
Young Won Lim
7/3/22

Exceptions

Exceptions 2 Young Won Lim
7/3/22

 Copyright (c) 2022 - 2014 Young W. Lim.

 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

Please send corrections (or suggestions) to youngwlim@hotmail.com.

This document was produced by using LibreOffice.

mailto:youngwlim@hotmail.com

Exceptions 3 Young Won Lim
7/3/22

Based on

ARM System-on-Chip Architecture, 2nd ed, Steve Furber

Introduction to ARM Cortex-M Microcontrollers
– Embedded Systems, Jonathan W. Valvano

Digital Design and Computer Architecture,
D. M. Harris and S. L. Harris

ARM assembler in Raspberry Pi
Roger Ferrer Ibáñez

https://thinkingeek.com/arm-assembler-raspberry-pi/

ISA (4A) Assembler
Format – Data Processing

4 Young Won Lim
7/3/22

Status Reg to General Reg Transfer Instructions

Status Register to General Register Transfer Instructions
MRS {<cond>} Rd, CPSR | SPSR

MRS Rd, CPSR
MRS Rd, SPSR
MRS <cond> Rd, CPSR
MRS <cond> Rd, SPSR

M R S

ISA (4A) Assembler
Format – Data Processing

5 Young Won Lim
7/3/22

General Reg to Status Reg Transfer Instructions

General Register to Status Register Transfer Instructions
MSR {<cond>} CPSR_f | SPSR_f, #<32-bit immediate>
MSR {<cond>} CPSR_<field> | SPSR_<field>, Rm

_<field> is one of
_c : the control field PSR[7: 0]
_x : the extension field PSR[15: 8] (unused on current ARMs)
_s : the status field PSR[23:16] (unused on current ARMs)
_f : the flag field PSR[31:24]

MSR CPSR_f, #<32-bit immediate>
MSR SPSR_f, #<32-bit immediate>
MSR <cond> CPSR_f, #<32-bit immediate>
MSR <cond> SPSR_f, #<32-bit immediate>
MSR CPSR_<field>, Rm
MSR SPSR_<field>, Rm
MSR <cond> CPSR_<field>, Rm
MSR <cond> SPSR_<field>, Rm M S R

ISA (4A) Assembler
Format – Data Processing

6 Young Won Lim
7/3/22

CPSR and SPSR

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Current Program Status Register (CPSR)

Saved Program Status Register (SPSR)

FI

To disable Interrupt (IRQ), set I

To disable Fast Interrupt (FIQ), set F

the T bit shows running in the Thumb state

0 0 0 01

0 0 0 11

0 0 1 01

0 0 1 11

0 1 1 11

1 0 1 11

1 1 1 11

 Usr (usr)

 Fast Interrupt (fiq)

 Interrupt (irq)

 Supervisor (svc)

 Abort (abt)

 Undefined (und)

 System (sys)

N Negative flag

Z Zero flag

C Carry flag

V Overflow flag

ISA (4A) Assembler
Format – Data Processing

7 Young Won Lim
7/3/22

CPSR and SPSR Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Current Program Status Register (CPSR)

Saved Program Status Register (SPSR)

CPSR_f

SPSR_f

CPSR_s

SPSR_s

CPSR_x

SPSR_x

CPSR_c

SPSR_c

flag field status field extension field control field

N Z C V T modeFI

ISA (4A) Assembler
Format – Data Processing

8 Young Won Lim
7/3/22

To a General Reg From a Status Reg

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

PSR (Current / Saved)

MRS Rd, CPSR
MRS Rd, SPSR

M R S

M S R

ISA (4A) Assembler
Format – Data Processing

9 Young Won Lim
7/3/22

To a Status Reg From a General Reg

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

MSR CPSR_f , #<32-bit immediate>
MSR SPSR_f , #<32-bit immediate>

MSR CPSR_c , #<32-bit imm>
MSR SPSR_c , #<32-bit imm>

MSR CPSR_f , Rm
MSR SPSR_f , Rm

MSR CPSR_c , Rm
MSR SPSR_c , Rm

#<32-bit immediate>

Rm

Exceptions 10 Young Won Lim
7/3/22

Interrupt is an Exception

https://stackoverflow.com/questions/7295936/what-is-the-difference-between-interrupt-and-exception-context

There are four classes of exception:
● interrupt
● trap
● fault
● abort

Interrupt is one of the classes of exception.

Interrupt occurs asynchronously and
it is triggered by signal which is from I/O device
that are external by processor.

After exception handler finish
handling this interrupt (exception processing),
handler will always return to next instruction.

● interrupt

● trap

● fault

● abort

exceptions

Exceptions 11 Young Won Lim
7/3/22

Exceptions vs interrupts (1)

https://stackoverflow.com/questions/7295936/what-is-the-difference-between-interrupt-and-exception-context

Interrupts and exceptions both alter the program flow.

● interrupts are used to handle
external events (serial ports, keyboard)

● exceptions are used to handle
instruction faults (division by zero, undefined opcode).

interrupts are handled by the processor
after finishing the current instruction.

If it finds a signal on its interrupt pin,
it will look up the address of the interrupt handler
in the interrupt table and pass that routine control.

After returning from the interrupt handler routine,
it will resume program execution at the next instruction
after the interrupted instruction.

● interrupt

● trap

● fault

● abort ex
ce

p
ti

o
n

s

Exceptions 12 Young Won Lim
7/3/22

Exceptions vs interrupts (2)

https://stackoverflow.com/questions/7295936/what-is-the-difference-between-interrupt-and-exception-context

Exceptions on the other hand
are divided into three kinds.
Faults, Traps and Aborts.

Faults are detected and serviced
by the processor before the faulting instructions.

Traps are serviced
after the instruction causing the trap.

User defined interrupts go into this category and
can be said to be traps;

this includes the MS- DOS INT 21h
software interrupt, for example.

Aborts are used only to signal
severe system problems,
when operation is no longer possible.

● interrupt

● trap

● fault

● abort ex
ce

p
ti

o
n

s

Exceptions 13 Young Won Lim
7/3/22

Exceptions vs interrupts (3)

https://www.geeksforgeeks.org/difference-between-interrupt-and-exception/

Trap
 It is typically a type of synchronous interrupt

caused by an exceptional condition
(e.g., breakpoint, division by zero,
invalid memory access).

Fault
 Fault exception is used in a client application

to catch contractually-specified SOAP faults.
By the simple exception message,
you can’t identify the reason of the exception,
that’s why a Fault Exception is useful.

Abort
 It is a type of exception occurs

when an instruction fetch causes an error.

SOAP (formerly an acronym for Simple
Object Access Protocol) is a messaging
protocol specification for exchanging
structured information in the
implementation of web services in
computer networks.

Exceptions 14 Young Won Lim
7/3/22

Exceptions vs interrupts (4)

https://www.geeksforgeeks.org/difference-between-interrupt-and-exception/

Interrupt is one of the classes of Exception.
There are 4 classes of Exception
- interrupt, trap, fault and abort.

Even though there are many differences,
interrupt belongs to exception still

In any computer,
during its normal execution of a program,
there could be events that can cause
the CPU to temporarily halt.
Events like this are called interrupts.

Interrupts can be caused
by either software or hardware faults.

● hardware interrupts are called Interrupts external, asynchronous

● software interrupts are called Exceptions internal, instruction

● interrupt

● trap

● fault

● abort ex
ce

p
ti

o
n

s

hardware
interrupts

software
interrupts

Exceptions 15 Young Won Lim
7/3/22

Exceptions vs interrupts (5)

https://www.geeksforgeeks.org/difference-between-interrupt-and-exception/

The term Interrupt is usually reserved for
hardware interrupts.

They are program control interruptions caused
by external hardware events.

Here, external means external to the CPU.

Hardware interrupts usually come
from many different sources

● timer chip
● peripheral devices (keyboards, mouse, etc.)
● I/O ports (serial, parallel, etc.)
● disk drives, CMOS clock
● expansion cards (sound / video card, etc)

That means hardware interrupts
almost never occur due to some event
related to the executing program.

Exception is a software interrupt,
which can be identified
as a special handler routine.

Exception can be identified
as an automatically occurring trap.

Generally, there are no specific instructions
associated with exceptions

traps are generated
using a specific instruction
int is x86 jargon for "trap instruction"
- a call to a predefined interrupt handler.

So, an exception occurs
due to an “exceptional” condition
that occurs during program execution.

Exceptions 16 Young Won Lim
7/3/22

Exceptions vs interrupts (6)

https://www.geeksforgeeks.org/difference-between-interrupt-and-exception/

 Interrupt

● These are Hardware interrupts.

● Occurrences of hardware interrupts
usually disable other hardware
interrupts.

● These are asynchronous external
requests for service

(like keyboard or printer needs
service).

● Being asynchronous, interrupts can
occur at any place in the program.

● These are normal events and
shouldn’t interfere with the normal
running of a computer.

 Exception

● These are Software Interrupts.

● This is not a true case in terms of
Exception. (does not disable other
exceptions)

● These are synchronous internal
requests for service based upon
abnormal events

(think of illegal instructions, illegal
address, overflow etc).

● Being synchronous, exceptions occur
when there is abnormal event in your
program like, divide by zero or illegal
memory location.

● These are abnormal events and often
result in the termination of a program

Exceptions 17 Young Won Lim
7/3/22

Interrupt examples

https://www.geeksforgeeks.org/difference-between-interrupt-and-exception/

An event like a key press on the keyboard,
or an internal hardware timer timing out
can raise this kind of interrupt and
can inform the CPU

that a certain device needs some attention.

the CPU will stop whatever it was doing,
provides the service required by the device
and will get back to the normal program.

When hardware interrupts occur
and the CPU starts the ISR,
other hardware interrupts are disabled
(e.g. in 80×86 machines).

