
ARM Link

Young W. Lim

2021-12-08 Wed

Young W. Lim ARM Link 2021-12-08 Wed 1 / 64

Outline

1 Based on

2 GNU ELF Addresses

Young W. Lim ARM Link 2021-12-08 Wed 2 / 64

Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim ARM Link 2021-12-08 Wed 3 / 64

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim ARM Link 2021-12-08 Wed 4 / 64

TOC: GNU ELF Addresses

Young W. Lim ARM Link 2021-12-08 Wed 5 / 64

ELF object files

the linker combines input files
into a single output file

input object files
output object / executable file
all in object file format

https://www.zeuthen.desy.de/dv/documentation/unixguide/infohtml/binutils/docs/ld/Basic-Script-Concepts.html#Basic-Script-Concepts

Young W. Lim ARM Link 2021-12-08 Wed 6 / 64

ELF sections

each object file has a list of sections
input sections
output sections

each section in an object file has
a name
a size
section contents :
most sections are associated with block of data

https://www.zeuthen.desy.de/dv/documentation/unixguide/infohtml/binutils/docs/ld/Basic-Script-Concepts.html#Basic-Script-Concepts

Young W. Lim ARM Link 2021-12-08 Wed 7 / 64

ELF section types

a loadable section
the contents should be loaded into memory
when the output file is run

an allocatable section
a section with no contents may be allocatable
an area in memory should be set aside
but nothing should be loaded there
in some cases, this memory must be filled with /zero/es

sections for debugging

https://www.zeuthen.desy.de/dv/documentation/unixguide/infohtml/binutils/docs/ld/Basic-Script-Concepts.html#Basic-Script-Concepts

Young W. Lim ARM Link 2021-12-08 Wed 8 / 64

ELF sections

section: tell the linker if a section is either:
raw data to be loaded into memory,

e.g. .data, .text, etc.

formatted metadata about other sections,
that will be used by the linker,
but disappear at runtime

e.g. .symtab, .srttab, .rela.text

https://stackoverflow.com/questions/14361248/whats-the-difference-of-section-and-segment-in-elf-file-format

Young W. Lim ARM Link 2021-12-08 Wed 9 / 64

ELF segments

segment: tells the operating system:
where should a segment be loaded into virtual memory
what permissions the segments have (read, write, execute).

this can be efficiently enforced by the processor

https://stackoverflow.com/questions/14361248/whats-the-difference-of-section-and-segment-in-elf-file-format

Young W. Lim ARM Link 2021-12-08 Wed 10 / 64

ELF views of the image at each link stage

ELF Object file view (Linker input)
Linker view
ELF Image file view (Linker output)

https://www.keil.com/support/man/docs/armlink/armlink_pge1406297322750.htm

Young W. Lim ARM Link 2021-12-08 Wed 11 / 64

ELF object file view (linker input)

The ELF object file view comprises input sections
The ELF object file can be:

A relocatable file
that holds code and data suitable

for linking with other object files
to create an executable or a shared object file.

A shared object file
that holds code and data.

https://www.keil.com/support/man/docs/armlink/armlink_pge1406297322750.htm

Young W. Lim ARM Link 2021-12-08 Wed 12 / 64

Linker view (1)

The linker has two views for the address space of a program
The load address of a program fragment
The execution address of a program fragment

https://www.keil.com/support/man/docs/armlink/armlink_pge1406297322750.htm

Young W. Lim ARM Link 2021-12-08 Wed 13 / 64

Linker view (2)

The load and execution addresses become distinct
in the presence of the following program fragments (code or data)

overlaid
position-independent
relocatable

if a fragment is position-independent or relocatable
its execution address can vary during execution

https://www.keil.com/support/man/docs/armlink/armlink_pge1406297322750.htm

Young W. Lim ARM Link 2021-12-08 Wed 14 / 64

Linker view (3)

The load address of a program fragment
the target address that the linker expects
an external agent to copy the fragment from the ELF file.

such as a program loader, dynamic linker, or debugger

this might not be the address at which the fragment executes

The execution address of a program fragment
the target address where the linker expects
the fragment to reside whenever it participates
in the execution of the program.

https://www.keil.com/support/man/docs/armlink/armlink_pge1406297322750.htm

Young W. Lim ARM Link 2021-12-08 Wed 15 / 64

ELF image file view (linker output)

The ELF image file view comprises
program segments and output sections:

A load region corresponds to a program segment
An execution region contains
one or more of the following output sections

RO section.
RW section.
XO section.
ZI section.

