
Young Won Lim

6/6/19

Monad P1 : IO Actions (5A)

Young Won Lim

6/6/19

 Copyright (c) 2016 - 2018 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice/OpenOffice.

mailto:youngwlim@hotmail.com

IO Actions (5A) 3 Young Won Lim
6/6/19

Based on

Haskell in 5 steps
https://wiki.haskell.org/Haskell_in_5_steps

IO Actions (5A) 4 Young Won Lim
6/6/19

Haskell separates pure functions from computations

where side effects must be considered

by encoding those side effects

as values of a particular type (IO a)

Specifically, a value of type (IO a) is an action,

which if executed would produce a result value of type a.

https://wiki.haskell.org/Introduction_to_IO

IO Monad

IO a

World (a, World)

a type of an action

Execution Value (result)

IO Actions (5A) 5 Young Won Lim
6/6/19

Computations that result in values

Monads like IO

map types t to a new type IO t

that represent "computations that result in values"

a function type: World -> (t, World)

 the result type : t

 type IO t = World -> (t, World)

https://wiki.haskell.org/Maybe

RealWorld -> (a, RealWorld)

IO Actions (5A) 6 Young Won Lim
6/6/19

IO t is a parameterized function type

input : a World

output: a result value of the type t and a new updated World

are obtained by modifying the given World

in the process of computing the result value of the type t.

 type IO t = World -> (t, World) type synonym

cf) type application

https://www.cs.hmc.edu/~adavidso/monads.pdf

Type Synonym IO t

World -> (t, World)

IO t

World (t, World)

World (t, World)

RealWorld

IO Actions (5A) 7 Young Won Lim
6/6/19

the result of any function call is

fully determined by its arguments.

impossible to have functions like rand() or getchar() in C

which return different results on each call

can't have side effects

they can't effect any changes to the real world,

like changing files, writing to the screen, printing,

any function call can be replaced

by the result of a previous call

with the same parameters,

https://wiki.haskell.org/IO_inside#IO_actions_as_values

A pure language

IO Actions (5A) 8 Young Won Lim
6/6/19

1. repeated calls

2. the order of calls

Solution: use some artificial parameter i0, i1

incur data dependencies

get2chars :: Int -> (String, Int)

get2chars i0 = ([a,b], i2) where (a,i1) = getchar i0

 (b,i2) = getchar i1

https://wiki.haskell.org/IO_inside#IO_actions_as_values

The problems of IO and side effects

IO Actions (5A) 9 Young Won Lim
6/6/19

main :: RealWorld -> ((), RealWorld)

RealWorld is a artificial parameter type used instead of our Int.

like the baton passed in a relay race.

When main calls some IO function,

it passes the RealWorld type value as a parameter. (baton)

https://wiki.haskell.org/IO_inside#IO_actions_as_values

main

IO Actions (5A) 10 Young Won Lim
6/6/19

main :: RealWorld -> ((), RealWorld)

type IO a = RealWorld -> (a, RealWorld)

main has type IO ()

getChar has type IO Char

think of the type IO Char as meaning

take the current RealWorld, do something to it,

and return a Char and a (possibly changed) RealWorld

https://wiki.haskell.org/IO_inside#IO_actions_as_values

IO a type synonym

IO Actions (5A) 11 Young Won Lim
6/6/19

getChar :: RealWorld -> (Char, RealWorld)

main :: RealWorld -> ((), RealWorld)

main w0 = let (a, w1) = getChar w0

 (b, w2) = getChar w1

 in ((), w2)

main calling getChar two times:

RealWorld values are used like a baton which gets passed

between all routines called by 'main' in strict order.

Inside each call RealWorld values are used in the same way.