If you need other hardware interrupts to occur
while the ISR is running,
you need to do that explicitly
by clearing the interrupt flag

with CLI / STI instruction in 80x86
with MSR in ARM

In 80×86 machines,
clearing the interrupt flag will
only affect hardware interrupts.

Exceptions 18 Young Won Lim
7/3/22

Exception examples

https://www.geeksforgeeks.org/difference-between-interrupt-and-exception/

Division by zero,
execution of an illegal opcode or
memory related fault could cause exceptions.

Whenever an exception is raised,
the CPU temporarily suspends the program
it was executing and starts the ISR.

ISR will contain what to do with the exception.

It may correct the problem or
if it is not possible,

it may abort the program gracefully
by printing a suitable error message.

Although a specific instruction
does not cause an exception,
an exception will always be
caused by an instruction.

For example, the division by zero error
can only occur during the execution
of the division instruction.

Exceptions 19 Young Won Lim
7/3/22

(1) Mode of operations

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

● 7 modes of operation.
● most application programs execute in user mode
● Non user modes (called privileged modes)

are entered to serve interrupts or exceptions

 Usr (usr)

 Fast Interrupt (fiq)

 Interrupt (irq)

 Supervisor (svc)

 Abort (abt)

 Undefined (und)

 System (sys)

 non-user

Exceptions 20 Young Won Lim
7/3/22

(2) Mode of operations

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

● The system mode is special mode
for accessing protected resources.

Because exception handlers in system mode
does not use registers,

errors in exception handler cannot
corrupt registers

 Usr (usr)

 Fast Interrupt (fiq)

 Interrupt (irq)

 Supervisor (svc)

 Abort (abt)

 Undefined (und)

 System (sys)

 non-user

Exceptions 21 Young Won Lim
7/3/22

(3) Mode of operations

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

● switching between modes
can be done manually through modifying
the mode bits in the CPSR register.

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FI

0 0 0 01

0 0 0 11

0 0 1 01

0 0 1 11

0 1 1 11

1 0 1 11

1 1 1 11

 Usr (usr)

 Fast Interrupt (fiq)

 Interrupt (irq)

 Supervisor (svc)

 Abort (abt)

 Undefined (und)

 System (sys)

Exceptions 22 Young Won Lim
7/3/22

(4) Mode of operations

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Processor Mode Description
USR User Normal program execution mode
FIQ FIQ Fast data processing mode
IRQ IRQ For general purpose interrupts
SVC Supervisor A protected mode for the OS
ABT Abort When data or instruction fetch is aborted
UND Undefined For undefined instructions
SYS System Privileged mode for OS Tasks

Switching between these modes requires saving/loading register values

Exceptions 23 Young Won Lim
7/3/22

(4) Mode of operations

https://www.keil.com/support/man/docs/armasm/armasm_dom1359731126962.htm

● User mode is an unprivileged mode,
and has restricted access to system resources.

● Non-user modes
● have full access to system resources

in the current security state,
● can change mode freely,
● execute software as privileged.

● Non-user mode are entered
● to service exceptions,
● or to access privileged resources.

● Applications that require task protection
usually execute in User mode.

● Some embedded applications
might run entirely in Non-user mode.

● An application that requires full access
to system resources usually executes
in System mode.

Exceptions 24 Young Won Lim
7/3/22

(5) Mode of operations

https://www.quora.com/In-ARM-processor-what-is-the-difference-in-supervisor-mode-and-system-mode

● Supervisor (svc) mode: A privileged mode
entered whenever the CPU is reset or when an
SVC instruction is executed.

● whereas System mode is the only privileged mode
that is not entered by an exception.

● It can only be entered by executing an instruction
that explicitly writes to the mode bits of the
Current Program Status Register (CPSR).

● So, the exception handlers modify the CPSR
to enter System mode.

● Usage: Corruption of the link register can be a
problem when handling multiple exceptions of the
same.

● the System mode shares the same registers as
User mode,
it can run tasks that require privileged access,
and exceptions no longer overwrite the link
register.

● Linux kernel has done it this way,
so that whenever any interrupt occurs
in first level IRQ handler,
it copies IRQ registers to SVC registers and
switch the ARM to SVC mode.

Exceptions 25 Young Won Lim
7/3/22

(3) ARM Register Set

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

● ARM processor has 37 32-bit registers.

● 31 registers are general purpose registers.

● 6 registers are control registers

● Registers are named from R0 to R16

with some registers banked in different modes

● R13 is the stack pointer SP (banked)

● R14 is subroutine link register LR (banked)

● R15 is program counter PC

● R16 is current program status register CPSR (banked)

Banked registers

 SP (R13)

 SP_fiq

 SP_irq

 SP_svc

 SP_abt

 SP_und

 LR (R14)

 LR_fiq

 LR_irq

 LR_svc

 LR_abt

 LR_und

 SPSR (R16)

SPSR_fiq

 SPSR_irq

 SPSR_svc

 SPSR_abt

 SPSR_und

 R8

 R8_fiq

 R9

 R9_fiq

 R10

 R10_fiq

 R11

 R11_fiq

 R12

 R12_fiq

Exceptions 26 Young Won Lim
7/3/22

Registers in exception handlers

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

● The mode change associated with an exception occurring means
that as a minimum, the particular exception handler called will have access to
• its own stack pointer (SP_<mode>)
• its own link register (LR_<mode>)
• Its own saved program status register (SPSR_<mode>)
• for a FIQ handler, 5 other general purpose registers (r8_FIQ to r12_FIQ)
• other registers will be shared with the previous mode
• SP_<mode> must maintain 8-byte alignment at external interfaces

•

● The exception handler must ensure that
other (corrupted) registers are restored
to their original state upon exit

• This can be done by storing the contents of any working registers
• on the stack and restoring them before returning

ARM Architecture (1A)
Programmer’s Model 27 Young Won Lim

7/3/22

SPSR_fiq SPSR_irq SPSR_svc SPSR_abt SPSR_und

R13_irq

R14_irq

R13_svc

R14_svc

R13_abt

R14_abt

R13_und

R14_und

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13 (SP)

R14 (LR)

R13_fiq

R14_fiq

The same registers across different modes

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

User System Fast Interrupt Interrupt Supervisor Abort Undefined

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

http://www.cs.otago.ac.nz/cosc440/readings/arm-syscall.pdf

ARM Architecture (1A)
Programmer’s Model 28 Young Won Lim

7/3/22

Actual number of different registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

16+1 0 7+1 2+1 2+1 2+1 2+1

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

http://www.cs.otago.ac.nz/cosc440/readings/arm-syscall.pdf

SPSR_fiq SPSR_irq SPSR_svc SPSR_abt SPSR_und

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13 (SP)

R14 (LR)

R13_irq

R14_irq

R13_fiq

R14_fiq

R13_svc

R14_svc

R13_abt

R14_abt

R13_und

R14_und

31 general purpose registers

6 control registers

ARM Architecture (1A)
Programmer’s Model 29 Young Won Lim

7/3/22

ARM Processor Registers

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR CPSR CPSR CPSR CPSR CPSR CPSR

User System Fast Interrupt Interrupt Supervisor Abort Undefined

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R15 (PC)

http://www.cs.otago.ac.nz/cosc440/readings/arm-syscall.pdf

SPSR_fiq SPSR_irq SPSR_svc SPSR_abt SPSR_und

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13 (SP)

R14 (LR)

R13_irq

R14_irq

R13_fiq

R14_fiq

R13_svc

R14_svc

R13_abt

R14_abt

R13_und

R14_und

Exceptions 30 Young Won Lim
7/3/22

(4) Exceptions

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

An exception is any condition that needs
to halt normal execution of the instructions

Examples

● Resetting ARM core
● Failure of fetching instructions
● HWI
● SWI

● interrupt

● trap

● fault

● abort

HWI

SWI

exceptions

Exceptions 31 Young Won Lim
7/3/22

(5) Exceptions and modes

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Each exception causes the ARM core to enter a specific mode.

Exception Mode Purpose
Fast Interrupt Request FIQ Fast Interrupt handling
Interrupt Request IRQ Normal interrupt handling
SWI and RESET SVC Protected mode for OS
Pre-fetch or data abort ABT Memory protection handling
Undefined Instruction UND SW emulation of HW coprocessors

HWI

SWI

Exceptions 32 Young Won Lim
7/3/22

(6) Vector table

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

a table of branching instructions
by which the ARM core branches to the correct ISR
when an exception is raised

example branching instruction

ldr pc, [pc, #_IRQ_handler_offset]

0x0000 0000 ldr pc, [pc, #offset0] Reset
0x0000 0004 ldr pc, [pc, #offset1] Undefined Instruction
0x0000 0008 ldr pc, [pc, #offset2] Software Interrupt
0x0000 000C ldr pc, [pc, #offset3] Prefetch Abort
0x0000 0010 ldr pc, [pc, #offset4] Data Abort
0x0000 0014 ldr pc, [pc, #offset5] (Reserved)
0x0000 0018 ldr pc, [pc, #offset6] IRQ
0x0000 001C ldr pc, [pc, #offset7] FIQ

Exceptions 33 Young Won Lim
7/3/22

(6) Vector table

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

● Reset - executed on power on
● Undef - when an invalid instruction reaches

the execute stage of the pipeline
● SWI - when a software interrupt instruction is

executed
● Prefetch - when an instruction is fetched

from memory that is invalid for some reason,
if it reaches the execute stage then this
exception is taken

● Data - if a load/store instruction tries to
access an invalid memory location, then this
exception is taken

● IRQ - normal interrupt
● FIQ - fast interrupt

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Vector table may be placed at
0xFFFF0000 on ARM720T,

ARM9 family and later devices

Exceptions 34 Young Won Lim
7/3/22

(6) Vector table

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

branching instructions at the vector table

• B <Add>

• LDR pc, [pc, #offset]

• LDR pc, [pc, #-0xff0]

• MOV pc, #immediate

Exceptions 35 Young Won Lim
7/3/22

(6) Vector table

http://classweb.ece.umd.edu/enee447.S2019/ARM-Documentation/ARM-Interrupts-3.pdf

• B <Addr>
used to make branching to the memory location
with address “Addr” relative to the current location of the pc.

