
Link 5. Search Libararies (II) Using RPATH

Young W. Lim

2023-04-22 Mon

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 1 / 94

Outline

1 Based on

2 Search libraries (II)
-rpath-link
-rpath
LD_RUN_PATH
BFD linkers
Gold linkers

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 2 / 94

Based on

"Study of ELF loading and relocs", 1999
http://netwinder.osuosl.org/users/p/patb/public_html/elf_
relocs.html

I, the copyright holder of this work, hereby publish it under the following licenses: GNU head Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

CC BY SA This file is licensed under the Creative Commons Attribution ShareAlike 3.0 Unported License. In short:
you are free to share and make derivative works of the file under the conditions that you appropriately attribute it,
and that you distribute it only under a license compatible with this one.

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 3 / 94

http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html
http://netwinder.osuosl.org/users/p/patb/public_html/elf_relocs.html

Compling 32-bit program on 64-bit gcc

gcc -v

gcc -m32 t.c

sudo apt-get install gcc-multilib

sudo apt-get install g++-multilib

gcc-multilib

g++-multilib

gcc -m32

objdump -m i386

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 4 / 94

-rpath-link

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 5 / 94

-rpath-link man page (1)

rpath-link DIR

when using ELF or SunOS, one shared library may require another

this happens when an ld -shared link includes
a shared library as one of the input files.

may specify a sequence of directory names
by specifying a list of names separated by colons, or
by appearing multiple times

https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 6 / 94

-rpath-link man page (2)

rpath-link DIR
when the linker encounters such a dependency
when doing a non-shared, non-relocateable link,
it will automatically try to locate
the required shared library and
include it in the link,
if it is not included explicitly.

in such a case, the -rpath-link option specifies
the first set of directories to search.

https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 7 / 94

-rpath-link man page (3)

the linker uses the following search paths
to locate required shared libraries.

1 Any directories specified by -rpath-link options.
2 Any directories specified by -rpath options.
3 On an ELF system,

if the -rpath and -rpath-link options were not used,
search the contents of the environment variable LD_RUN_PATH

https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 8 / 94

-rpath-link man page (4)

The difference between -rpath and -rpath-link
directories specified by -rpath options
are included in the executable
and used at runtime,

the -rpath-link option is
only effective at link time

https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 9 / 94

-rpath-link man page (5)

the linker uses the following search paths
to locate required shared libraries.

1 On SunOS, if the -rpath option was not used,
search any directories specified using -L options.

2 For a native linker, the contents of
the environment variable LD_LIBRARY_PATH

3 The default directories, normally /lib and /usr/lib

If the required shared library is not found,
the linker will issue a warning and continue with the link.

https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 10 / 94

(1) informs the linker

The -rpath-link=dir option tells the linker that
when it encounters an input file
that requests dynamic dependencies
it should search dir to resolve them.

libfoobar.so needs libfoo.so and libbar.so
if rpath-link is used,
no need to specify dynamic dependencies
no need to know what they are
no need to use -lfoo -lbar

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 11 / 94

(2) dynamic depencieds in .dynamic section

the dynamic dependencies is defined
in the .dynamic section of libfoobar.so

(NEEDED shared library file names)

therefore, just need to provide a directory
where the required shared libraries can be found

$ readelf -d libfoobar.so

Dynamic section at offset 0xdf8 contains 26 entries:
Tag Type Name/Value

0x0000000000000001 (NEEDED) Shared library: [libfoo.so]
0x0000000000000001 (NEEDED) Shared library: [libbar.so]
0x0000000000000001 (NEEDED) Shared library: [libc.so.6]
...
...

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 12 / 94

(3) the loader at rumtime

But does -rpath-link=dir give us a executable prog? – No.