One or more execution regions make up a load region

https://www.keil.com/support/man/docs/armlink/armlink_pge1406297322750.htm

Young W. Lim ARM Link 2021-12-08 Wed 16 / 64

<Input/output sections, regions, and program segments>

Input sections
RO, RW, XO, ZI attributes

Output sections
a group of input sections with the same attributes

Regions
upto three output sections

RO-RW-ZI
XO-RW-ZI

Program segments

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065900278.htm

Young W. Lim ARM Link 2021-12-08 Wed 17 / 64

Input section

an individual section from an input object file
contains code, initialized data,
or describes a fragment of memory

that is not initialized or
that must be set to zero before the image can execute.

These properties are represented by attributes
such as RO, RW, XO, and ZI.
These attributes are used by armlink to group input sections
into bigger building blocks called output sections and regions

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065900278.htm

Young W. Lim ARM Link 2021-12-08 Wed 18 / 64

Output section

a group of input sections
that have the same RO, RW, XO, or ZI attribute,
that are placed contiguously in memory by the linker.

an output section has the same attributes
as its constituent input sections
within an output section, the input sections are
sorted according to the section placement rules

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065900278.htm

Young W. Lim ARM Link 2021-12-08 Wed 19 / 64

Region (1)

contains up to three output sections
depending on the contents and the number of sections
with different attributes
By default, the output sections in a region
are sorted according to their attributes:
A region typically maps onto a physical memory device,
such as ROM, RAM, or peripheral.
You can change the order of output sections
using scatter-loading

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065900278.htm

Young W. Lim ARM Link 2021-12-08 Wed 20 / 64

Region (2)

If no XO output sections are present, (RO - RW - ZI)
then the RO output section is placed first,
followed by the RW output section,
and finally the ZI output section.
If all code in the execution region is execute-only, (XO - RW - ZI)
then an XO output section is placed first,
followed by the RW output section,
and finally the ZI output section.

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065900278.htm

Young W. Lim ARM Link 2021-12-08 Wed 21 / 64

Program segment

a program segment
corresponds to a load region
contains execution regions

program segments hold information
such as text and data

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065900278.htm

Young W. Lim ARM Link 2021-12-08 Wed 22 / 64

Relationship between sectons, regions, and segments

ELF object file view Linker view ELF image file view
Program Header Table Program Header Table Program Header Table
(optional)
input section 1.1.1 Load Region 1 Segment 1
input section 1.1.2 [Exec Region 1] [Load Region 1]
input section 1.2.1 - output section 1.1
input section 1.3.1 - output section 1.2
input section 1.3.2 - output section 1.3
input section 2.1.1 Load Region 2 Segment 2
input section 2.1.2 [Exec Region 2] [Load Region 2]
input section 2.1.3 - output section 2.1
* * * * * * * * *
Section Header Table Section Header Table Section Header Table

(optional) (optional)

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065900278.htm
Young W. Lim ARM Link 2021-12-08 Wed 23 / 64

<Load view and execution view of an image>

The memory map of an image has distinct views:
load view
execution view

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065902090.htm

Young W. Lim ARM Link 2021-12-08 Wed 24 / 64

image regions at load time and during execution

image regions are placed in the system memory map
at load time.
the location of the regions in memory
might change during execution

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065902090.htm

Young W. Lim ARM Link 2021-12-08 Wed 25 / 64

ROM address and RAM address

in order to execute the image,
some of image regions must be moved
to their execution addresses and
create the ZI output sections
for example, initialized RW data
might have to be copied
from its load address in ROM
to its execution address in RAM.