• LDR pc, [pc, #offset]
used to load in the PC register
the old PC value + an offset value

• LDR pc, [pc, #-0xff0]
used only when an interrupt controller is available,
to load a specific ISR address from the vector table.

The vector interrupt controller (VIC) is
placed at memory address 0xfffff000
this is the base address of the VIC.
The ISR address is always located at 0xfffff030.

• MOV pc, #immediate
Load in the PC the value “immediate”.

Exceptions 36 Young Won Lim
7/3/22

(6) Vector table

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

● Branch Instruction B <Addr>

direct branch always to handler address label
The handler must be within 32MB of the branch instruction,
which may not be possible with some memory organizations

● Move PC instruction MOV pc, #immediate

directly load the PC with a handler address label
located on applicable address boundary
Address must be able to be stored in 8-bits,
rotated right an even number of places

● Load PC instruction LDR pc, [pc, #offset] LDR pc, [pc, #-0xff0]

The PC is forced directly to the handler’s address
by storing the address in a suitable memory location
(within 4KB of the vector address).
loading the vector with an instruction
which loads the PC with the contents of the chosen memory location.

Exceptions 37 Young Won Lim
7/3/22

(6) Vector table

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

Note that the Load PC cannot be written using MOV
because the address location of the Undef handler
cannot be generated
using 8-bits rotated right an even number of places.

for the Move PC example the value 0x03 is
rotated right four bits which is stored as
two lots of 2 bits and is hence encoded as 0xA30F203

Exceptions 38 Young Won Lim
7/3/22

IRQ with VIC (1)

https://www.nxp.com/docs/en/application-note/AN10381.pdf

the startup assembly file in the Keil environment

Exception vectors should be linked and programmed correctly.
This is usually managed by the linker.
Also appropriate handlers need to be programmed
at the respective locations.

For instance at the IRQ vector (0x18)
the following instruction should exist
if the ISR address is read directly
from the VIC Vector Address Register
(register address: 0xFFFFF030)

LDR PC [PC,#-0xFF0]

0x18 + 0x8 – 0xff0 = - 0xfd0 = 0xFFFFF030

the base address of the VIC
0xfffff000

the ISR address is always at
at 0xfffff030.

offset address = -0xFF0
= 0xFFFFF010

address = 0xFFFFF030
vector address= 0x00000018
pipeline effect = 0x00000008

 0x0000 0000 ldr pc, [pc, #offset0] Reset
0x0000 0004 ldr pc, [pc, #offset1] Undefined Instruction
0x0000 0008 ldr pc, [pc, #offset2] Software Interrupt
0x0000 000C ldr pc, [pc, #offset3] Prefetch Abort
0x0000 0010 ldr pc, [pc, #offset4] Data Abort
0x0000 0014 ldr pc, [pc, #offset5] (Reserved)
0x0000 0018 ldr pc, [pc, #-0x0ff0] IRQ
0x0000 001C ldr pc, [pc, #offset7] FIQ

Exceptions 39 Young Won Lim
7/3/22

IRQ with VIC (2)

https://www.nxp.com/docs/en/application-note/AN10381.pdf

the base address of the VIC
0xfffff000

the register address is always at
at 0xfffff030.

offset address = -0xFF0
= 0xFFFFF010

address = 0xFFFFF030
vector address= 0x00000018
pipeline effect = 0x00000008

LDR PC [PC,#-0xFF0]0x00000018

0x00000020

Register0xFFFFF030

Offset = (address location - vector address - pipeline effect)
= – 0xFD0 – 0x18 – 0x8 = – 0xFF0

address = 0x18 + 0x8 – 0xff0
 = – 0xfd0 = 0xFFFFF030

Vector address

pipeline effect

ISR address

Offset = - 0xFF0

Exceptions 40 Young Won Lim
7/3/22

Undef with VIC (1)

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

LDR PC, [PC+offset]
LDR pc, [pc, #-0xff0]

offset address
= (address location - vector address - pipeline effect)

 = 0xFFC - 0x4 - 0x8
 = 0xFF0

the base address of the VIC
0xfffff000

the ISR address is always
at 0xfffff030.

0x4 + 0x8 – 0xff0 =
 – 0xfe4 = 0xFFFFF01C

0x0000 0000 ldr pc, [pc, #offset0] Reset
0x0000 0004 ldr pc, [pc, #offset1] Undefined Instruction
0x0000 0008 ldr pc, [pc, #offset2] Software Interrupt
0x0000 000C ldr pc, [pc, #offset3] Prefetch Abort
0x0000 0010 ldr pc, [pc, #offset4] Data Abort
0x0000 0014 ldr pc, [pc, #offset5] (Reserved)
0x0000 0018 ldr pc, [pc, #-0x0ff0] IRQ
0x0000 001C ldr pc, [pc, #offset7] FIQ

Exceptions 41 Young Won Lim
7/3/22

Undef with VIC (2)

https://www.nxp.com/docs/en/application-note/AN10381.pdf

the base address of the VIC
0xfffff000

the ISR address is always at
at 0xfffff01C.

offset address = -0xFF0
= 0xFFFFF010

address = 0xFFFFF01C
vector address= 0x00000004
pipeline effect = 0x00000008

 LDR PC [PC,#-0xFF0]0x00000004

0x00000008

Register0xFFFFF01C

Offset = (address location - vector address - pipeline effect)
= – 0xFE4 – 0x4 – 0x8 = – 0xFF0

Vector address

pipeline effect

ISR address

address = 0x4 + 0x8 – 0xff0
 = – 0xfe4 = 0xFFFFF01C

Exceptions 42 Young Won Lim
7/3/22

(6) Vector table

https://www.nxp.com/docs/en/application-note/AN10381.pdf

3. Stack pointers should be programmed correctly for FIQ and IRQ.

4. The VIC is programmed correctly with the ISR address.
This needs to be handled in the application.

5. Compiler supported keywords are used for the Interrupt handlers.
For instance in Keil, an ISR function could have the following form.
void IRQ_Handler()__irq
More details on compiler keywords is provided in the next section.

Exceptions 43 Young Won Lim
7/3/22

ARM Interrupt Controller

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

When a peripheral or device requires attention,
it raises an interrupt to the processor.

An interrupt controller provides
a programmable governing policy

software to determine
which peripheral or device can
interrupt the processor
at any specific time

by setting the appropriate bits
in the interrupt controller registers.

There are two types of interrupt controller available
for the ARM processor:

● standard interrupt controller
● vector interrupt controller (VIC).

Exceptions 44 Young Won Lim
7/3/22

Standard Interrupt Controller

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

The standard interrupt controller
sends an interrupt signal to the processor core
when an external device requests servicing.

It can be programmed to ignore or mask
an individual device or set of devices.

The interrupt handler determines
which device requires servicing
by reading a device bitmap register
in the interrupt controller.

Exceptions 45 Young Won Lim
7/3/22

Vector Interrupt Controller

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

The VIC is more powerful than the standard interrupt controller
because it prioritizes interrupts and
simplifies the determination

of which device caused the interrupt.

After associating a priority and
a handler address with each interrupt,
the VIC only asserts an interrupt signal to the core
if the priority of a new interrupt is higher than
the currently executing interrupt handler.

Depending on its type, the VIC will
● either call the standard interrupt exception handler,

which can load the handler address
for the device from the VIC, or

● make the core jump directly to the handler
for the device

Exceptions 46 Young Won Lim
7/3/22

Vector Interrupt Controller – multiple ISR handlers

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

Usually, if you take the older controllers,
they will have only one ISR for multiple interrupt sources.

In that ISR, we have to check the particular register
and find the source – who is interrupting the processor.

So, the interrupt latency will increase if we do that in this way.

To sort this issue, ARM has come up with an idea of
a vector interrupt controller (VIC)

where each interrupt can have separate ISR functions
and those addresses will be stored in the Vector table.

Exceptions 47 Young Won Lim
7/3/22

Vector Interrupt Controller – vector address

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

The VIC provides a software interface to the interrupt system.

In a system with an interrupt controller,
software must determine

the source that is requesting service
where its ISR is loaded.

A VIC does both of these in hardware.
It supplies the starting address, or vector address, of the ISR
corresponding to the highest priority requesting interrupt source.

Exceptions 48 Young Won Lim
7/3/22

Vector Interrupt Controller – a single FIQ source

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

In an ARM system, two levels of interrupts are available:

 Fast Interrupt reQuest (FIQ) – For fast, low latency interrupt handling.
 Interrupt ReQuest (IRQ) – For more general interrupts.

Generally, you only use a single FIQ source at a time in a system
to provide a true low-latency interrupt. This has the following benefits:

● you can execute the interrupt service routine directly
without determining the source of the interrupt.

● It reduces interrupt latency.
● You can use the banked registers available

for FIQ interrupts more efficiently,
because you do not require a context save.

Exceptions 49 Young Won Lim
7/3/22

Vector Interrupt Controller – 3 categories

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

The Vectored Interrupt Controller (VIC)
takes 32 interrupt request inputs and
programmably assigns them into 3 categories,

● FIQ
● vectored IRQ
● non-vectored IRQ.

Exceptions 50 Young Won Lim
7/3/22

Vector Interrupt Controller

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

 the sequence for the vectored interrupt flow:

● VICVectAddr Register
read to branch to the interrupt service routine.
write to clear the respective interrupt

● VICSoftIntClear Register
if the request was generated by a software interrupt.