$./prog
./prog: error while loading shared libraries: libfoobar.so: \
cannot open shared object file: No such file or directory

at runtime, libfoo.so, libbar.so, and libfoobar.so
might not be where they were linked

but the loader might be able to locate them by other means:

through the ldconfig cache

by setting the LD_LIBRARY_PATH environment variable

$ export LD_LIBRARY_PATH=.; ./prog
foo
bar

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 13 / 94

(4) effective at link time

-rpath-link=dir gives the linker (ld) the information
that the loader (ld.so) would need to resolve
some of the dynamic dependencies of prog
at runtime

directories specified by -rpath options
are included in the executable
and used at runtime,

the -rpath-link option is
only effective at link time

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 14 / 94

(5) no need using -l options

assuming the dynamic dependencies remained true at runtime

but it doesn’t write that information
into the .dynamic section of prog

it just lets the linkage succeed,
without spelling out all the recursive
dynamic dependencies of the linkage
by using -l options

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 15 / 94

-rpath-link (5)

rpath=dir
provides the linker with the same information
as rpath-link=dir does
instructs the linker to bake that information
into the .dynamic section of the output file

(DT_RPATH / DT_RUNPATH entry in .dynamic section)

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 16 / 94

-rpath-link (6-1)

by using -rpath=$(pwd), prog contains the information
that $(pwd) is a runtime search path for shared libraries
that it depends on

$ export LD_LIBRARY_PATH=
$ gcc -o prog main.o -L. -lfoobar -Wl,-rpath=$(pwd)
$./prog
foo
bar

as we can see:

$ readelf -d prog

Dynamic section at offset 0xe08 contains 26 entries:
Tag Type Name/Value

0x0000000000000001 (NEEDED) Shared library: [libfoobar.so]
0x0000000000000001 (NEEDED) Shared library: [libc.so.6]
0x000000000000000f (RPATH) Library rpath: [/home/imk/develop/so/scrap]
... ^^^
...

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l
Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 17 / 94

-rpath-link (6-2)

That search path will be tried
(RPATH) /home/imk/develop/so/scrap
after the directories listed in LD_LIBRARY_PATH,
if any are set, and
before the system defaults-
the ldconfig-ed directories, plus /lib and /usr/lib

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 18 / 94

-rpath

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 19 / 94

-rpath (1)

rpath designates the run-time search path
hard-coded in an executable file or library

dynamic linking loaders use the rpath
to find required libraries.

dynamic linking is a sort of “lazy” linking
of required shared libraries
not during the stage of compiling
but the later stage of running an executable.

the rpath can be stored there
at link time by the linker

https://en.wikipedia.org/wiki/Rpath#+end_src
https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 20 / 94

-rpath (2)

Specifically, it encodes a path to shared libraries
into the header of an executable (or another shared library).

this RPATH header value (so named in the ELF header standards)
may either override or supplement
the system default dynamic linking search paths.

https://en.wikipedia.org/wiki/Rpath#+end_src

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 21 / 94

-rpath (3)

The rpath of an executable or shared library
is an optional entry in the .dynamic section
of the ELF executable or shared libraries,
with the type DT_RPATH, called the DT_RPATH attribute

tools such as chrpath and patchelf
can create or modify the entry DT_RPATH later.

https://en.wikipedia.org/wiki/Rpath#+end_src

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 22 / 94

rpath and runpath (1)

rpath and runpath are the most complex items
in runtime search path
the rpath and runpath of
an executable or shared library
are optional entries
in the .dynamic section
they are both a list of directories to search for

Name Value d_un Executable Shared Object
DT_RPATH* 15 d_val optional ignored
DT_RUNPATH 29 d_val optional optional

https://refspecs.linuxbase.org/elf/gabi4+/ch5.dynamic.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 23 / 94

rpath and runpath (2)

The only difference between rpath and runpath
is the order they are searched in.
Specifically, their relation to LD_LIBRARY_PATH

rpath is searched in before LD_LIBRARY_PATH
runpath is searched in after LD_LIBRARY_PATH

1 search rpath
2 search LD_LIBRARY_PATH
3 search runpath

rpath cannot be changed dynamically
runpath can be changed dynamically
with environment variables

https://refspecs.linuxbase.org/elf/gabi4+/ch5.dynamic.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 24 / 94

rpath and runpath (3)

The ld dynamic linker does not search DT_RUNPATH locations for
transitive dependencies, unlike DT_RPATH. [3]
Instead of specifying the -rpath to the linker, the environment variable
LD_RUN_PATH can be set to the same effect.

https://en.wikipedia.org/wiki/Rpath#+end_src

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 25 / 94

Displaying RPATH / RUNPATH

readelf -d <binary_name> | grep ’R.*PATH’
displays the RPATH or RUNPATH of a binary file.
In gcc, for instance, one could specify RPATH by
-Wl,-rpath,/custom/rpath/

https://en.wikipedia.org/wiki/Rpath#+end_src

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 26 / 94

--inhibit-rpath LIST

the option --inhibit-rpath LIST of the dynamic linker
instructs it to ignore DT_RPATH and DT_RUNPATH attributes
of the object names in LIST.

