
Young Won Lim
1/1/19

Monad Overview (2A)



Young Won Lim
1/1/19

 Copyright (c)  2016  - 2018   Young W. Lim.

  Permission is granted to copy, distribute and/or modify this document  under the terms of the GNU Free Documentation License, Version 1.2 or any 
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.  A copy of the 
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com


Monad Overview (2A) 3 Young Won Lim
1/1/19

Based on

Haskell in 5 steps

https://wiki.haskell.org/Haskell_in_5_steps



Monad Overview (2A) 4 Young Won Lim
1/1/19

monad (plural monads)

● An ultimate atom, or simple, unextended point; 

something ultimate and indivisible.

● (mathematics, computing) A monoid in the 

category of endofunctors.

● (botany) A single individual (such as a pollen 

grain) that is free from others, not united in a 

group.

monoid (plural monoids)

● (mathematics) A set which is closed under an 

associative binary operation, and which contains 

an element which is an identity for the operation.

https://en.wiktionary.org/wiki/monad, monoid

Monad, Monoid

https://en.wiktionary.org/wiki/monad


Monad Overview (2A) 5 Young Won Lim
1/1/19

a monad is a parameterized type m 

Maybe is not a concrete type

Maybe Int is  a concrete type

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Monad – a parameterized type 

class Monad m where ...

instance Monad Maybe where ...

m a

Maybe  a

Monadic type

single 
parameter

Maybe  Int

Maybe  Float

IO  Float

IO  ()

… 



Monad Overview (2A) 6 Young Won Lim
1/1/19

A notion of computations

a value of type M a is interpreted as 

a statement in an imperative language M 

that returns a value of type a as its result; 

a statement in an imperative language M 

describes which effects are possible.

executing a statement returns the result

running a function 

                   effects + result 

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

   M  a

computations resulting in values

imperative code

monadic type



Monad Overview (2A) 7 Young Won Lim
1/1/19

Semantics of a language M

Semantics : what the language M allows us to say. 

a statement in an imperative language M 

describes which effects are possible.

the semantics of this language are determined by the monad M

In the case of Maybe, 

the semantics allow us to express failures 

when a statement fails to produce a result, 

allowing statements that are following to be skipped

an immediate abort 

a valueless return in the middle of a computation.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3



Monad Overview (2A) 8 Young Won Lim
1/1/19

A value of type M a

mx :: M a

a value mx of type M a :  

an execution of a function
computations that result in values

a shows what type of value 
is produced by the operation

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

M a represent a parameterized Monad type

● Maybe a

● IO a

● ST a

● State s a 

function application, execution, a return value 

the type M a a monadic value mx

an imperative language M a statement in M returning a type a value

function definition



Monad Overview (2A) 9 Young Won Lim
1/1/19

Haskell does not have states

but it’s type system is powerful enough 

to construct the stateful program flow

defining a Monad type in Haskell 

- similar to defining a class 

  in an object oriented language (C++, Java)

- a Monad can do much more than a class:

A Monad type can be used for 

● exception handling 

● parallel program workflow  

● a parser generator

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

A Type Monad 

State
(1, 2) 1

State
(0, 1) 0

State
(2, 3) 2

State
Int (Int, Int)

(x, s) s

stateful computations based on 
function application



Monad Overview (2A) 10 Young Won Lim
1/1/19

Haskell types are the rules associated with the data,  

not the actual data itself.

OOP (Object-Oriented Programming) enable us 

to use classes / interfaces 

to define types, 

the rules (methods) that interacts with the actual data.

to use templates(c++) or generics(java) 

to define more abstracted rules that are more reusable

Monad is pretty much like templates / generic class.

http://www.idryman.org/blog/2014/01/23/yet-another-monad-tutorial/

Types: rules and data

Rules + Data

Rules 

collection of methods 
to be implemented



Monad Overview (2A) 11 Young Won Lim
1/1/19

a monad is a parameterized type m 

that supports return and >>= functions of the specified types

  return :: a -> m a
  (>>=)  :: m a -> (a -> m b) -> m b

to sequence m a type values. 

the do notation can be used 

generally, the (>>=) bind operator is used

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Monad methods

tick :: State Int Int
tick = do n <- get
          put (n+1)
          return n

test  = do tick -- (0,1)
                 tick                     -- (1,2)

test  = tick  >>= tick  

runState test 0 -- (4,6)



Monad Overview (2A) 12 Young Won Lim
1/1/19

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad – an action and its result 

   M  a

computations resulting in values

imperative code

monadic type

computations resulting in values

:: Maybe  amx

if meaningful value, Just x
otherwise, Nothing

The result value of Just x is
x :: a
Nothing returns always 
Nothing (the monadic value)

pass only 
meaningful 
value x

semantics

effects

mx has two forms

Just x

Nothing



Monad Overview (2A) 13 Young Won Lim
1/1/19

class Monad m where

  return :: a -> m a
  (>>=)  :: m a -> (a -> m b) -> m b

instance Monad Maybe where
   -- return      :: a -> Maybe a
   return x       =  Just x

   -- (>>=)       :: Maybe a -> (a -> Maybe b) -> Maybe b
   Nothing  >>= _ =  Nothing
   (Just x) >>= f =  f x

   f :: a -> Maybe b

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad Instance 

m a

Maybe a

 a parameterized type

method type signatures

return method definition

>>= method definition



Monad Overview (2A) 14 Young Won Lim
1/1/19

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad – the bind operator (>>=)

pass only the meaningful value

Just 10 >>= g g 10  

Nothing >>= g Nothing

computation stops immediately

Just 3 Just 4

return x+1

Nothing Nothing

3 return 4

g x = return x+1

g = \x -> return x+1

a general function g can return 
Nothing depending on its input x 
(eg. divide by zero)