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065902090.htm

Young W. Lim ARM Link 2021-12-08 Wed 26 / 64

Load view and execution view

load view
Describes each image region and section in terms of the address
where it is located when the image is loaded into memory,
that is, the location before image execution starts.

execution view
Describes each image region and section in terms of the address
where it is located during image execution.

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065902090.htm

Young W. Lim ARM Link 2021-12-08 Wed 27 / 64

Load address, load region

load address
the address where a section or region is loaded into memory
before the image containing it starts executing.
the load address of a section or a non-root region
can differ from its execution address.

load region
describes the layout of a contiguous chunk of memory
in load address space

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065902090.htm

Young W. Lim ARM Link 2021-12-08 Wed 28 / 64

Execution address, execution region

execution address
the address where a section or region is located
while the image containing it is being executed

execution region
describes the layout of a contiguous chunk of memory
in execution address space

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065902090.htm

Young W. Lim ARM Link 2021-12-08 Wed 29 / 64

Execution Only Memory (XOM)

a firmware protection technique
to help prevent 3rd parties from stealing or
reverse engineering firmware
and at the same time allowing 3rd parties
to add additional software to the chips and
utilize the protected APIs in XOM.
This technique is different from
chip-level, read-out-protection,
which can block the read-back
of the entire firmware.

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/what-is-execute-only-memory-xom

Young W. Lim ARM Link 2021-12-08 Wed 30 / 64

Memory map without XO region

Load view 0x0FFFF Exec view

RAM 0x0A000 ZI section

RAM 0x08000 RW section

ROM RW section 0x06000

ROM RO section 0x00000 RO section

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065902090.htm

Young W. Lim ARM Link 2021-12-08 Wed 31 / 64

Memory map with XO region

Load view 0x0FFFF Exec view

RAM 0x0A000 ZI section

RAM RW section 0x08000 RW section

ROM RO section 0x06000 RO section

XOM XO section 0x00000 XO section

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065902090.htm

Young W. Lim ARM Link 2021-12-08 Wed 32 / 64

Type 1 image

one load region and contiguous execution regions
This approach is suitable for systems that load programs into RAM,
for example, an OS bootloader or a desktop system.
Load view
The single load region consists of the RO and RW output sections,
placed consecutively. The RO and RW execution regions are both root
regions. The ZI output section does not exist at load time. It is
created before execution, using the output section description in the
image file.
Execution view
The three execution regions containing the RO, RW, and ZI output
sections are arranged contiguously. The execution addresses of the RO
and RW execution regions are the same as their load addresses, so
nothing has to be moved from its load address to its execution
address. However, the ZI execution region that contains the ZI output
section is created at run-time.

https://developer.arm.com/documentation/dui0474/h/image-structure-and-generation/type-1-image--one-load-region-and-contiguous-execution-regions
Young W. Lim ARM Link 2021-12-08 Wed 33 / 64

Type 2 image

one load region and non-contiguous execution regions
for ROM-based embedded systems, where RW data is copied from
ROM to RAM at startup:
Load view
in the load view, the single load region consists of the RO and RW
output sections placed consecutively, for example, in ROM. Here, the
RO region is a root region, and the RW region is non-root. The ZI
output section does not exist at load time. It is created at runtime.
Execution view
In the execution view, the first execution region contains the RO
output section and the second execution region contains the RW and
ZI output sections.

https://developer.arm.com/documentation/dui0474/h/image-structure-and-generation/type-1-image--one-load-region-and-contiguous-execution-regions

Young W. Lim ARM Link 2021-12-08 Wed 34 / 64

Type 3 image

two load regions and non-contiguous execution regions

A Type 3 image is similar to a Type 2 image except that the single
load region is split into two root load regions
Load view
In the load view, the first load region consists of the RO output
section, and the second load region consists of the RW output section.
The ZI output section does not exist at load time. It is created before
execution, using the description of the output section contained in the
image file

Execution view
In the execution view, the first execution region contains the RO
output section, and the second execution region contains the RW and
ZI output sections.

https://developer.arm.com/documentation/dui0474/h/image-structure-and-generation/type-1-image--one-load-region-and-contiguous-execution-regions