Exceptions 51 Young Won Lim
7/3/22

Vector Interrupt Controller

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

 the sequence for the vectored interrupt flow:

● When an interrupt occurs, The ARM processor branches
to either the IRQ or FIQ interrupt vector.

● If the interrupt is an IRQ, read the VICVectAddr Register and
branch to the interrupt service routine.

● Stack the workspace so that you can re-enable IRQ interrupts.
● Enable the IRQ interrupts so that a higher priority can be serviced.
● Execute the Interrupt Service Routine (ISR).
● Clear the requesting interrupt in the peripheral,

or write to the VICSoftIntClear Register
if the request was generated by a software interrupt.

● Disable the interrupts and restore the workspace.
● Write to the VICVectAddr Register.

This clears the respective interrupt in the internal interrupt priority hardware.
● Return from the interrupt. This re-enables the interrupts.

Exceptions 52 Young Won Lim
7/3/22

Nested Vectored Interrupt Controller

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

A nested vectored interrupt controller is used
to manage the interrupts from multiple interrupt sources.

NVIC is closely integrated with the processor core
to achieve low-latency interrupt processing and
efficient processing of late arriving interrupts.

Exceptions 53 Young Won Lim
7/3/22

NVIC features in cortex M

https://embetronicx.com/tutorials/microcontrollers/stm32/vectored-interrupt-controller-nested-vectored-interrupt-controller-vic-nvic/

● External interrupts, configurable from 1 to 240.
● Bits of priority, configurable from 3 to 8.
● A dynamic reprioritization of interrupts.
● Priority grouping. This enables the selection of

preempting interrupt levels and non-preempting interrupt levels.
● Support for tail-chaining and late arrival of interrupts.

This enables back-to-back interrupt processing
without the overhead of state saving and restoration
between interrupts.

● Processor state automatically saved on interrupt entry,
and restored on interrupt exit, with no instruction overhead.

● Optional Wake-up Interrupt Controller (WIC),
providing ultra-low-power sleep mode support.

● Vector table can be located in either RAM or flash.

All interrupts including the core exceptions are managed by the NVIC.
The NVIC maintains knowledge of the stacked, or nested, interrupts
to enable tail-chaining of interrupts.

Exceptions 54 Young Won Lim
7/3/22

NVIC features in cortex M

https://www.quora.com/What-is-the-difference-between-ARMs-nested-vectored-interrupt-controller-and-an-interrupt-vector-
table-which-seems-to-be-used-by-the-other-processors

In a controller we enable every interrupt with certain priority levels
and the interrupt is serviced/processed w.r.t the priority level.

Servicing/ processing the interrupt means the processing of line of codes
inside the IRQ handler of the respective interrupt.

Example:

Priority 1- highest
Priority 2- Second highest

There are two different interrupts X and Y
with priority levels 1 and 2 respectively.

Exceptions 55 Young Won Lim
7/3/22

NVIC handling

https://www.quora.com/What-is-the-difference-between-ARMs-nested-vectored-interrupt-controller-and-an-interrupt-vector-
table-which-seems-to-be-used-by-the-other-processors

● If interrupts X and Y occur at the same time.
First X (P1) is processed, Y (P2) is put on hold.
After processing X, Y is processed.

● If interrupt Y (P2) has occured first and
the controller is in the mid-way of processing it
and interrupt X (P1) occurs at that time.
Then, the controller puts the interrupt Y's IRQ handler on hold
and processes interrupt X's IRQ handler completely
and then the program counter comes back
to interrupt Y's handler to process it.

● So, it processes interrupt by nesting them within each other.

Exceptions 56 Young Won Lim
7/3/22

VIC handling

https://www.quora.com/What-is-the-difference-between-ARMs-nested-vectored-interrupt-controller-and-an-interrupt-vector-
table-which-seems-to-be-used-by-the-other-processors

● If interrupts X (P1) and Y (P2) occur at the same time.
First X is processed, Y is put on hold.
After processing X, Y is processed.

● If interrupt Y has occured first and the controller is
in the mid-way of processing it and
interrupt X occurs at that time.
Then, the controller processes interrupt Y's IRQ handler completely
and then the program counter comes to interrupt Xs handler to process it.

Exceptions 57 Young Won Lim
7/3/22

Interrupt Vector Table

https://www.quora.com/What-is-the-difference-between-ARMs-nested-vectored-interrupt-controller-and-an-interrupt-vector-
table-which-seems-to-be-used-by-the-other-processors

● Interrupt vector table contains
the address of the IRQ handlers of every interrupt.

● They point the program counter where to go,
if an interrupt occurs.

● Priorly VIC was referred as Interrupt vector table,
because they just point the address when an interrupt occurs.
They don't completely handle them as per priority.

Exceptions 58 Young Won Lim
7/3/22

Vectored meaning (1)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Vectored means that
the CPU is aware of the address of the ISR
when the interrupt occurs

Non-Vectored means that
CPU doesn’t know the address of the ISR
nor the source of the IRQ
when the interrupt occurs
it needs to be supplied with the ISR address.

For the Vectored Interrupt Controller,
the system internally maintains a table
IVT (Interrupt Vector Table)
which contains the information about Interrupts sources
and their corresponding ISR address.

IRQ source 1 ISR 1 address
IRQ source 2 ISR 2 address
IRQ source 3 ISR 3 address

… …

Exceptions 59 Young Won Lim
7/3/22

Vectored meaning (2)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

the ‘magnitude‘ : the interrupt source ID
the ‘source’ of the currently pending IRQ

the ‘direction’ : the corresponding ISR
vectored IRQ ‘points to' its own unique ISR

Non-Vectored IRQs doesn’t point to a unique ISR
Instead, default / common ISR
that needs to be executed when the interrupt occurs.

In LPC214x, ‘VICDefVectAddr‘ register is used
The user must assign the address of the default ISR

Exceptions 60 Young Won Lim
7/3/22

Vectored meaning (3)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

VIRQ (Vectored IRQ) has
dedicated IRQ service routine for each Vectored interrupt source

NVIRQ (Non-Vectored IRQ) has
the same IRQ service routine for all Non-Vectored Interrupts.

VIC (in ARM CPUs & MCUs), as per its design,
can take 32 interrupt request inputs
but only 16 requests can be assigned to Vectored IRQ interrupts
in its LCP2148 ARM7 Implementation.

We are given a set of 16 vectored IRQ slots
to which we can assign any of the 32 requests
that are available in LPC2148.

The slot numbering goes from 0 to 15
with slot no. 0 having highest priority and
slot no. 15 having lowest priority.

Exceptions 61 Young Won Lim
7/3/22

Vectored meaning (4)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

For example if you working with 2 interrupt sources
UART0 and TIMER0.

Now if you want to give TIMER0 a higher priority than UART0
then assign TIMER0 interrupt a lower number slot than UART0 .

eg. TIMER0 to slot 0 and UART0 to slot 1 or
TIMER0 to slot 4 and UART to slot 9 and so on.

The number of the slot doesn’t matter
as long TIMER0 slot is lower than UART0 slot.

Exceptions 62 Young Won Lim
7/3/22

Vectored meaning (5)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

VIC has plenty of registers.

Most of the registers that are used
to configure interrupts or read status

each bit corresponds to a particular interrupt source
and this correspondence is same for all of these registers.

For example
bit 0 in these registers corresponds to Watch dog timer interrupt,
bit 4 corresponds to TIMER0 interrupt ,
bit 6 corresponds to UART0 interrupt .. and so on.

Exceptions 63 Young Won Lim
7/3/22

Vectored meaning (5)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

1) VICIntSelect (R/W) : used to select an interrupt as IRQ or as FIQ
2) VICIntEnable (R/W) : used to enable interrupts
3) VICIntEnClr (R/W) : used to disable interrupts
4) VICIRQStatus (R) : used for reading the current status of the enabled IRQ interrupts.
5) VICFIQStatus (R) : used for reading the current status of the enabled FIQ interrupts
6) VICSoftInt : used to generate interrupts using software i.e the program itself
7) VICSoftIntClear : used to clear the interrupt request that was triggered(forced) using VICSoftInt.
8) VICVectCntl0 ~15 : used to assign a particular interrupt source to a particular slot.
9) VICVectAddr0 ~15 : store the address of the function that must be called when an interrupt occurs
10) VICVectAddr : holds the address of the associated ISR i.e the one which is currently active.
11) VICDefVectAddr : stores the address of the “default/common” ISR for a Non-Vectored IRQ occurs

Exceptions 64 Young Won Lim
7/3/22

Vectored meaning (5)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Bit 0 : WDT
Bit 1 : N/A
Bit 2 : ARMC0
Bit 3 : ARMC1
Bit 4 : TIMR0
Bit 5 : TIMR1
Bit 6 : UART0
Bit 7 : UART1
Bit 8 : PWM
Bit 9 : I2C0
Bit10 : I2C0

Bit11 : SPI1/SSP
Bit12 : PLL
Bit13 : RTC
Bit14 : EINT0
Bit15 : EINT1
Bit16 : EINT2
Bit17 : EINT3
Bit18 : AD0
Bit19 : I2C1
Bit20 : BOD
Bit21 : AD1
Bit22 : USB

Exceptions 65 Young Won Lim
7/3/22

VICVectCntl Registers

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

WDT : 0
N/A : 1
ARMC0 : 2
ARMC1 : 3
TIMR0 : 4
TIMR1 : 5
UART0 : 6
UART1 : 7
PWM : 8
I2C0 : 9
I2C0 : 10

SPI1/SSP : 11
PLL : 12
RTC : 13
EINT0 : 14
EINT1 : 15
EINT2 : 16
EINT3 : 17
AD0 : 18
I2C1 : 19
BOD : 20
AD1 : 21
USB : 22

E Int source

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VICVectCntl0 - the highest priority
VICVectCntl15 - the lowest priority

Bit4 ~ Bit0 contain the number of the
interrupt request which is assigned to
this slot.