Monad Overview (2A) 15 Young Won Lim
1/1/19

(Just x) >>= f    =    f x

Assume 

(Just 3) :: Maybe Int

f :: Int -> Maybe Int

f = \x -> return x+1

f x = return x+1 -- Just (x+1) :: m b

(>>=)  :: m a -> (a -> m b) -> m b

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad – (>>=) type signature 



Monad Overview (2A) 16 Young Won Lim
1/1/19

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad – the assignment operator (<-)

dt1 = do { x <- Just 3; 

                if x == 3 then return 33;  

                              else return 44;}

dt2 = do { x  <- Just 4; 

                if x == 3 then return 33;  

                              else return 44;}

dt3 = do { x  <- Nothing; 

                if x == 3 then return 33;  

                              else return 44;}

Just 3 Just 33

x  = 3 

Just 4 Just 44

x  = 4

Nothing Nothing

No assignment to x  

After evaluating the monadic value, 

only the result 33 is assigned to x

Only a meaningful number 

is assigned to x



Monad Overview (2A) 17 Young Won Lim
1/1/19

Maybe Person type 

A value of the type Maybe Person, 

is interpreted as a statement in an imperative language 

that returns a Person as the result, or fails.

father p, which is a function application,

has also the type Maybe Person

p :: Person

father p :: Maybe Person 

mother q :: Maybe Person 

father :: Person -> Maybe Person

mother :: Person -> Maybe Person

                   

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

father p =

Just q

Nothing



Monad Overview (2A) 18 Young Won Lim
1/1/19

Maybe (Person, Person) type 

bothGrandfathers :: Person -> Maybe (Person, Person)

bothGrandfathers p =
   father p >>=
       (\dad -> father dad >>=
           (\gf1 -> mother p >>=   
               (\mom -> father mom >>=
                   (\gf2 -> return (gf1,gf2) ))))

bothGrandfathers p = do {
        dad <- father p;
        gf1 <- father dad;
        mom <- mother p;
        gf2 <- father mom;
        return (gf1, gf2);
      }

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

p :: Person

father p :: Maybe Person 

mother q :: Maybe Person 

dad :: Person

gf1 :: Person

mom :: Person

gf2 :: Person

(gf1, gf2) :: Maybe (Person, Person)

gf1 is only used in the final return



Monad Overview (2A) 19 Young Won Lim
1/1/19

Fail to return result exception

Sequencing operator >>=  and do bock look like 

an imperative programming code

but they support exceptions : Nothing

father and mother are functions 

that might fail to produce results, 

raising an exception instead; Nothing

when any exception happens, the whole code will fail, i.e. 

terminate with an exception (evaluate to Nothing).

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

Just p Just q

Nothing Nothing

p father p

p :: Person

father p :: Maybe Person 

father 
Nothing



Monad Overview (2A) 20 Young Won Lim
1/1/19

The Maybe monad provides 

a simple model of computations that can fail, 

a value of type Maybe a is either Nothing (failure) or

the form Just x for some x of type a (success)

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

Maybe Monad – the value for failure



Monad Overview (2A) 21 Young Won Lim
1/1/19

The list monad generalizes this notion, 

by permitting multiple results in the case of success. 

a value of [a] is 

either the empty list [ ] (failure)

or the form of a non-empty list [x1,x2,...,xn]  (success)

for some xi of type a

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List Monad – the value for failure



Monad Overview (2A) 22 Young Won Lim
1/1/19

instance Monad [] where
   -- return :: a -> [a]
   return x  =  [x]

   -- (>>=)  :: [a] -> (a -> [b]) -> [b]
   xs >>= f  =  concat (map f xs)

return converts a value into a successful result 
containing that value 

>>= provides a means of sequencing computations 
that may produce multiple results:

xs :: [a]

f :: a -> [b] 

(>>=) :: [a] -> (a -> [b]) -> [b]

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List Monad methods



Monad Overview (2A) 23 Young Won Lim
1/1/19

xs >>= f applies the function f [y1, y2] = f x1
to each of the results in the list xs [y3, y4] = f x2

[y5, y6] = f x3
to give a nested list of results, [[y1,y2], [y3,y4], [y5,y6]]
which is then concatenated 
to give a single list of results. [y1, y2, y3, y4, y5, y6]

(Aside: in this context, [] denotes the list type [a] without its parameter.) 

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

List Monad bind operator

xs :: [a]

f :: a -> [b] 

(>>=) :: [a] -> (a -> [b]) -> [b]

[1, 2, 3] >>= \n -> [1..n]

[[1], [1,2], [1,2,3]]

[1,1,2,1,2,3]

[x1,          x2,          x3] 

[[y1, y2],  [y3, y4],  [y5, y6]] 

[y1, y2, y3, y4, y5, y6] 

map f xs

xs

concat (map f xs)

f f f



Monad Overview (2A) 24 Young Won Lim
1/1/19

1. Exception Handling Maybe a

2. Accumulate States State s a

3. IO Monad IO a 

http://www.idryman.org/blog/2014/01/23/yet-another-monad-
tutorial/

Monad Applications 



Monad Overview (2A) 25 Young Won Lim
1/1/19

A type is just a set of rules, or methods 

in Object-Oriented terms

A Monad is just yet another type, and 

the definition of this type is defined by four rules:

1)     bind (>>=)

2)     then (>>)

3)     return

4)     fail

http://www.idryman.org/blog/2014/01/23/yet-another-monad-
tutorial/

Monad Rules 

Rules (methods)



Monad Overview (2A) 26 Young Won Lim
1/1/19

Monad Minimal Definition

A minimal definition of monad 

    a type constructor m;

    a function return;

    an operator (>>=)  “bind"