Young W. Lim ARM Link 2021-12-08 Wed 35 / 64

Scatter Loading (1)

enables you to specify the memory map of an image
to the linker using a description in a text file.
gives you complete control over
the grouping and placement of image components.

generally, for images with a complex memory map
multiple memory regions are scattered in the memory map
at load and execution time

https://developer.arm.com/documentation/dui0474/f/using-scatter-files/about-scatter-loading

Young W. Lim ARM Link 2021-12-08 Wed 36 / 64

Scatter Loading (2)

an image memory map is made up of
regions and output sections

every region in the memory map can have
a different load and execution address

https://developer.arm.com/documentation/dui0474/f/using-scatter-files/about-scatter-loading

Young W. Lim ARM Link 2021-12-08 Wed 37 / 64

Scatter Loading (3)

to construct the memory map of an image, the linker must have:
grouping information
describes how input sections are grouped
into output sections and regions
placement information
describes the addresses where regions
are to be located in the memory maps.

https://developer.arm.com/documentation/dui0474/f/using-scatter-files/about-scatter-loading

Young W. Lim ARM Link 2021-12-08 Wed 38 / 64

Scatter Loading (4)

When the linker creates an image using a scatter file,
it creates some region-related symbols.

The linker creates these special symbols
only if your code references them.

https://developer.arm.com/documentation/dui0474/f/using-scatter-files/about-scatter-loading

Young W. Lim ARM Link 2021-12-08 Wed 39 / 64

Default section placement (1)

By default, the linker places input sections
in a specific order within an execution region.
The sections are placed in the following order:

By attribute
By input section name if they have the same attributes.
By a tie-breaker if they have the same attributes and section names.

https://www.keil.com/support/man/docs/armclang_ref/armclang_ref_Chunk1932994948.htm

Young W. Lim ARM Link 2021-12-08 Wed 40 / 64

Default section placement (2)

By default, it is the order that armlink processes the section.
By attribute as follows:

Read-only (RO) code
Read-only (RO) data.
Read-write (RW) code.
Read-write (RW) data.
Zero-initialized (ZI) data.

By input section name if they have the same attributes.
By a tie-breaker if they have the same attributes and section names.

override the tie-breaker and sorting by input section name
with the FIRST or LAST input section attribute.

https://www.keil.com/support/man/docs/armclang_ref/armclang_ref_Chunk1932994948.htm

Young W. Lim ARM Link 2021-12-08 Wed 41 / 64

Default section placement (3)

the positions of input sections with identical attributes and names
included from libraries depend on the order the linker processes objects.

difficult to predict when many libraries are present on the command
line.
The --tiebreaker=cmdline option uses a more predictable order
based on the order the section appears on the command line.

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065900278.htm

Young W. Lim ARM Link 2021-12-08 Wed 42 / 64

Default section placement (4)

The base address of each input section is determined
by the sorting order defined by the linker,
and is correctly aligned within the output section that contains it.
The linker produces one output section for each attribute
present in the execution region:

One XO section if the execution region contains only XO sections.
One RO section if the execution region contains read-only code or data.
One RW section if the execution region contains read-write code or
data.
One ZI section if the execution region contains zero-initialized data.

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065900278.htm

Young W. Lim ARM Link 2021-12-08 Wed 43 / 64

p_vaddr and p_paddr (1)

p_vaddr is a virtual address,
p_paddr is a physical address.

these are the addresses at which
the data in the file will be loaded.

they map the contents of the file
into their corresponding memory locations

https://stackoverflow.com/questions/16812574/elf-files-what-is-a-section-and-why-do-we-need-it

Young W. Lim ARM Link 2021-12-08 Wed 44 / 64

p_vaddr and p_paddr (2)

physical addresses are the raw memory addresses.
on modern operating systems,
physical addresses are no longer used in the user space
Instead, user space programs use virtual addresses.

the OS deceives that
the user space program uses the memory alone,
the entire address space is available for it.

the OS maps those virtual addresses
to physical addresses in the actual memory,
and it does it transparently to the program.

