | k <- range (lj,uj)])

 | i <- range (li,ui),

 j <- range (lj',uj')]

 where ((li,lj),(ui,uj)) = bounds x

 ((li',lj'),(ui',uj')) = bounds y

 resultBounds

 | (lj,uj)==(li',ui') = ((li,lj'),(ui,uj'))

 | otherwise = error "matMult: incompatible bounds"

https://www.haskell.org/tutorial/arrays.html

Matrix Multiplication (3)

Mutable Data Structures
(1D)

43 Young Won Lim
12/26/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43