The function and operator 

● are methods of the Monad type class 

● have types (type signatures)

    return :: a -> m a

(>>=)  :: m a -> (a -> m b) -> m b

are required to obey three laws

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Maybe a

IO a

ST a

State s a 

m a



Monad Overview (2A) 27 Young Won Lim
1/1/19

Monad Laws

every instance of the Monad type class must obey 

    m >>= return     =  m                        -- right unit

    return x >>= f    =  f x                      -- left unit

    (m >>= f) >>= g  =  m >>= (\x -> f x >>= g)  -- associativity

m :: M a monadic value of type M a

x :: a

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

return :: a -> M a

(>>=)  :: M a -> (a -> M b) -> M b

m :: M a

f :: a -> M b

f x :: M b

f x >>= g :: M c

(>>=)  :: M a -> (a -> M b) -> M b

(>>=)  :: M b -> (b -> M c) -> M c



Monad Overview (2A) 28 Young Won Lim
1/1/19

Monad Laws Examples (1)

    m >>= return     =  m                        -- right unit

    return x >>= f    =  f x                      -- left unit

    (m >>= f) >>= g  =  m >>= (\x -> f x >>= g)  -- associativity

Right unit

(m  >>=  return)     =  m 

(Just 3 >>=  return)     =  Just 3 

Left unit

((return  x)  >>=  f)   =  f x                      

((return  3)  >>=  (\x -> return (x+1)))   =  return 4 = Just 4                      

https://en.wikibooks.org/wiki/Haskell/Understanding_monads



Monad Overview (2A) 29 Young Won Lim
1/1/19

Monad Laws Examples (2)

    m >>= return     =  m                        -- right unit

    return x >>= f    =  f x                      -- left unit

    (m >>= f) >>= g  =  m >>= (\x -> f x >>= g)  -- associativity

((Just 3)  >>=  (\x -> return (x+1)) )  = Just 4   

((Just 4)  >>=  (\x -> return (2*x)) )  =  Just 8                      

((\x -> return (x+1))  >>=  (\x -> return (2*x)) ) = (\x -> return (2*(x+1)))

((Just 3)  >>=  (\x -> return (2*(x+1))) )  =  Just 8                      

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

f x =  (\x -> return (x+1))

g x = (\x -> return (2*x))

((m >>= f)

((m >>= f) >>= g)

(\x -> f x >>= g)

m >>= (\x -> f x >>= g)



Monad Overview (2A) 30 Young Won Lim
1/1/19

then (>>) and bind (>>=) operators 

the then operator (>>) 

an implementation of the semicolon 

The bind operator (>>=) 

an implementation of the semicolon (;) and  

assignment (<-) of the result 

of a previous computational step. 

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

 <-    ;

foo >>= (\x -> return (x + 3))

x

x <- foo >>    return (x + 3)      

x <- foo ;    return (x + 3)      

 >>= ->



Monad Overview (2A) 31 Young Won Lim
1/1/19

Contexts of >> and >>= 

Monad Sequencing Operator

>> is used to order the evaluation of expressions 

within some context; 

it makes evaluation of the right 

depend on the evaluation of the left

Monad Sequencing Operator with value passing 

>>= passes the result of the expression on the left 

as an argument to the expression on the right, 

while preserving the context that the argument and function use

https://www.quora.com/What-do-the-symbols-and-mean-in-haskell

Just 10 :: Maybe Int 

context

semantics

effects

Just 10 >>= f 
f 10 
10 is passed to the function 

f as an argument



Monad Overview (2A) 32 Young Won Lim
1/1/19

>>= and return 

an assignment and semicolon as the bind operator:

   x <- foo; return (x + 3)  foo >>= (\x -> return (x + 3))

The bind operator >>= combines together two computational steps, 

foo and return (x + 3), 

in a manner particular to the Monad M, 

while creating a new binding for the variable x to hold foo's result, 

making x available to the next computational step, return (x + 3). 

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3



Monad Overview (2A) 33 Young Won Lim
1/1/19

>>= and return – Semantics of Maybe Monad

an assignment and semicolon as the bind operator:

   x <- foo; return (x + 3)     foo >>= (\x -> return (x + 3)) 

In the particular case of Maybe, semantics

if foo fails to produce a result, Nothing

the second step will be skipped and 

the whole combined computation will also fail immediately.   Nothing

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3



Monad Overview (2A) 34 Young Won Lim
1/1/19

A function application and the bind operator

a let expression as a function application,

   let x = foo in (x + 3)    foo  &  (\x -> id (x + 3))      -- v & f = f v      

reverse function application &

an assignment and semicolon as the bind operator:

   x <- foo; return (x + 3)     foo >>= (\x -> return (x + 3))   

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

& and id are trivial; 

id is the identity function

just returns its parameter unmodified 

>>= and return are substantial.



Monad Overview (2A) 35 Young Won Lim
1/1/19

Reverse Function Application & 

(&) :: a -> (a -> b) -> b

& is just like $ only backwards. 

foo $ bar $ baz bin

semantically equivalent to:

bin & baz & bar & foo

& is useful because the order in which functions are applied 

to their arguments read left to right instead of the reverse 

(which is the case for $).

 

This is closer to how English is read so it can improve code clarity.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3



Monad Overview (2A) 36 Young Won Lim
1/1/19

& and id 

a let expression as a function application,

   let x = foo in (x + 3)   foo  &  (\x -> id (x + 3))      -- v & f = f $ v = fv 

The & operator combines together two pure calculations, 

foo and id (x + 3) 

while creating a new binding for the variable x to hold foo's value, x ← foo  

making x available to the second computational step: id (x + 3).