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Baton values used for strict ordering

w0

w1

w2

requires

requires

IO Actions (5A) 12 Young Won Lim
6/6/19

to compute the world value to be returned from main,

each IO procedure is to be performed

that is called from main directly or indirectly.

each procedure in the chain will be performed in sequence

just in a proper time (relative to the other IO actions)

cost of passing these RealWorld values is free!

these fake values exist only for the compiler

to analyze and optimize the code

but when it gets to assembly code generation,

all these parameters and result values can be removed

from the final generated code.

https://wiki.haskell.org/IO_inside#IO_actions_as_values

RealWorld type values

w0

w1

w2

requires

requires

IO Actions (5A) 13 Young Won Lim
6/6/19

 Using IO actions guarantees that:

 the execution order will be retained as written

 each action will have to be executed

 the result of the same action (such as "readVariable varA")

 will not be reused

https://wiki.haskell.org/IO_inside#IO_actions_as_values

IO actions

IO Actions (5A) 14 Young Won Lim
6/6/19

do notation eventually gets translated to

statements passing world values around and

is used to simplify the gluing of several IO actions together.

main = do putStr "What is your name?"

 putStr "How old are you?"

 putStr "Nice day!"

main = (putStr "What is your name?")

 >> ((putStr "How old are you?")

 >> (putStr "Nice day!")

)

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Do – syntax sugar

IO Actions (5A) 15 Young Won Lim
6/6/19

(>>) :: IO a -> IO b -> IO b

(action1 >> action2) w0 =

 let (a, w1) = action1 w0

 (b, w2) = action2 w1

 in (b, w2)

action1 >> action2 = action

 where

 action w0 = let (a, w1) = action1 w0

 (b, w2) = action2 w1

 in (b, w2)

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Then operator (>>) – syntax sugar

w0

w1

w2

requires

requires

IO Actions (5A) 16 Young Won Lim
6/6/19

main = do a <- readLn

 print a

main = readLn

 >>= (\a -> print a)

(>>=) :: IO a -> (a -> IO b) -> IO b

(action1 >>= action2) w0 =

 let (a, w1) = action1 w0

 (b, w2) = action2 a w1

 in (b, w2)

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Bind variable and operator (>>=)

IO Actions (5A) 17 Young Won Lim
6/6/19

action1 >>= (\x -> action2)

main = do putStr "What is your name?"

 a <- readLn

 putStr "How old are you?"

 b <- readLn

 print (a,b)

main = putStr "What is your name?"

 >> readLn

 >>= \a -> putStr "How old are you?"

 >> readLn

 >>= \b -> print (a,b)

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Binding variable and operator examples

IO Actions (5A) 18 Young Won Lim
6/6/19

return :: a -> IO a

return a world0 = (a, world0)

main = do a <- readLn

 return (a*2)

in an imperative language,

return immediately returns from the IO procedure

In Haskell, the only purpose of using return is

to lift some value (of type a)

into the result of a whole action (of type IO a)

used only as the last executed statement of some IO sequence.

https://wiki.haskell.org/IO_inside#IO_actions_as_values

return method

type IO a = RealWorld -> (a, RealWorld)

IO Actions (5A) 19 Young Won Lim
6/6/19

main = do a <- readLn

 when (a>=0) $ do

 return ()

 print "a is negative"

the 'print' statement is executed always

main = do a <- readLn

 if (a>=0)

 then return ()

 else print "a is negative"

the 'print' statement is executed only when the condition is met

https://wiki.haskell.org/IO_inside#IO_actions_as_values

return method examples

main = do a <- readLn

 if (a>=0)

 then return ()

 else do

 print "a is negative"

 …

IO Actions (5A) 20 Young Won Lim
6/6/19

https://en.wikibooks.org/wiki/Haskell/Indentation

Haskell layout / indentation rule

do first thing

second thing

third thing

do first thing

 second thing

 third thing

do first thing

 second thing

 third thing

do

 first thing

 second thing

 third thing

wrong wrong OK OK

if foo

 then do first thing

 second thing

 third thing

 else do something_else

if foo

 then do first thing

 second thing

 third thing

 else do something_else

if foo

 then do

 first thing

 second thing

 third thing

 else do

 something_else

wrong OK OK

IO Actions (5A) 21 Young Won Lim
6/6/19

liftM :: (a -> b) -> (IO a -> IO b)

liftM f action = do x <- action

 return (f x)

https://wiki.haskell.org/IO_inside#IO_actions_as_values

liftM

IO Actions (5A) 22 Young Won Lim
6/6/19

it's impossible to execute IO actions

inside pure (non-IO) procedures.

pure procedures

just don't get a baton (w0)

 don't know any world value to pass to an IO action.

the prohibition of using IO actions inside pure procedures

is just a type system trick (as it usually is in Haskell).

https://wiki.haskell.org/IO_inside#IO_actions_as_values

IO actions in pure procedures – no execution allowed

m

m w0 = (x, w1)

w0 (x, w1)

Executing an IO action

m :: RealWorld -> (a, RealWorld)

m
RealWorld (t, RealWorld)

IO Actions (5A) 23 Young Won Lim
6/6/19

The RealWorld type is an abstract datatype,

so pure functions also can't construct

RealWorld values by themselves,

The RealWorld type is a strict type,

so undefined also can't be used.