Bit5 is used to enable the vectored
IRQ slot by writing a 1

VICVectCntl0 ~ 15 : used to assign a particular interrupt source to a particular slot.

Exceptions 66 Young Won Lim
7/3/22

Defining the ISR for Timers

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

 VicVecCntl0

 VicVecAddr0

 VicVecCntl1

 VicVecAddr1

 VicVecCntl15

 VicVecAddr15

slot0

slot1

slot15

TIMER0 Device

TIMER0 ISR

SPIO Device

SPIO ISR

UART0, PWM Device

Default ISR

 VicDefVectAddr

VIC IRQ Slots Vectored IRQs

Non-Vectored IRQs

Exceptions 67 Young Won Lim
7/3/22

Defining the ISR for Timers

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

defining the ISR

explicitly tell the compiler that the function
is not a normal function but an ISR

a special keyword called “__irq”
: a function qualifier.

use this keyword with the function definition

an example of defining an ISR in Keil :

__irq void myISR (void)
{
 ...
}

// or equivalently

void myISR (void) __irq
{
 ...
}

Exceptions 68 Young Won Lim
7/3/22

Setup the interrupt for Timers

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

for ARM based microcontrollers like lpc2148.

in order to assign TIMER0 IRQ and ISR to slot X.

Assign TIMER0 Interrupt to Slot number 0

// Enable TIMER0 IRQ
// 5th bit must 1 to enable the slot
// Vectored-IRQ for TIMER0 has been configured

VICIntEnable |= (1<<4) ;
VICVectCntl0 = (1<<5) | 4 ;
VICVectAddr0 = (unsigned) myISR;

2) VICIntEnable (R/W) : used to enable interrupts
8) VICVectCntl0 ~15 : used to assign a particular interrupt source to a particular slot.
9) VICVectAddr0 ~15 : store the address of the function that must be called when an interrupt occurs

Bit 0 : WDT
Bit 1 : N/A
Bit 2 : ARMC0
Bit 3 : ARMC1
Bit 4 : TIMR0
Bit 5 : TIMR1
Bit 6 : UART0
Bit 7 : UART1
Bit 8 : PWM
Bit 9 : I2C0
Bit10 : I2C0

Exceptions 69 Young Won Lim
7/3/22

regVal = T0IR;

if(T0IR & MR0I_FLAG) {
* * * MR0 match * * *

} else if (T0IR & MR1I_FLAG) {
* * * MR0 match * * *

} else if (T0IR & MR2I_FLAG) {
* * * MR0 match * * *

}

T0IR = regval;

Programming the ISR

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

consider two simple cases for coding an ISR

Use TIMER0 for generating IRQs

Case #1)

only one ‘internal’ source of interrupt in TIMER0
i.e an MR0 match event which raises an IRQ.

Case #2)

multiple ‘internal’ source of interrupt in TIMER0
i.e. say a match event for MR0 , MR1 & MR2 which raise an IRQ.

regVal = T0IR;
* * * MR0 * * *

T0IR = regval;

T0IR for TIMER0
T0's Interrupt Register

Exceptions 70 Young Won Lim
7/3/22

Only one interrupt source

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Since only one source is triggering an interrupt
we don’t need to identify it
– though its a good practice to explicitly identify it.

__irq void myISR(void)
{

long int regVal;
// read the current value in T0's Interrupt Register
regVal = T0IR;

//... MR0 match event has occured
// .. do something here

// write back to clear the interrupt flag
T0IR = regval;
VICVectAddr = 0x0; // The ISR has finished!

}

Exceptions 71 Young Won Lim
7/3/22

Multiple interrupt sources

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Even in case #2 things are simple unless we need
to identify the ‘actual’ source of interrupt.

#define MR0I_FLAG (1<<0)
#define MR1I_FLAG (1<<1)
#define MR2I_FLAG (1<<2)

__irq void myISR(void)
{

long int regVal;
// read the current value in T0's Interrupt Register
regVal = T0IR;

// write back to clear the interrupt flag
T0IR = regVal;
// Acknowledge that ISR has finished execution
VICVectAddr = 0x0;

}

if(T0IR & MR0I_FLAG) {
//do something for MR0 match

} else if (T0IR & MR1I_FLAG) {
//do something for MR1 match

} else if (T0IR & MR2I_FLAG) {
//do something for MR2 match

}

Exceptions 72 Young Won Lim
7/3/22

Only one interrupt source

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Case #2 actually provides a general method of
using Timers as PWM generators!

You can use any one of the match registers as PWM Cycle generator
and then use other 3 match registers to generate 3 PWM signals!

Since LPC214x already has PWM generator blocks on chip
I don’t see any use of Timers being used as PWM generators.

But for MCUs which don’t have PWM generator blocks this is very useful.

Exceptions 73 Young Won Lim
7/3/22

Vectored meaning (5)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Both of them deal with IRQs from different blocks
: TIMER0 and UART0.

Case #3)
Multiple Vectored IRQs from different devices.
Hence Priority comes into picture here.

Case #4)
Multiple Non-Vectored IRQs from different devices.

T0IR for TIMER0
T0's Interrupt Register

U0IIR for UART0
U0's Interrupt Id Register

Exceptions 74 Young Won Lim
7/3/22

Vectored meaning (5)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Case #3
TIMER0 and UART0 generating interrupts
with TIMER0 having higher priority.

2 different Vectored ISRs
– one for TIMER0 and one for UART0.

assume only 1 internal source inside
both TIMER0 and UART0

__irq void myTimer0_ISR(void)
{

long int regVal;
regVal = T0IR;

T0IR = regval;
VICVectAddr = 0x0;

}

__irq void myUart0_ISR(void)
{

long int regVal;
regVal = U0IIR;

//Something inside UART0 has raised an IRQ

VICVectAddr = 0x0;
}

Exceptions 75 Young Won Lim
7/3/22

Vectored meaning (5)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

For Case #4 too we have TIMER0 and UART0
generating interrupts.

But here both of them are Non-Vectored
and hence will be serviced
by a common Non-Vectored ISR.

Hence, here we will need to check
the actual source i.e device
which triggered the interrupt and
proceed accordingly.

This is quite similar to Case #2.

T0's Interrupt Register
U0's(Uart 0) Interrupt Identification Register

__irq void myDefault_ISR(void)
{

long int T0RegVal , U0RegVal;
T0RegVal = T0IR; // read the current value
U0RegVal = U0IIR; // read the current value

if(T0IR)
{

//do something for TIMER0 Interrupt

T0IR = T0RegVal; // write back to clear
// the interrupt flag

}

if(! (U0RegVal & 0x1))
{

// do something for UART0 Interrupt
// No need to write back to U0IIR
// since reading it clears it

}

VICVectAddr = 0x0; // The ISR has finished!

}

Exceptions 76 Young Won Lim
7/3/22

Vectored meaning (5)

http://www.ocfreaks.com/lpc2148-interrupt-tutorial/

Attention Plz!: Note than UART0’s Interrupt Register is a
lot different than TIMER0’s. The first Bit in U0IIR indicates
whether any interrupt is pending or not and its Active
LOW! The next 3 bits give the Identification for any of the
4 Interrupts if enabled. There is more to it which I’ll
explain in detail in Upcoming Dedicated Tutorial on Uarts
and Interrupt Programming related to it.

Exceptions 77 Young Won Lim
7/3/22

Interrupt Register (IR)

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

The IR can be read to identify which of
8 possible interrupt sources are pending.

The IR can be written to clear interrupts.

TIMER/ COUNTER0 T0IR
TIMER/ COUNTER1 T1IR

The Interrupt Register consists of
four bits for the match interrupts and
four bits for the capture interrupts.

If an interrupt is generated
then the corresponding bit in the IR will be high.
Otherwise, the bit will be low.

Writing a logic one to the corresponding IR bit
will reset the interrupt.
Writing a zero has no effect

Bit 0 : MR0 Interrupt flag for match channel 0
Bit 1 : MR1 Interrupt flag for match channel 1
Bit 2 : MR2 Interrupt flag for match channel 2
Bit 3 : MR3 Interrupt flag for match channel 3
Bit 4 : CR0 Interrupt flag for capture channel 0 event
Bit 5 : CR1 Interrupt flag for capture channel 1 event
Bit 6 : CR2 Interrupt flag for capture channel 2 event
Bit 7 : CR3 Interrupt flag for capture channel 3 event

A high bit signifies the interrupt is generated

Exceptions 78 Young Won Lim
7/3/22

Timer / Counter

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

MR0

TC

PC

PR

=

MCR

TCR

MR0 : Match Register 0
MCR : Match Control Register
TC : Timer Counter.
TCR : Timer Control Register
PR : Prescale Register.
PC : Prescale Counter.
CR : Capture Register

● reset the TC,
● stop both the TC and PC,
● generate an interrupt

whenver MR0 matches the TC

CR0= CCR

control

control

control

inc

inc

reset / stop

stop

matchint

match

● Rising PCLK

CTCR[3:2]

● Rising CAPn.0~3
● Falling CAPn.0~3
● Both CAPn.0~3

T0IR

Exceptions 79 Young Won Lim
7/3/22

Match Registers : MR0 ~ MR3

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

The Match register values are
continuously compared to the Timer Counter value.

When the two values are equal,
actions can be triggered automatically.

The possible actions are to
generate an interrupt,
reset the Timer Counter,
or stop the timer.

Actions are controlled by the MCR register.