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3



Monad Overview (2A) 37 Young Won Lim
1/1/19

class Monad m where

    return :: a -> m a

    (>>=) :: m a -> (a -> m b) -> m b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/IO

https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell

https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects

https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell

https://www.cs.hmc.edu/~adavidso/monads.pdf

Monadic Effect

https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell
https://stackoverflow.com/questions/7840126/why-monads-how-does-it-resolve-side-effects
https://stackoverflow.com/questions/2488646/why-are-side-effects-modeled-as-monads-in-haskell


Monad Overview (2A) 38 Young Won Lim
1/1/19

Monadic operations tend to have types which look like

val-in-type-1 -> ... -> val-in-type-n   ->  effect-monad   val-out-type

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – a function form

the types of inputs to 
a monadic operation

the type of a return value
from a monadic operation

function type



Monad Overview (2A) 39 Young Won Lim
1/1/19

Monadic operations tend to have types which look like

val-in-type-1 -> ... -> val-in-type-n   ->  effect-monad   val-out-type

a monadic operation

= a function 

● inputs 

● a return value

– another function is returned

– executing this returned function

– returns a function as a value  

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – returning a monadic value



Monad Overview (2A) 40 Young Won Lim
1/1/19

Monadic operations tend to have types which look like

val-in-type-1 -> ... -> val-in-type-n   ->  effect-monad   val-out-type

effect-monad produces a

result of a type of val-out-type

computations

statement 

in the imperative language 

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – the result of a monadic value 



Monad Overview (2A) 41 Young Won Lim
1/1/19

val-in-type-1 -> ... -> val-in-type-n   ->  effect-monad   val-out-type

the return type is a type application like a function application

the function part tells you ………………………… effect-monad

which effects are possible 

the argument part tells you ………………………. val-out-type

what sort of value is produced by the operation.

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – type application 

function argument

type application
cf) function application



Monad Overview (2A) 42 Young Won Lim
1/1/19

val-in-type-1 -> ... -> val-in-type-n   ->  effect-monad   val-out-type

Monadic operations using IO and State 

have a return value, as well as 

performing side-effects. 

the only point of using these monadic operations is 

to perform a side-effect, 

writing to the screen ...……….. IO Monad
storing some state …….…… State Monad

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – IO and State Monads



Monad Overview (2A) 43 Young Won Lim
1/1/19

val-in-type-1 -> ... -> val-in-type-n   ->  effect-monad   val-out-type

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operation – the result type 

put :: s -> (State s) ( )

putStr :: String -> IO ( )

world (( ), world)

s (( ), s)

the execution result type of
 the returned function

result

result



Monad Overview (2A) 44 Young Won Lim
1/1/19

put :: s -> State s ( )

put :: s -> (State s) ( )

the operation is used only for its effect; 

the value delivered is uninteresting

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – put example

put :: s -> (State s) ( )

s (( ), s)

result

runState  ( put  5  ) 1

init State

 ((), 5) 
new State

1

one value input type s

the effect-monad State s

the value output type ( ) 

effect-monad   val-out-type

(State s) ( )



Monad Overview (2A) 45 Young Won Lim
1/1/19

putStr :: String -> IO ( )

delivers a string to stdout 

but does not return anything meaningful

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – putStr example

World  (a, World) 

IO   a

one value input type s

the effect-monad IO 

the value output type ( ) 

effect-monad   val-out-type

IO  ( )



Monad Overview (2A) 46 Young Won Lim
1/1/19

val-in-type-1 -> ... -> val-in-type-n   ->  effect-monad   val-out-type

https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly

Monadic Operations – underlying functions

a parameterized type

about a function

executable

execution result

a monad type

effect-monad

statements in the 
imperative language

val-out-type

world (( ), world)

s (( ), s)



Monad Overview (2A) 47 Young Won Lim
1/1/19

IO t and State s a types 

newtype State s a = State { runState :: s -> (a, s) }

s : the type of the state, 

a : the type of the produced result

s -> (a, s) : function type

  type    IO t    =    World    ->    (t, World) type synonym
world (t, world)

State
s (a, s)

runState :: State s a -> (s -> (s, a))

accessor function



Monad Overview (2A) 48 Young Won Lim
1/1/19

The return function takes x 

and gives back a function 

that takes a w0 :: World 

and returns x along with the updated World, 

but not modifying the given w0 :: World 

.

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad – return method

returnx

w0  (x, w0) 



Monad Overview (2A) 49 Young Won Lim
1/1/19

instance Monad ST where

   -- return :: a -> ST a

   return x  =  \s -> (x,s)

   -- (>>=)  :: ST a -> (a -> ST b) -> ST b

   st >>= f  =  \s -> let (x,s') = st s in f x s'

 >>= provides a means of sequencing state transformers: 

st >>= f applies the state transformer st to an initial state s, 

then applies the function f to the resulting value x 

to give a second state transformer (f x), 

which is then applied to the modified state s' to give the final result:

https://cseweb.ucsd.edu/classes/wi13/cse230-a/lectures/monads2.html

State Transformers ST Monad 

(x,s') = st s

 f x s'

st >>= f  =  \s -> f x s' 

where (x,s') = st s 

st >>= f  =  \s -> (y,s') 

where (x,s') = st s 

  (y,s') = f x s'



Monad Overview (2A) 50 Young Won Lim
1/1/19

Monad Definition

class Monad m where  

    return :: a -> m a  

    (>>=) :: m a -> (a -> m b) -> m b  

    (>>) :: m a -> m b -> m b  

    fail :: String -> m a  

https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Maybe a

IO a

ST a

State s a 

m a

1) return

2) bind (>>=)

3) then (>>)