https://stackoverflow.com/questions/16812574/elf-files-what-is-a-section-and-why-do-we-need-it

Young W. Lim ARM Link 2021-12-08 Wed 45 / 64

p_vaddr and p_paddr (3)

not every address in the virtual address space
is available simultaneously

limited by the actual physical memory available.

the OS just maps the memory for the segments
the program actually uses

if the process tries to access some unmapped memory,
the operating system incurs memory access fault
(The program can address it, but it cannot access it)

https://stackoverflow.com/questions/16812574/elf-files-what-is-a-section-and-why-do-we-need-it

Young W. Lim ARM Link 2021-12-08 Wed 46 / 64

Base address (1)

executable and shared object files
have a base address :

the lowest virtual address associated
with the memory image of the program’s object file.

to relocate the memory image of the program
during dynamic linking

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-83432/index.html

Young W. Lim ARM Link 2021-12-08 Wed 47 / 64

Base address (2)

an executable or shared object file’s
base address is calculated during execution
from three values:

the memory load address
the maximum page size
the lowest virtual address of a program’s loadable segment

the virtual addresses in the program headers
might not represent the actual virtual addresses
of the program’s memory image

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-83432/index.html

Young W. Lim ARM Link 2021-12-08 Wed 48 / 64

Base address (3)

to compute the base address
of an executable or shared object file
you determine the memory addreses associated with
the lowest p_vaddr value
for a PT_LOAD segment.

then obtain the base address
by truncating the memory address
to the nearest multiple of the maximum page size.

depending on the kind of file being loaded into memory,
the memory address might not match the p_vaddr values.

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-83432/index.html

Young W. Lim ARM Link 2021-12-08 Wed 49 / 64

A loadable segment (1)

PT_LOAD specifies a loadable segment,
described by p_filesz and p_memsz

the bytes from the file are mapped
to the beginning of the memory segment.

loadable segment entries in the program header table
appear in ascending order, sorted on the p_vaddr member.
https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-83432/index.html

Young W. Lim ARM Link 2021-12-08 Wed 50 / 64

A loadable segment (2)

if the segment’s memory size is larger than the file size
(p_memsz > p_filesz),
the extra bytes are defined to hold the value 0 and
to follow the segment’s initialized area
the file size cannot be larger than the memory size
(p_memsz < p_filesz not possible case)

https://docs.oracle.com/cd/E19683-01/816-1386/chapter6-83432/index.html

Young W. Lim ARM Link 2021-12-08 Wed 51 / 64

Load and run addresses (1)

The load address is the location of an object
in the load image
The run address is the location of the object
as it exists during program execution
An object is a chunk of memory.
It represents a section, segment, function, or data.

https://downloads.ti.com/docs/esd/SPRU513/load-and-run-addresses-slau1317366.html

Young W. Lim ARM Link 2021-12-08 Wed 52 / 64

Load and run addresses (2)

The load and run addresses for an object may be the same
This is commonly the case for program code and read-only data,
such as the .econst section.

the program can read the data directly from the load address

sections that have no initial value,
such as the .ebss section

do not have load data
considered to have the same load and run addresses
if you specify different load and run addresses
for an uninitialized section,
the linker provides a warning and
ignores the load address.

https://downloads.ti.com/docs/esd/SPRU513/load-and-run-addresses-slau1317366.html

Young W. Lim ARM Link 2021-12-08 Wed 53 / 64

Load and run addresses (3)

The load and run addresses for an object may be different.
This is commonly the case for writable data,
such as the .data section.
The .data section’s starting contents are placed in ROM
and copied to RAM.
This often occurs during program startup,
but depending on the needs of the object,
it may be deferred to sometime later in the program

https://downloads.ti.com/docs/esd/SPRU513/load-and-run-addresses-slau1317366.html

Young W. Lim ARM Link 2021-12-08 Wed 54 / 64

LMA & VMA (1)

every loadable or allocatable output section has two addresses.
the VMA (Virtual Memory Address)

the address the output section will have
when the output file is run

the LMA (Load Memory Address)
the address at which the output section will be loaded

https://www.zeuthen.desy.de/dv/documentation/unixguide/infohtml/binutils/docs/ld/Basic-Script-Concepts.html#Basic-Script-Concepts