MR0 (Match Register 0)
can be enabled through the MCR

to reset the TC,
stop both the TC and PC,
and/or generate an interrupt

whenver MR0 matches the TC

MR0

TC

PC

PR

=

CR0=

inc

inc

reset / stop

stop

matchint

match

Exceptions 80 Young Won Lim
7/3/22

Match Control Register (MCR)

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

"n" represents the Timer number, 0 or 1.

Interrupt on MR0: MR0I = 1
an interrupt is generated
when MR0 matches the value in the TC

Reset on MR0: MR0R = 1
the TC will be reset if MR0 matches it.

Stop on MR0: MR0I = 1
the TC and PC will be stopped and
TCR[0] will be set to 0 if MR0 matches the TC

MCR[0]: MR0I
MCR[1]: MR0R
MCR[2]: MR0S
MCR[3]: MR1I
MCR[4]: MR1R
MCR[5]: MR1S
MCR[6]: MR2I
MCR[7]: MR2R
MCR[8]: MR2S
MCR[9]: MR3I
MCR[10]: MR3R
MCR[11]: MR3S

Exceptions 81 Young Won Lim
7/3/22

TC, PR, PC

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

TC : Timer Counter.
The 32-bit TC is incremented
every PR+1 cycles of PCLK.

The TC is controlled through the TCR

PR : Prescale Register.
The Prescale Counter is equal to this value,
the next clock increments the TC
and clears the PC

TC

PC

PR

=

TCR

control

inc

inc

stop

match

● Rising PCLK

● Rising CAPn.0~3
● Falling CAPn.0~3
● Both CAPn.0~3

PC : Prescale Counter.
The 32-bit PC is a counter
which is incremented to the value stored in PR.

When the value in PR is reached,
the TC is incremented and the PC is cleared.

The PC is observable and controllable
through the bus interface

Exceptions 82 Young Won Lim
7/3/22

Capture Register

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

Each capture register is associated with a device pin
and may be loaded with the Timer Counter value
when a specified event occurs on that pin.

The settings in the Capture Control Register register
determine whether the capture function is enabled,
and whether a capture event happens
on the rising edge of the associated pin,
the falling edge, or on both edges.

CR0: Capture Register 0.

CR0 is loaded with the value of TC
when there is an event on the CAPn.0

CAP0.0 for TIMER0
CAP1.0 for TIMER1, respectively

TIMER0
Match MR0, MR1, MR2, MR3
Capture CR0, CR1, CR2, CR3

TIMER1
Match MR0, MR1, MR2, MR3
Capture CR0, CR1, CR2, CR3

Exceptions 83 Young Won Lim
7/3/22

Capture Control Register (CCR)

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

The Capture Control Register is used to control

whether one of the four Capture Registers
is loaded with the value in the Timer Counter
when the capture event occurs

whether an interrupt is generated
by the capture event.

Setting both the rising and falling bits
at the same time is a valid configuration,
resulting in a capture event for both edges.

CR0, CR1, CR2, CR3

RE, FE

I

0 no change 0
0 rising edge 1
1 falling edge 0
1 no change 1

PCLK

CAP input

Selected
CAP input

Exceptions 84 Young Won Lim
7/3/22

Capture Control Register (CCR)

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

"n" represents the Timer number, 0 or 1.

Capture on CAPn.0 rising edge: CAP0RE
a sequence of 0 then 1 on CAPn.0
will cause CR0 to be loaded
with the contents of TC.

Capture on CAPn.0 falling edge: CAP0FE
a sequence of 1 then 0 on CAPn.0
will cause CR0 to be loaded
with the contents of TC

Interrupt on CAPn.0 event: CAP0I
a CR0 load due to a CAPn.0 event
will generate an interrupt.

CCR[0]: CAP0RE
CCR[1]: CAP0FE
CCR[2]: CAP0I
CCR[3]: CAP1RE
CCR[4]: CAP1FE
CCR[5]: CAP1I
CCR[6]: CAP2RE
CCR[7]: CAP2FE
CCR[8]: CAP2I
CCR[9]: CAP3RE
CCR[10]: CAP3FE
CCR[11]: CAP3I

Exceptions 85 Young Won Lim
7/3/22

Timer / Counter Capture Pins

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

Capture Signals -
A transition on a capture pin can be configured
to load one of the Capture Registers
with the value in the Timer Counter
and optionally to generate an interrupt.

Capture functionality can be selected
from a number of pins.
(physically more than one pin can exist)

• CAP0.0 (3 pins)
• CAP0.1 (2 pins)
• CAP0.2 (3 pin)
• CAP0.3 (1 pin)

• CAP1.0 (1 pin)
• CAP1.1 (1 pin)
• CAP1.2 (2 pins)
• CAP1.3 (2 pins)

TC

CR0 CR1 CR2 CR3

Exceptions 86 Young Won Lim
7/3/22

Timer / Counter Capture Pins

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

for TIMER0
CAP0.0
CAP0.1
CAP0.2
CAP0.3

for TIMER1
CAP1.0
CAP1.1
CAP1.2
CAP1.3

CTCR[3:2]

TC

PC

PR

=

TCR

control

inc

inc

match

PCLK

● Rising CAPn.0~3
● Falling CAPn.0~3
● Both CAPn.0~3

PCLK CTCR[1:0]

Selected Event
to inc TC

Selected
CAP input

Counter Mode

Timer Mode

Exceptions 87 Young Won Lim
7/3/22

Timer / Coutner Pins

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

When more than one pin is selected
for a Capture input on a single TIMER0/1 channel,
the pin with the lowest Port number is used.

If for example pins 30 (P0.6) and 46 (P0.16) are selected for CAP0.2,
only pin 30 will be used by TIMER0 to perform CAP0.2 function.

Here is the list of all CAPTURE signals,
together with pins on where they can be selected:

• CAP0.0 (3 pins) : P0.2, P0.22 and P0.30
• CAP0.1 (2 pins) : P0.4 and P0.27
• CAP0.2 (3 pin) : P0.6, P0.16 and P0.28
• CAP0.3 (1 pin) : P0.29

• CAP1.0 (1 pin) : P0.10
• CAP1.1 (1 pin) : P0.11
• CAP1.2 (2 pins) : P0.17 and P0.19
• CAP1.3 (2 pins) : P0.18 and P0.21

Exceptions 88 Young Won Lim
7/3/22

CounTer Control Register (CTCR)

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

The Count Control Register (CTCR) is used

1) to select between Timer and Counter mode

2) to select the pin (Bits 3:2)
and edge(s) (Bits 1:0) for counting
in Counter mode

Bits 1:0 Counter / Timer Mode
00 Timer mode, rising PCLK
01 Counter mode, rising CAP input
10 Counter mode, falling CAP input
11 Counter mode, both CAP input

Bits 3:2 Count Input Select
00 CAPn.0
01 CAPn.1
10 CAPn.2
11 CAPn.3

for TIMER0 for TIMER1
CAP0.0 CAP1.0
CAP0.1 CAP1.1
CAP0.2 CAP1.2
CAP0.3 CAP1.3

Exceptions 89 Young Won Lim
7/3/22

CounTer Control Register (CTCR)

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

After comparing two consecutive samples of
this CAP input, one of the following four events
is recognized:

rising edge, falling edge,
either of edges or no changes
in the level of the selected CAP input.

0 no change 0
0 rising edge 1
1 falling edge 0
1 no change 1

PCLK

for TIMER0
CAP0.0
CAP0.1
CAP0.2
CAP0.3

CTCR[1:0]

CAP input

for TIMER1
CAP1.0
CAP1.1
CAP1.2
CAP1.3

CTCR[3:2]

When Counter Mode is chosen, (CTCR[1:0] = 01,10,11)
the CAP input (selected by the CTCR[3:2])
is sampled on every rising edge of the PCLK clock.

Selected Event
to inc TC

Selected
CAP input

Exceptions 90 Young Won Lim
7/3/22

CounTer Control Register (CTCR)

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

Only if the identified event corresponds
to the one selected by bits 1:0 in the CTCR register,
the Timer Counter register will be incremented

Bits 1:0 Counter / Timer Mode
00 Timer mode, rising PCLK
01 Counter mode, rising CAP input
10 Counter mode, falling CAP input
11 Counter mode, both CAP input

Bits 3:2 Count Input Select
00 CAPn.0
01 CAPn.1
10 CAPn.2
11 CAPn.3

Exceptions 91 Young Won Lim
7/3/22

CTCR – Counter / Timer Mode

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

Bits Mode This field selects which
1:0 Timer / rising PCLK edges can increment Timer’s Prescale Counter (PC),

Counter or clear PC and increment Timer Counter (TC).

00 Timer Mode every rising PCLK edge
01 Counter Mode TC is incremented on rising edges on the CAP input selected by bits 3:2.
10 Counter Mode TC is incremented on falling edges on the CAP input selected by bits 3:2.
11 Counter Mode TC is incremented on both edges on the CAP input selected by bits 3:2

Timer Mode PC is incremented on rising PCLK
Counter Mode TC is incremented on rising, falling, both edges on the CAP input

● Rising PCLK
● Rising CAPn.0~3
● Falling CAPn.0~3
● Both CAPn.0~3

Exceptions 92 Young Won Lim
7/3/22

CTCR – CAP Select

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

Bits Select When bits 1:0 in this register are not 00 (Timer Mode),
3:2 Counter these bits select which CAP pin is sampled for clocking:

Input

00 CAPn.0 CAP0.0 for TIMER0 and CAP1.0 for TIMER1
01 CAPn.1 CAP0.1 for TIMER0 and CAP1.1 for TIMER1
10 CAPn.2 CAP0.2 for TIMER0 and CAP1.2 for TIMER1
11 CAPn.3 CAP0.3 for TIMER0 and CAP1.3 for TIMER1

Note: If Counter mode is selected for a particular CAPn input in the TnCTCR,
the 3 bits for that input in the Capture Control Register (TnCCR)
must be programmed as 000.