4) fail



Monad Overview (2A) 51 Young Won Lim
1/1/19

Maybe Monad Instance

instance Monad Maybe where  

        return x = Just x  

        Nothing >>= f = Nothing  

        Just x >>= f  = f x  

        fail _ = Nothing  

https://en.wikibooks.org/wiki/Haskell/Understanding_monads



Monad Overview (2A) 52 Young Won Lim
1/1/19

State Monad Instance

instance Monad (State s) where

  return :: a -> State s a

  return x = state ( \s -> (x, s) )

  (>>=) :: State s a -> (a -> State s b) -> State s b

  p >>= k = q where

      p' = runState p        -- p' :: s -> (a, s)

      k' = runState . k      -- k' :: a -> s -> (b, s)

      q' s0 = (y, s2) where  -- q' :: s -> (b, s)

          (x, s1) = p' s0    -- (x, s1) :: (a, s)

          (y, s2) = k' x s1  -- (y, s2) :: (b, s)

      q = State q'

https://en.wikibooks.org/wiki/Haskell/Understanding_monads/State



Monad Overview (2A) 53 Young Won Lim
1/1/19

IO Monad Instance

instance  Monad IO  where

    m >> k    = m >>= \ _ -> k

    return     = returnIO

    (>>=)       = bindIO

    fail s       = failIO s

returnIO :: a -> IO a

returnIO x = IO $ \s -> (# s, x #)

bindIO :: IO a -> (a -> IO b) -> IO b

bindIO (IO m) k 

   = IO $ \s ->  case m s of (# new_s, a #) 

                   -> unIO (k a) new_s

 

https://stackoverflow.com/questions/9244538/what-are-the-definitions-for-and-return-for-the-io-monad

   case expression of 

pattern -> result  

                  pattern -> result  

                pattern -> result  

                       ...  m = new_s,
s  =  a 
(k a) new_s
(k s) m 



Monad Overview (2A) 54 Young Won Lim
1/1/19

Pure functional programs

Why do you need a monad?

Pure functional languages are different from 

imperative languages like C, or Java in that, 

● a pure functional program is not necessarily executed in a 

specific order, one step at a time. 

● A Haskell program is more akin to a mathematical function, in 

which you may solve the "equation" in any number of potential 

orders. 

● it eliminates the possibility of certain kinds of bugs (data 

dependency, particularly those relating to things like state)

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 55 Young Won Lim
1/1/19

Execution orders

However, certain problems like console programming, and file i/o, 

need things to happen in a particular order, or 

need to maintain state.

One way to deal with this problem is to create 

● a kind of object that represents 

the state of a computation, and 

● a series of functions that take a state object as input, and 

return a new modified state object.

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 56 Young Won Lim
1/1/19

A hypothetical state value 

a hypothetical state value can 

represent the state of a console screen. 

● exact value is not important, 

● an array of byte length ascii characters 

that represents what is currently visible on the screen, and

● an array that represents 

the last line of input entered by the user, in pseudocode. 

● create some functions that take console state, modify it, and 

return a new console state.

https://stackoverflow.com/questions/44965/what-is-a-monad

World  (a, World) 

s  (a, s) 



Monad Overview (2A) 57 Young Won Lim
1/1/19

Nesting style for a particular execution order

consolestate MyConsole = new consolestate;

for a pure functional manner, a possible choice is to nest a lot of function calls inside each other.

consolestate FinalConsole = 

print( input( print( myconsole, "Hello, what's your name?" ) ),"hello, %inputbuffer%!" );

● this programming keeps the pure functional style 

● while forcing changes to the console to happen in a particular order.

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 58 Young Won Lim
1/1/19

No-nesting style

● more than just a few operations at a time 

● more than nesting functions 

● a more convenient way to write it

consolestate FinalConsole = myconsole:

                            print("Hello, what's your name?"):

                            input():

                            print("hello, %inputbuffer%!");

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 59 Young Won Lim
1/1/19

Monad, bind and lift operators

If you have a type (such as consolestate) that you define along with 

a few functions designed specifically to operate on that type,

you can make a whole package of type definition 

and related functions into a monad 

by defining an operator like : 

(bind operator) automatically feeds return values on its left, 

into function parameters on its right, 

(lift operator) turns normal functions, into functions 

that work with that specific kind of bind operator.

https://stackoverflow.com/questions/44965/what-is-a-monad

    (>>=) :: m a -> (a -> m b) -> m b

    f ::     a -> b

liftM f :: m a -> m b



Monad Overview (2A) 60 Young Won Lim
1/1/19

Bind operator >>=

putStrLn "What is your name?"

>>= (\_ -> getLine)

>>= (\name -> putStrLn ("Welcome, " ++ name ++ "!"))

The >>= operator takes a value (on the left side) 

and combines it with a function (on the right side), 

to produce a new value. 

This new value is then taken by the next >>= operator 

and again combined with a function to produce a new value. 

>>= can be viewed as a mini-evaluator.

https://stackoverflow.com/questions/44965/what-is-a-monad

putStrLn :: String -> IO ()

getLine :: IO String

PutStrLn "…"    >>=    (\_ -> getLine)    >>=    (\name -> putStrLn ("..."))

() String



Monad Overview (2A) 61 Young Won Lim
1/1/19

Monadic operation 

a monad  

● is a parameterized type 

● is an instance of the Monad type class 

● defines >>= along with a few other operators. 

● just a type for which the >>= operation is defined.

In itself >>= is just a cumbersome way of chaining functions, 

but with the presence of the do-notation 

which hides the "plumbing", 

the monadic operations turns out to be a very nice 

and useful abstraction, useful many places in the language, 

and useful for creating your own mini-languages in the language.

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 62 Young Won Lim
1/1/19

>>= : an overloaded operator

Note that >>= is overloaded for different types, 

so every monad has its own implementation of >>=. 