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Abstract and strict type RealWorld

func

func w0 = (x, w1)

w0 (x, w1)

Executing an IO action

func :: RealWorld -> (a, RealWorld)

func
RealWorld (t, RealWorld)

IO Actions (5A) 24 Young Won Lim
6/6/19

s type with associated operations,

but whose representation is hidden.

the built-in primitive types, Integer and Float.

parametrized types : as a kind of abstract type,

because some parts of the data type is undefined, or abstract.

the interface is the set of operations

that can be used to manipulate values of the data type.

does not manipulate the part of the data type that was left abstract.

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Abstract data types

IO Actions (5A) 25 Young Won Lim
6/6/19

The strictness annotation ! on constructor fields

is used mainly to avoid space leaks

 data T = T !Int !Int

neither component of the T constructor can harbour a space leak,

because both components (Int, Int) must be fully evaluated

to Ints when the constructor is built.

strictness annotations can make performance worse

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Strict data types

IO Actions (5A) 26 Young Won Lim
6/6/19

while pure code can't execute IO actions,

pure procedure can work with them

as with any other functional values

● they can be stored in data structures,

● passed as parameters,

● returned as results,

● collected in lists, and

● partially applied.

https://wiki.haskell.org/IO_inside#IO_actions_as_values

IO actions in pure procedures – only as a function value

IO Actions (5A) 27 Young Won Lim
6/6/19

an IO action will remain just a functional value

in partially evaluated form, like any function

unless the last argument of type RealWorld is computed

to execute the IO action means

to compute a value of the type (t, RealWorld)

this can be done only inside some IO procedure,

in its actions chain.

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Executing IO actions in IO procedures

func :: RealWorld -> (a, RealWorld)

func
RealWorld (t, RealWorld)

func

func w0 = (x, w1)

w0 (x, w1)

Executing an IO action

IO Actions (5A) 28 Young Won Lim
6/6/19

IO actions like get2chars cannot be executed directly

because they needs a RealWorld argument

insert a Realworld value in the main chain,

placing them in some do sequence executed from main

main world0 = let get2chars = getChar >> getChar

 ((), world1) = putStr "Press two keys" world0

 (answer, world2) = get2chars world1

 in ((), world2)

main = do let get2chars = getChar >> getChar

 putStr "Press two keys"

 get2chars

 return ()

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Executing IO Actions – main chain

either directly in the main function
explicit sequencing

or indirectly in an IO function
Implicit sequencing

IO Actions (5A) 29 Young Won Lim
6/6/19

real execution of this action will take place

only when this procedure is called as part of the process

of calculating the final value of world for main.

main world0 = let get2chars = getChar >> getChar

 ((), world1) = putStr "Press two keys" world0

 (answer, world2) = get2chars world1

 in ((), world2)

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Executing IO actions – trigger

final value triggers

initial value

three let bindings
order not matter

IO Actions (5A) 30 Young Won Lim
6/6/19

main world0 = let get2chars = getChar >> getChar

 ((), world1) = putStr "Press two keys" world0

 (answer, world2) = get2chars world1

 in ((), world2)

the execution order

● the let bindings do not constrain any order

● processing world values do constrain the order

arbitrary reorder the let binding statements

does not affect the execution order.