However, capture and/or interrupt can be selected
for the other 3 CAPn inputs in the same timer.

Exceptions 93 Young Won Lim
7/3/22

U0IIR

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

The U0IIR provides a status code that denotes
the priority and source of a pending interrupt

the interrupts are frozen during an U0IIR access.

if an interrupt occurs during an U0IIR access,
the interrupt is recorded for the next U0IIR access

given the status of U0IIR[3:0],
an interrupt handler routine can determine
the cause of the interrupt and
how to clear the active interrupt.

The U0IIR must be read
in order to clear the interrupt prior to exiting the ISR

Exceptions 94 Young Won Lim
7/3/22

U0IIR

https://www.keil.com/dd/docs/datashts/philips/user_manual_lpc214x.pdf

Bit0 Interrupt Pending Note that U0IIR[0] is active low. The pending interrupt can
be determined by evaluating U0IIR[3:1].

Bit3:1 Interrupt Identification U0IER[3:1] identifies an interrupt corresponding to the
UART0 Rx FIFO. All other combinations of U0IER[3:1] not
listed above are reserved (000,100,101,111).

Bit5:4 - Reserved, user software should not write ones to reserved
bits. The value read from a reserved bit is not defined.

Bit7:6 FIFO Enable These bits are equivalent to U0FCR[0].

Bit8 ABEOInt End of auto-baud interrupt. True if auto-baud has finished
successfully and interrupt is enabled.

Bit9 ABTOInt Auto-baud time-out interrupt. True if auto-baud has timed
out and interrupt is enabled.

Bit31:10 - Reserved, user software should not write ones to reserved
bits. The value read from a reserved bit is not defined.

Exceptions 95 Young Won Lim
7/3/22

VIC operation

https://www.st.com/resource/en/application_note/an2593-str91x-interrupt-management-stmicroelectronics.pdf

Interrupt
Request

Logic

FIQ Logic

IRQ Priority
Logic

FIQ status reg

IRQ status reg

IRQ address reg
 Vectored Int 0
 Vectored Int 0 ISR address
 Vectored Int 1
 Vectored Int 1 ISR address

 Vectored Int 15
 Vectored Int 15 ISR address

FIQ to CPU

IRQ to CPU

Int source 0

Int source 1

Int source 15

FIQ

IRQ

Exceptions 96 Young Won Lim
7/3/22

Exception Return Instructions

http://s3-us-west-2.amazonaws.com/valpont/uploads/20160326012043/Exception_handling.pdf

 AREA vectors, CODE, READONLY
 ENTRY

Vector_Table
 LDR pc, reset_addr
 LDR pc, undef_addr
 LDR pc, swi_addr
 LDR pc, prefetch_addr
 LDR pc, abort_addr
 NOP ; Reserved
 LDR pc, irq_addr
FIQ_Handler
 ; FIQ handler code, < 4kB in size

reset_addr DCD Reset_Handler
undef_addr DCD Undef_Handler
swi_addr DCD Swi_Handler
 ...

One typical approach is to use a literal pool for all
of the addresses, so that
they can be modified later if necessary

You can include the FIQ handler at the end of the
vector table (assuming it’s < 4kB) but move the
other handlers around to any location in the
memory map. If you use LDR pc, ... from a literal
pool, you won’t suddenly find that it breaks your
vector table instructions if the handlers change
location.

Exceptions 97 Young Won Lim
7/3/22

Vector table

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

a table of addresses that the ARM core branches to
when an exception is raised

there is always branching instructions
that direct the core to the ISR.

ldr pc, [pc, #_IRQ_handler_offset]

0x0000 0000 ldr pc, [pc, #offset0] Reset
0x0000 0004 ldr pc, [pc, #offset1] Undefined Instruction
0x0000 0008 ldr pc, [pc, #offset2] Software Interrupt
0x0000 000C ldr pc, [pc, #offset3] Prefetch Abort
0x0000 0010 ldr pc, [pc, #offset4] Data Abort
0x0000 0014 ldr pc, [pc, #offset5] (Reserved)
0x0000 0018 ldr pc, [pc, #offset6] IRQ
0x0000 001C ldr pc, [pc, #offset7] FIQ

Exceptions 98 Young Won Lim
7/3/22

Vector table (2)

https://www.sciencedirect.com/topics/computer-science/exception-vector-table

Reset vector is the location of the first instruction
executed by the processor when power is applied.
This instruction branches to the initialization code.

Undefined instruction vector is used
when the processor cannot decode an instruction.

Software interrupt vector is called
when you execute a SWI instruction.
The SWI instruction is frequently used
to invoke an operating system routine.

0x0000 0000 ldr pc, [pc, #offset0] Reset
0x0000 0004 ldr pc, [pc, #offset1] Undefined Instruction
0x0000 0008 ldr pc, [pc, #offset2] Software Interrupt
0x0000 000C ldr pc, [pc, #offset3] Prefetch Abort
0x0000 0010 ldr pc, [pc, #offset4] Data Abort
0x0000 0014 ldr pc, [pc, #offset5] (Reserved)
0x0000 0018 ldr pc, [pc, #offset6] IRQ
0x0000 001C ldr pc, [pc, #offset7] FIQ

Exceptions 99 Young Won Lim
7/3/22

Vector table (3)

https://www.sciencedirect.com/topics/computer-science/exception-vector-table

Prefetch abort vector occurs
when the processor attempts to fetch an instruction
from an address without the correct access permissions.
The actual abort occurs in the decode stage.

Data abort vector is similar to a prefetch abort
but is raised when an instruction attempts
to access data memory without the correct access permissions.

Interrupt request vector is used by external hardware
to interrupt the normal execution flow of the processor.
It can only be raised if IRQs are not masked in the CPSR.

Fast interrupt request vector is similar to the interrupt request
but is reserved for hardware requiring faster response times.
It can only be raised if FIQs are not masked in the CPSR.

0x0000 0000 ldr pc, [pc, #offset0] Reset
0x0000 0004 ldr pc, [pc, #offset1] Undefined Instruction
0x0000 0008 ldr pc, [pc, #offset2] Software Interrupt
0x0000 000C ldr pc, [pc, #offset3] Prefetch Abort
0x0000 0010 ldr pc, [pc, #offset4] Data Abort
0x0000 0014 ldr pc, [pc, #offset5] (Reserved)
0x0000 0018 ldr pc, [pc, #offset6] IRQ
0x0000 001C ldr pc, [pc, #offset7] FIQ

Exceptions 100 Young Won Lim
7/3/22

Typical vector table using a literal pool

https://jianjiandudu.wordpress.com/2016/12/20/interrupt4-vector-table/

 AREA vectors, CODE, READONLY
 ENTRY
Vector_Table
 LDR pc, Reset_Addr
 LDR pc, Undefined_Addr
 LDR pc, SVC_Addr
 LDR pc, Prefetch_Addr
 LDR pc, Abort_Addr
 NOP ; Reserved vector
 LDR pc, IRQ_Addr

FIQ_Handler
 ; FIQ handler code - max 4kB in size

Reset_Addr DCD Reset_Handler
Undefined_Addr DCD Undefined_Handler
SVC_Addr DCD SVC_Handler
Prefetch_Addr DCD Prefetch_Handler
Abort_Addr DCD Abort_Handler
 DCD 0 ;Reserved vector
IRQ_Addr DCD IRQ_Handler
 ...
 END

0x0000 0000 ldr pc, [pc, #offset0] Reset
0x0000 0004 ldr pc, [pc, #offset1] Undefined Instruction
0x0000 0008 ldr pc, [pc, #offset2] Software Interrupt
0x0000 000C ldr pc, [pc, #offset3] Prefetch Abort
0x0000 0010 ldr pc, [pc, #offset4] Data Abort
0x0000 0014 ldr pc, [pc, #offset5] (Reserved)
0x0000 0018 ldr pc, [pc, #offset6] IRQ
0x0000 001C ldr pc, [pc, #offset7] FIQ

Exceptions 101 Young Won Lim
7/3/22

Typical vector table using a literal pool

https://stackoverflow.com/questions/21312963/arm-bootloader-interrupt-vector-table-understanding

● when the processor is reset then hardware sets the pc to 0x0000
and starts executing by fetching the instruction at 0x0000.

● when an undefined instruction is executed or tries to be executed
the hardware responds by setting the pc to 0x0004
and starts executing the instruction at 0x0004.

● when irq interrupt happens, the hardware finishes the instruction it is executing
starts executing the instruction at address 0x0018. and so on.