(All the operations in the chain have to be of the type 

of the same monad though, otherwise the >>= operator won't work.)

The simplest possible implementation of >>= just takes the value 

on the left and applies it to the function on the right and 

returns the result, but as said before, 

what makes the whole pattern useful is 

when there is something extra going on 

in the monad's implementation of >>=.

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 63 Young Won Lim
1/1/19

Combining functions

in a do-block, every operation (basically every line) is

wrapped in a separate anonymous function. 

These functions are then combined using the bind operator

the bind operation combines functions, 

it can execute them as it sees fit: 

sequentially, multiple times, in reverse, discard some, 

execute some on a separate thread when it feels like it and so on. 

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 64 Young Won Lim
1/1/19

Various Monad applications (1)

1) The Failure Monad: 

If each step returns a success/failure indicator, 

bind can execute the next step only if the previous one succeeded.

a failing step can abort the whole sequence "automatically", 

without any conditional testing from you. 

2) The Error Monad or Exception Monad:

Extending the Failure Monad, you can implement exceptions

By your own definition (not being a language feature), 

you can customize how they work. 

(e.g., can ignore the first two exceptions and 

abort when a third exception is thrown.)

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 65 Young Won Lim
1/1/19

Various Monad applications (2)

3) The List Monad:    

each step returns multiple results, and the bind function iterates over 

them, feeding each one into the next step

No need to write loops all over the place 

when dealing with multiple results. 

4) The Reader Monad   

As well as passing a result to the next step, 

the bind function pass extra data around as well

This extra data now doesn't appear in your source code, 

but it can be still accessed from anywhere, 

without a  manual passing

 

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 66 Young Won Lim
1/1/19

Various Monad applications (3)

5) The State Monad and the Writer Monad

 the extra data can be replaced. 

This allows you to simulate destructive updates

without actually doing destructive updates 

you can trivially do things that would be impossible with real 

destructive updates. 

For example, you can undo the last update, 

or revert to an older version.

 

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 67 Young Won Lim
1/1/19

Various Monad applications (4)

You can make a monad where calculations can be paused, 

so you can pause your program, 

go in and tinker with internal state data, 

and then resume it.

You can implement continuations as a monad. 

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 68 Young Won Lim
1/1/19

List Monad Examples

[x*2 | x<-[1..4], odd x]

t = do  x <- [1..4]

            if odd x then [x*2]  else []

[1..4] >>= (\x -> if odd x then [x*2] else [])

1 [2]

2 [  ]

3 [6]

4 [  ]

https://stackoverflow.com/questions/44965/what-is-a-monad

Monads as computation builders

the monad chains operations 

in some specific, useful way. 

in the list comprehension example: 

if an operation returns a list, 

then the following operations are 

performed on every item in the list. 



Monad Overview (2A) 69 Young Won Lim
1/1/19

Reader Monad Examples

Reader r a

where r is some “environment” and 

a is some value you create from that environment

let r1 = return 5 :: Reader String Int

:t r1

r1 :: Reader String Int

a Reader that takes in a String and returns an Int. 

The String is the “environment” of the Reader.

https://blog.ssanj.net/posts/2014-09-23-A-Simple-Reader-Monad-Example.html



Monad Overview (2A) 70 Young Won Lim
1/1/19

Reader Monad Examples

Reader r a

let r1 = return 5 :: Reader String Int

r1 :: Reader String Int

(runReader r1) "this is your environment"

5

runReader :: Reader r a -> r -> a

So runReader takes in a Reader and an environment (r) 

and returns a value (a).

https://blog.ssanj.net/posts/2014-09-23-A-Simple-Reader-Monad-Example.html



Monad Overview (2A) 71 Young Won Lim
1/1/19

Reader Monad Examples

import Control.Monad.Reader

tom :: Reader String String

tom = do

    env <- ask  

    return (env ++ " This is Tom.")

jerry :: Reader String String

jerry = do

  env <- ask

  return (env ++ " This is Jerry.")

https://blog.ssanj.net/posts/2014-09-23-A-Simple-Reader-Monad-Example.html

tomAndJerry :: Reader String String

tomAndJerry = do

    t <- tom

    j <- jerry

    return (t ++ "\n" ++ j)

runJerryRun :: String

runJerryRun = (runReader tomAndJerry) 

"Who is this?"

Who is this? This is Tom.

Who is this? This is Jerry.



Monad Overview (2A) 72 Young Won Lim
1/1/19

I/O Monad Examples

do

   putStrLn "What is your name?"

   name <- getLine

   putStrLn ("Welcome, " ++ name ++ "!")

getChar :: IO Char

Read a character from the standard input device 

getLine :: IO String

Read a line from the standard input device

https://stackoverflow.com/questions/44965/what-is-a-monad

Monads as computation builders

the monad chains operations 

in some specific, useful way. 

in the IO monad example

the operations are performed sequentially, 

but a hidden variable is passed along, 

which represents the state of the world, 

allows us to write I/O code in a pure 

functional manner.



Monad Overview (2A) 73 Young Won Lim
1/1/19

A Parser Example

parseExpr = parseString <|> parseNumber

parseString = do

        char '”' -- \”.*\”

        x <- many (noneOf "\"")

        char '"'

        return (StringValue x)

parseNumber = do

    num <- many1 digit

    return (NumberValue (read num))

https://stackoverflow.com/questions/44965/what-is-a-monad

The operations (char, digit, etc) either 

match or not

the monad manages the control flow: 

The operations are performed sequentially 

until a match fails, in which case the monad 

backtracks to the latest <|> and tries the 

next option. 

Again, a way of chaining operations 

with some additional, useful semantics.