Young W. Lim ARM Link 2021-12-08 Wed 55 / 64

LMA & VMA (2)

in most cases, VMA and LMA will be the same
VMA and LMA might be different
when a data section is loaded from ROM,
and then copied into RAM when the program starts up

this technique is often used to initialize global variables
in a ROM based system
in this case the ROM address would be the LMA
and the RAM address would be the VMA

https://www.zeuthen.desy.de/dv/documentation/unixguide/infohtml/binutils/docs/ld/Basic-Script-Concepts.html#Basic-Script-Concepts

Young W. Lim ARM Link 2021-12-08 Wed 56 / 64

LMA & VMA (3)

The section header contains a single address.
the address in the section header is the VMA
The program headers contain the mapping of VMA to LMA

objdump -x

https://stackoverflow.com/questions/6218384/virtual-and-physical-addresses-of-sections-in-elf-files

Young W. Lim ARM Link 2021-12-08 Wed 57 / 64

LMA & VMA (4)

ELF section header example
Sections:
Idx Name Size VMA LMA File off Algn
<a few lines removed>

3 .bss 00000004 00000048 0000018c 00000240 2**1
ALLOC

.bss has a VMA 0x048

.bss has a LMA 0x18c

https://stackoverflow.com/questions/6218384/virtual-and-physical-addresses-of-sections-in-elf-files

Young W. Lim ARM Link 2021-12-08 Wed 58 / 64

LMA & VMA (5)

ELF program header example
Program Header:
<a few lines removed>

LOAD off 0x00000240 vaddr 0x00000048 paddr 0x0000018c align 2**0
filesz 0x00000000 memsz 0x00000004 flags rw-

a vaddr of 0x048 (VMA)
a paddr of 0x18c (LMA)

https://stackoverflow.com/questions/6218384/virtual-and-physical-addresses-of-sections-in-elf-files

Young W. Lim ARM Link 2021-12-08 Wed 59 / 64

LMA & VMA (6)

ELF file segment does have the physical address attribute
ELF file section does not have physical address attribute.

It is possible though to map sections
to corresponding segment memory.

The meaning of physical address is architecture dependent
and may vary between different OS’s and hardware platforms.

https://stackoverflow.com/questions/6218384/virtual-and-physical-addresses-of-sections-in-elf-files

Young W. Lim ARM Link 2021-12-08 Wed 60 / 64

LMA & VMA (7)

VMA and LMA are GNU utility terminology
not in the ELF specification.
an ELF executable file has program header fields :

p_paddr
p_vaddr

https://stackoverflow.com/questions/39888381/elf-loading-when-vma-lma

Young W. Lim ARM Link 2021-12-08 Wed 61 / 64

LMA & VMA (8)

p_vaddr
this member gives the virtual address
at which the first byte of the segment resides in memory

p_paddr
on systems for which physical addressing is relevant,
this member is reserved for the segment’s physical address

because System V ignores physical addressing
for application programs,
this member has unspecified contents
for executable files and shared objects.

https://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html

Young W. Lim ARM Link 2021-12-08 Wed 62 / 64

LMA & VMA (9)

by default, ARM IDE DS-5 uses p_vaddr, which is the standard

Usage of p_paddr is a quality of implementation,
and is left very loosely defined in the specification.

The ARM Compiler, Linker and C Library
does not generate this information (p_vaddr, p_paddr)
since the relocation process is handled internally
(scatter loading).

https://stackoverflow.com/questions/39888381/elf-loading-when-vma-lma

Young W. Lim ARM Link 2021-12-08 Wed 63 / 64

LMA & VMA (10)

some environments use p_paddr
not as a physical address,
but the load address (hence LMA),

some use p_paddr
as an address to resolve symbols
before and after MMU is enabled

https://stackoverflow.com/questions/39888381/elf-loading-when-vma-lma

Young W. Lim ARM Link 2021-12-08 Wed 64 / 64

	Based on
	GNU ELF Addresses