00000000 <_start>:
 0: ea00000d b 3c <_reset>
 4: e59ff014 ldr pc, [pc, #20] ; 20 <_undefined_instruction>
 8: e59ff014 ldr pc, [pc, #20] ; 24 <_software_interrupt>
 c: e59ff014 ldr pc, [pc, #20] ; 28 <_prefetch_abort>
 10: e59ff014 ldr pc, [pc, #20] ; 2c <_data_abort>
 14: e59ff014 ldr pc, [pc, #20] ; 30 <_not_used>
 18: e59ff014 ldr pc, [pc, #20] ; 34 <_irq>
 1c: e59ff014 ldr pc, [pc, #20] ; 38 <_fiq>

0x0000 0000 ldr pc, [pc, #offset0] Reset
0x0000 0004 ldr pc, [pc, #offset1] Undefined Instruction
0x0000 0008 ldr pc, [pc, #offset2] Software Interrupt
0x0000 000C ldr pc, [pc, #offset3] Prefetch Abort
0x0000 0010 ldr pc, [pc, #offset4] Data Abort
0x0000 0014 ldr pc, [pc, #offset5] (Reserved)
0x0000 0018 ldr pc, [pc, #offset6] IRQ
0x0000 001C ldr pc, [pc, #offset7] FIQ

Exceptions 102 Young Won Lim
7/3/22

Typical vector table using a literal pool

https://stackoverflow.com/questions/21312963/arm-bootloader-interrupt-vector-table-understanding

00000020 <_undefined_instruction>:
 20: 00000000 andeq r0, r0, r0

00000024 <_software_interrupt>:
 24: 00000000 andeq r0, r0, r0

00000028 <_prefetch_abort>:
 28: 00000000 andeq r0, r0, r0

0000002c <_data_abort>:
 2c: 00000000 andeq r0, r0, r0

00000030 <_not_used>:
 30: 00000000 andeq r0, r0, r0

00000034 <_irq>:
 34: 00000000 andeq r0, r0, r0

00000038 <_fiq>:
 38: 00000000 andeq r0, r0, r0

0000003c <_reset>:
 3c: 00000000 andeq r0, r0, r0

00000000 <_start>:
 0: ea00000d b 3c <_reset>
 4: e59ff014 ldr pc, [pc, #20] ; 20 <_undefined_instruction>
 8: e59ff014 ldr pc, [pc, #20] ; 24 <_software_interrupt>
 c: e59ff014 ldr pc, [pc, #20] ; 28 <_prefetch_abort>
 10: e59ff014 ldr pc, [pc, #20] ; 2c <_data_abort>
 14: e59ff014 ldr pc, [pc, #20] ; 30 <_not_used>
 18: e59ff014 ldr pc, [pc, #20] ; 34 <_irq>
 1c: e59ff014 ldr pc, [pc, #20] ; 38 <_fiq>

00000000 <_start>:
 0: ea00000d b 3c <_reset>
 4: e59ff014 ldr pc, [pc, #20] ; 20 <_undefined_instruction>
 8: e59ff014 ldr pc, [pc, #20] ; 24 <_software_interrupt>
 c: e59ff014 ldr pc, [pc, #20] ; 28 <_prefetch_abort>
 10: e59ff014 ldr pc, [pc, #20] ; 2c <_data_abort>
 14: e59ff014 ldr pc, [pc, #20] ; 30 <_not_used>
 18: e59ff014 ldr pc, [pc, #20] ; 34 <_irq>
 1c: e59ff014 ldr pc, [pc, #20] ; 38 <_fiq>

● change the pc
● start execution at these addresses
● save the state of the machine
● switch processor modes if necessary
● start executing at the new address

from the vector table

Exceptions 103 Young Won Lim
7/3/22

Typical vector table using a literal pool

https://stackoverflow.com/questions/21312963/arm-bootloader-interrupt-vector-table-understanding

one word, one instruction for each location.

if we never expect to have any of these exceptions,
we do not need a branch instruction at address zero

for example you can just have your program start,
there is nothing magic about the memory at these addresses.

If you expect to have these exceptions,
then you have two choices for instructions that are one word
and can jump out of the way of the exception that follows.

● branch
● load pc.

 0: ea00000d b 3c <_reset>
 4: e59ff014 ldr pc, [pc, #20] ; 20 <_undefined_instruction>

Exceptions 104 Young Won Lim
7/3/22

Typical vector table using a literal pool

https://stackoverflow.com/questions/21312963/arm-bootloader-interrupt-vector-table-understanding

When the hardware takes an exception,
● the PC is automatically set to

the address of the relevant exception vector
● the processor begins executing

the instruction at that address.

● When the processor comes out of reset,
the PC is automatically set to base+0.

● An undefined instruction sets the PC to base+4, etc.

The base address of the vector table (base)
is either 0x00000000, 0xFFFF0000,
or VBAR depending on the processor and configuration.

Note that this provides limited flexibility
in where the vector table gets placed and
you'll need to consult the ARM documentation
in conjunction with the reference manual for the device
that you are using to get the right value to be used.

0x0000 0000 ldr pc, [pc, #offset0] Reset
0x0000 0004 ldr pc, [pc, #offset1] Undefined Instruction
0x0000 0008 ldr pc, [pc, #offset2] Software Interrupt
0x0000 000C ldr pc, [pc, #offset3] Prefetch Abort
0x0000 0010 ldr pc, [pc, #offset4] Data Abort
0x0000 0014 ldr pc, [pc, #offset5] (Reserved)
0x0000 0018 ldr pc, [pc, #offset6] IRQ
0x0000 001C ldr pc, [pc, #offset7] FIQ

0xFFFF 0000 ldr pc, [pc, #offset0] Reset
0xFFFF 0004 ldr pc, [pc, #offset1] Undefined Instruction
0xFFFF 0008 ldr pc, [pc, #offset2] Software Interrupt
0xFFFF 000C ldr pc, [pc, #offset3] Prefetch Abort
0xFFFF 0010 ldr pc, [pc, #offset4] Data Abort
0xFFFF 0014 ldr pc, [pc, #offset5] (Reserved)
0xFFFF 0018 ldr pc, [pc, #offset6] IRQ
0xFFFF 001C ldr pc, [pc, #offset7] FIQ

Exceptions 105 Young Won Lim
7/3/22

Typical vector table using a literal pool

https://stackoverflow.com/questions/21312963/arm-bootloader-interrupt-vector-table-understanding

The layout of the table (4 bytes per exception)
makes it necessary to immediately branch
from the vector to the actual exception handler.

The reasons for the LDR PC, label approach are twofold

● because a PC-relative branch is limited
to (24 << 2) bits (+/-32MB)
using B would constrain the layout of the code
in memory somewhat;

● by loading an absolute address (LDR PC, label)
the handler can be located anywhere in memory.

● it makes it very simple to change
exception handlers at runtime,
by simply writing a different address to that location,
rather than having to assemble and
hotpatch a branch instruction.

0x0000 0000 ldr pc, [pc, #offset0] Reset
0x0000 0004 ldr pc, [pc, #offset1] Undefined Instruction
0x0000 0008 ldr pc, [pc, #offset2] Software Interrupt
0x0000 000C ldr pc, [pc, #offset3] Prefetch Abort
0x0000 0010 ldr pc, [pc, #offset4] Data Abort
0x0000 0014 ldr pc, [pc, #offset5] (Reserved)
0x0000 0018 ldr pc, [pc, #offset6] IRQ
0x0000 001C ldr pc, [pc, #offset7] FIQ

Exceptions 106 Young Won Lim
7/3/22

Typical vector table using a literal pool

https://stackoverflow.com/questions/21312963/arm-bootloader-interrupt-vector-table-understanding

There's little value to having a remappable reset vector in this way,
however, which is why you tend to see that one implemented
as a simple branch to skip over the rest of the vectors to the real entry point code.

Exceptions 107 Young Won Lim
7/3/22

(7) Exception priorities

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Exception Priority I bit F bit
Reset 1 1 1
Data Abort 2 1 -
FIQ 3 1 1
IRQ 4 1 -
Prefetch 5 1 -
SWI 6 1 -
Undefined 6 1 -

Priority decides which of the currently raised
exceptions is more important

I bit and F bit decide if the exception handler
itself can be interrupted during execution or not?

Exception Mode Priority
Fast Interrupt Request FIQ 3
Interrupt Request IRQ 4
SWI and RESET SVC 6, 1
Pre-fetch or data abort ABT 5, 2
Undefined Instruction UND 6

SWI and Undefined instruction :
both are caused by an instruction
entering the execution stage of
the ARM instruction pipeline

ISA (4A) Assembler
Format – Data Processing

108 Young Won Lim
7/3/22

CPSR and SPSR – I bit and F bit

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Current Program Status Register (CPSR)

Saved Program Status Register (SPSR)

FI

To disable Interrupt (IRQ), set I

To disable Fast Interrupt (FIQ), set F

the T bit shows running in the Thumb state

Exception Priority I bit F bit Mode
Reset 1 1 1 SVC
Data Abort 2 1 - ABT
FIQ 3 1 1 FIQ
IRQ 4 1 - IRQ
Prefetch 5 1 - ABT
SWI 6 1 - SVC
Undefined 6 1 - UND

I bit and F bit decide if the exception handler
itself can be interrupted during execution or not?

Exceptions 109 Young Won Lim
7/3/22

(8) Link register offset

https://www.ic.unicamp.br/~celio/mc404-2013/arm-manuals/ARM_exception_slides.pdf

Link Register is used to return the PC
to the appropriate place in the interrupted task
since this is not always the old PC value.
It is modified depending on the type of exception.

The PC has advanced beyond the instruction
which caused the exception.
Upon exit of the prefetch abort exception handler,
software must re-load the PC back one instruction
from the PC saved at the time of the exception

Exception Returning Address
Reset None
Data Abort LR - 8
FIQ, IRQ, prefetch Abort LR - 4
SWI, Undefined Instruction LR

ISA (4A) Assembler
Format – Data Processing

110 Young Won Lim
7/3/22

CPSR and SPSR – I bit and F bit

N Z C V T mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Current Program Status Register (CPSR)

Saved Program Status Register (SPSR)

FI

Exception Priority I bit F bit Mode Return
Reset 1 1 1 SVC None
Data Abort 2 1 - ABT LR – 8
FIQ 3 1 1 FIQ LR – 4
IRQ 4 1 - IRQ LR – 4
Prefetch 5 1 - ABT LR – 4
SWI 6 1 - SVC LR
Undefined 6 1 - UND LR

Exceptions 111 Young Won Lim
7/3/22

References

[1] http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C
[2] http://blog.bobuhiro11.net/2014/01-13-baremetal.html
[3] http://www.valvers.com/open-software/raspberry-pi/
[4] https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

http://wiki.osdev.org/ARM_RaspberryPi_Tutorial_C

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111