Monad Overview (2A) 74 Young Won Lim
1/1/19

Parser – char, digit

char :: Stream s m Char => Char -> ParsecT s u m Char

char c parses a single character c. 

Returns the parsed character (i.e. c). 

semiColon = char ';' 

digit :: Stream s m Char => ParsecT s u m Char

Parses a digit. 

Returns the parsed character. 

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 75 Young Won Lim
1/1/19

Parser – many, many1, noneOf

many :: ReadP a -> ReadP [a]

Parses zero or more occurrences of the given parser. 

many1 :: ReadP a -> ReadP [a]

Parses one or more occurrences of the given parser. 

noneOf :: Stream s m Char => [Char] -> ParsecT s u m Char

As the dual of oneOf, noneOf cs succeeds 

if the current character not in the supplied list of characters cs. 

Returns the parsed character. 

consonant = noneOf "aeiou"

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 76 Young Won Lim
1/1/19

Parser – <|> combinator

(<|>) :: (ParsecT s u m a) -> (ParsecT s u m a) -> (ParsecT s u m a)

This combinator implements choice. 

The parser p <|> q first applies p. 

If it succeeds, the value of p is returned. 

If p fails without consuming any input, parser q is tried. 

https://stackoverflow.com/questions/44965/what-is-a-monad



Monad Overview (2A) 77 Young Won Lim
1/1/19

Strictness declaration (1)

strictness declaration 

it must be evaluated to what's called "weak normal head form" 

when the data structure value is created. 

data Foo = Foo Int Int !Int !(Maybe Int)

f = Foo (2+2) (3+3) (4+4) (Just (5+5))

The function f above, when evaluated, will return a "thunk": delayed computation 

that is, the code to execute to figure out its value. 

At that point, a Foo doesn't even exist yet, just the code.

https://stackoverflow.com/questions/993112/what-does-the-exclamation-mark-mean-in-a-haskell-declaration



Monad Overview (2A) 78 Young Won Lim
1/1/19

Strictness declaration (2)

data Foo = Foo Int Int !Int !(Maybe Int)

f = Foo (2+2) (3+3) (4+4) (Just (5+5))

But at some point someone may try to look inside it

case f of

     Foo 0 _ _ _ -> "first arg is zero"

     _                  -> "first arge is something else"

This is going to execute enough code to do what it needs

So it will create a Foo with four parameters 

The first parameter, we need to evaluate all the way to 4, 

where we realize it doesn't match.

https://stackoverflow.com/questions/993112/what-does-the-exclamation-mark-mean-in-a-haskell-declaration



Monad Overview (2A) 79 Young Won Lim
1/1/19

Strictness declaration (3)

data Foo = Foo Int Int !Int !(Maybe Int)

f = Foo (2+2) (3+3) (4+4) (Just (5+5))

The second parameter doesn't need to be evaluated, 

because we're not testing it. Thus, instead of storing the computation 

Results 6, store the code (3+3) that will turn into a 6 

only if someone looks at it.

The third parameter, however, has a ! in front of it, 

so is strictly evaluated: (4+4) is executed, 

and 8 is stored in that memory location.

https://stackoverflow.com/questions/993112/what-does-the-exclamation-mark-mean-in-a-haskell-declaration



Monad Overview (2A) 80 Young Won Lim
1/1/19

Strictness declaration (4)

data Foo = Foo Int Int !Int !(Maybe Int)

f = Foo (2+2) (3+3) (4+4) (Just (5+5))

The fourth parameter is also strictly evaluated. 

we're evaluating not fully, but only to weak normal head form. 

figure out whether it's Nothing or Just something, 

and store that, but we go no further. 

That means that we store not Just 10 but actually Just (5+5), 

leaving the thunk inside unevaluated. 

https://stackoverflow.com/questions/993112/what-does-the-exclamation-mark-mean-in-a-haskell-declaration



Monad Overview (2A) 81 Young Won Lim
1/1/19

Async Monad Examples

let AsyncHttp(url:string) =

    async {  let req = WebRequest.Create(url)

                  let! rsp = req.GetResponseAsync()

                  use stream = rsp.GetResponseStream()

                  use reader = new System.IO.StreamReader(stream)

                  return reader.ReadToEnd() }

The async {} syntax indicates that the control flow 

in the block is defined by the async monad.

https://stackoverflow.com/questions/44965/what-is-a-monad

GetResponseAsync actually waits for the 

response on a separate thread, while the 

main thread returns from the function.

 

The last three lines are executed on the 

spawned thread when the response have 

been received.

In most other languages you would have to 

explicitly create a separate function for the 

lines that handle the response. 

The async monad is able to "split" the 

block on its own and postpone the 

execution of the latter half. 



Monad Overview (2A) 82 Young Won Lim
1/1/19

Functors as containers

    fmap   :: (a -> b) -> M a -> M b  -- functor

    return :: a -> M a

    join   :: M (M a) -> M a

the functors-as-containers metaphor

a functor M   –   a container

M a contains a value of type a

fmap allows functions to be applied to values in the container

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3



Monad Overview (2A) 83 Young Won Lim
1/1/19

Function application, Packaging, Flattening

    fmap applies a function to a value in a container

    return packages a value in a container

    join flattens a container in containers

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

fmap   :: (a -> b) -> M a -> M b  -- functor

return :: a -> M a

join   :: M (M a) -> M a

applies

flatten

packaging



Monad Overview (2A) 84 Young Won Lim
1/1/19

>>= vs. fmap & join 

(>>=) in terms of join and fmap

    m >>= g = join (fmap g m)

fmap and join in terms of (>>=) and return

    fmap f x = x >>= (return . f)

    join x   = x >>= id

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

instance Monad [] where

   -- return :: a -> [a]

   return m  =  [m]