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Executing IO Actions – Order

three let bindings

IO Actions (5A) 31 Young Won Lim
6/6/19

main = do let get2chars = getChar >> getChar

 putStr "Press two keys"

 get2chars

 return ()

only one let bindings

the non-let statements are executed

in the exact order in which they're written,

they still pass the world value

from statement to statement as before

https://wiki.haskell.org/IO_inside#IO_actions_as_values

Executing IO Actions – implicit passing the world value

do notation
sequential order

IO Actions (5A) 32 Young Won Lim
6/6/19

ioActions :: [IO ()]

IoActions = [(print "Hello!"),

 (putStr "just kidding"),

 (getChar >> return ())]

the real type of this list:

ioActions :: [RealWorld -> ((), RealWorld)]

insert them into the 'main' chain:

main = do head ioActions

 ioActions !! 1

 last ioActions

https://wiki.haskell.org/IO_inside#IO_actions_as_values

List of IO actions

do notation
sequential order

IO Actions (5A) 33 Young Won Lim
6/6/19

any IO action in a do statement or the >> or >>= operators

is an expression returning a result of type IO a for some type a

In a function of the type x -> y -> ... -> IO a

with all parameters of the types of x, y

IO a is really a function type

https://wiki.haskell.org/IO_inside#IO_actions_as_values

List of IO actions

IO Actions (5A) 34 Young Won Lim
6/6/19

a function that executes all the IO actions in the list:

sequence_ :: [IO a] -> IO ()

sequence_ [] = return ()

sequence_ (x:xs) = do x

 sequence_ xs

extract IO actions from the list and

insert them into a chain of IO operations

to be executed one after another

to "compute the final world value" of the entire 'sequence_' call.

main = sequence_ ioActions

https://wiki.haskell.org/IO_inside#IO_actions_as_values

List of IO actions

IO Actions (5A) 35 Young Won Lim
6/6/19

length xs Get the size of the list.

reverse xs Turn a list backwards.

xs !! n Get the Nth element out of a list.

head xs the first element of the list

last xs the last element of the list

filter my_test xs Get a list of all elements

that match some condition.

Returns everything that passes the test

minimum xs the highest element of a list

maximum x the lowest element of a list

https://wiki.haskell.org/How_to_work_on_lists

List methods

IO Actions (5A) 36 Young Won Lim
6/6/19

It is impossible

to store the extra copies of the contents of your hard drive

that each of the Worlds contains

given World → updated World

type IO a = RealWorld -> (a, RealWorld)

https://www.cs.hmc.edu/~adavidso/monads.pdf

Implementation of IO t

IO Actions (5A) 37 Young Won Lim
6/6/19

http://learnyouahaskell.com/for-a-few-monads-more

Variable Mappings : Context

a = 1
b = 2

s -> (a, s)

s (a, s)

● all the current
variable mappings

● all the previous
variable mappings

● the new variable
mapping

● a result : 5

a = 1
b = 2
x = 5

(x, w1) w0

w0 :: s w1 :: s

IO a

x :: a

s : a type

a : a type

w0 :: s a value

x :: a a value

w1 :: s a value

RealWorld RealWorld

IO Actions (5A) 38 Young Won Lim
6/6/19

 1st IO
initial
World

updated
World

Which World was given initially?

Which World was updated?

In GHC, a main must be defined somewhere with type IO ()

a program execution starts from the main

the initial World is contained in the main to start everything off

the main passes the updated World from each IO

to the next IO as its initial World

an IO that is not reachable from main will never be executed

an initial / updated World is not passed to such an IO

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad in GHC

The modification of the World

 2nd IO
updated
World 3rd IO

updated
World

IO Actions (5A) 39 Young Won Lim
6/6/19

when using GHCI,

everything is wrapped in an implicit IO,

since the results get printed out to the screen.

there’s only 1 World in existence at any given moment.

each IO takes that one and only World, consumes it,

and gives back a single new updated World.

consequently, there’s no way to accidentally run out of Worlds,

or have multiple ones running around.

https://www.cs.hmc.edu/~adavidso/monads.pdf

IO Monad in GHCI

the implementation of bind

IO

current
World

updated
World

only 1
World

IO Actions (5A) 40 Young Won Lim
6/6/19

Every time a new command is given to GHCI,

GHCI passes the current World to IO,

GHCI gets the result of the command back,

GHCI request to display the result (executing actions)

(which updates the World by modifying

● the contents of the screen or

● the list of defined variables or

● the list of loaded modules or whatever),

GHCI saves the new World to process the next command.

https://www.cs.hmc.edu/~adavidso/monads.pdf

GHCI

the implementation of bind

IO Actions (5A) 41 Young Won Lim
6/6/19

References

[1] ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

[2] https://www.umiacs.umd.edu/~hal/docs/daume02yaht.pdf

ftp://ftp.geoinfo.tuwien.ac.at/navratil/HaskellTutorial.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