   -- (>>=)  :: [a] -> (a -> [b]) -> [b]

   m >>= g  =  concat (map g m)

   m >>= g  =  join (fmap g m)

fmap (*3) (Just 10)

Just 10 >>= return . (* 3) 

    Just 30

join (Just (Just 10))

Just (Just 10)) >>= id 

    Just 10

import Control.Monad

join (Just (Just 10))

    Just 10

join (Just (Just (Just 10)))

    Just (Just 10)



Monad Overview (2A) 85 Young Won Lim
1/1/19

Monad’s lifting capability

a Monad is just a special Functor with extra features

Monads 

map types to new types 

that represent "computations that result in values" 

liftM (like fmap)

can lift regular functions into Monad types 

(a -> b)  (m a -> m b) 

https://stackoverflow.com/questions/18808258/what-does-the-just-syntax-mean-in-haskell

a  M  a

types new types 

computations resulting in values



Monad Overview (2A) 86 Young Won Lim
1/1/19

liftM Function

Control.Monad defines liftM 

liftM transform a regular function 

into a "computations that results in the value 

obtained by evaluating the function."

liftM :: (Monad m) => (a -> b) -> m a -> m b

liftM is merely 

fmap implemented with (>>=) and return

    

fmap f x = x >>= (return . f)

liftM and fmap are therefore interchangeable.

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

f ::    a ->     b

liftM f :: M a -> M b 

computations that 
results in the value 
obtained by 
evaluating the 
function



Monad Overview (2A) 87 Young Won Lim
1/1/19

Monad – mapping a type and lifting a function 

mapping a new type 

Monads map types to new types 

that represent "computations that result in values" 

The function return lifts a plain value a to M a

lifting function

can lift functions into Monad types 

via a very fmap-like function called liftM 

that turns a regular function into a 

"computation that results in the value 

obtained by evaluating the function."

https://stackoverflow.com/questions/18808258/what-does-the-just-
syntax-mean-in-haskell

a  M  a

f ::    a ->     b

liftM f :: M a -> M b 



Monad Overview (2A) 88 Young Won Lim
1/1/19

liftM – function lifting 

a  M  a

f ::    a ->     b

liftM f :: M a -> M b 

f

M  a

liftM

M  b

a b

f
a b

M  a

fmap f

M  blifting

type lifting

function lifting



Monad Overview (2A) 89 Young Won Lim
1/1/19

return – type lifting 

The function return lifts a plain value a to M a

 

The statements in the imperative language M 

when executed, will result in the value a 

without any additional effects particular to M. 

This is ensured by Monad Laws,

 

foo >>= return === foo 

foo >>= return

foo

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

a      M  a
lifting

return x >>= k === k x; 

return x >>= k

k x; 



Monad Overview (2A) 90 Young Won Lim
1/1/19

ap Function

Control.Monad defines ap function 

ap :: Monad m => m (a -> b) -> m a -> m b

Analogously to the other cases, 

ap is a monad-only version of (<*>).

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3

M f :: M (a ->  b)

ap M f :: M a -> M b 



Monad Overview (2A) 91 Young Won Lim
1/1/19

liftM vs fmap and ap vs <*> 

liftM :: Monad m =>  (a -> b) -> m a -> m b

fmap :: Functor f =>   (a -> b) -> f a -> f b

ap :: Monad m => m (a -> b) -> m a -> m b

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(>>=) :: Monad m => m a -> (a -> m b) -> m b

https://en.wikibooks.org/wiki/Haskell/Understanding_monads#cite_note-3



Monad Overview (2A) 92 Young Won Lim
1/1/19

Thinking of extraction : a slightly misleading intuition. 

Nothing is being "extracted" from a monad. 

The more fundamental definition of a monad 

can be stated by three orthogonal functions:

fmap :: (a -> b) -> (m a -> m b)

return :: a -> m a

join :: m (m a) -> m a

m is a monad.

https://stackoverflow.com/questions/15016339/haskell-computation-in-a-monad-meaning

Three Orthogonal Functions



Monad Overview (2A) 93 Young Won Lim
1/1/19

fmap :: (a -> b) -> (m a -> m b)

return :: a -> m a

join :: m (m a) -> m a

how to implement (>>=) with these: 

starting with arguments of type m a and a -> m b, 

your only option is using fmap to get something of type m (m b), 

(a ->     b) -> (m a -> m      b  )

(a -> m b) -> (m a -> m (m b))

join to flatten the nested "layers" to get just m b.

(a -> m b) -> (m a ->m b)

https://stackoverflow.com/questions/15016339/haskell-computation-in-a-monad-meaning

Three Orthogonal Functions and  >>= 

 (a -> m b) -> (m a -> m (m b))

 (a -> m b) -> (m a -> m b)

(a ->     b) -> (m a -> m     b  )



Monad Overview (2A) 94 Young Won Lim
1/1/19

join :: m (m a) -> m a

nothing is being taken "out" of the monad

as the computation going deeper into the monad, 

with successive steps being collapsed 

into a single layer of the monad.  

when join (m (m a) -> m a) is applied, it doesn't matter 

as long as the nesting order is preserved (a form of associativity)  

that the monadic layer introduced by return 

does nothing (an identity value for join).

Left identity return a >>= f f a

Right identity m >>= return m 

Associativity (m >>= f) >>= g m >>= (\x ->  f x >> g)

https://stackoverflow.com/questions/15016339/haskell-computation-in-a-monad-meaning

Monad Law 

 (a -> m b) -> (m a -> m (m b))

 (a -> m b) -> (m a -> m b)

(a ->     b) -> (m a -> m b)



Young Won Lim
1/1/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2]  https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95