to specify a main program in the LIST, give empty string

https://en.wikipedia.org/wiki/Rpath#+end_src

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 27 / 94

LD_PRELOAD environment variable

libraries specified by the environment variable LD_PRELOAD and
then those listed in /etc/ld.so.preload
are loaded before the search begins.

a preload can thus be used to replace some (or all)
of the requested library’s normal functionalities,
or it can simply be used to supply a library
that would otherwise not be found.

static libraries are searched and linked into the ELF file
at link time and are not searched at run time.

https://en.wikipedia.org/wiki/Rpath#+end_src

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 28 / 94

--enable-new-dtags (1)

The GNU Linker (ld) implements a feature
which it calls new-dtags,
which can be used to insert an rpath
that has lower precedence
than the LD_LIBRARY_PATH environment variable.

https://en.wikipedia.org/wiki/Rpath#+end_src

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 29 / 94

--enable-new-dtags (2)

If the new-dtags feature is enabled in the linker
(--enable-new-dtags), GNU ld,
besides setting the DT_RPATH attribute,
also sets the DT_RUNPATH attribute to the same string.
At run time, if the dynamic linker
finds a DT_RUNPATH attribute,
it ignores the value of the DT_RPATH attribute,
with the effect that LD_LIBRARY_PATH is checked first
and the paths in the DT_RUNPATH attribute
are only searched afterwards.

https://en.wikipedia.org/wiki/Rpath#+end_src

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 30 / 94

Dynamic section

If an object file participates in dynamic linking,
its program header table will have
an element of type PT_DYNAMIC.

this segment contains the .dynamic section

a special symbol, _DYNAMIC, labels the section,
which contains an array of the following structures

https://refspecs.linuxbase.org/elf/gabi4+/ch5.dynamic.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 31 / 94

Dynamic structure

typedef struct { typedef struct {
Elf32_Sword d_tag; Elf64_Sxword d_tag;
union { union {

Elf32_Word d_val; Elf64_Xword d_val;
Elf32_Addr d_ptr; Elf64_Addr d_ptr;

} d_un; } d_un;
} Elf32_Dyn; } Elf64_Dyn;

extern Elf32_Dyn _DYNAMIC[]; extern Elf64_Dyn _DYNAMIC[];

d_tag controls the interpretation of d_un (union)

d_val these objects represent integer values
with various interpretations.

d_ptr these objects represent program virtual addresses

https://refspecs.linuxbase.org/elf/gabi4+/ch5.dynamic.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 32 / 94

Dynamic array tags d_tag of the .dynamic section (1)

Name Value d_un Executable Shared Object
DT_NULL 0 ignored mandatory mandatory
DT_NEEDED 1 d_val optional optional
DT_PLTRELSZ 2 d_val optional optional
DT_PLTGOT 3 d_ptr optional optional
DT_HASH 4 d_ptr mandatory mandatory
DT_STRTAB 5 d_ptr mandatory mandatory
DT_SYMTAB 6 d_ptr mandatory mandatory
DT_RELA 7 d_ptr mandatory optional
DT_RELASZ 8 d_val mandatory optional
DT_RELAENT 9 d_val mandatory optional
DT_STRSZ 10 d_val mandatory mandatory
DT_SYMENT 11 d_val mandatory mandatory
DT_INIT 12 d_ptr optional optional
DT_FINI 13 d_ptr optional optional
DT_SONAME 14 d_val ignored optional
DT_RPATH*.......15......d_val.....optional........ignored
DT_SYMBOLIC* 16 ignored ignored optional
DT_REL 17 d_ptr mandatory optional
DT_RELSZ 18 d_val mandatory optional
DT_RELENT 19 d_val mandatory optional

https://refspecs.linuxbase.org/elf/gabi4+/ch5.dynamic.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 33 / 94

Dynamic array tags d_tag of the .dynamic section (2)

Name Value d_un Executable Shared Object
DT_PLTREL 20 d_val optional optional
DT_DEBUG 21 d_ptr optional ignored
DT_TEXTREL* 22 ignored optional optional
DT_JMPREL 23 d_ptr optional optional
DT_BIND_NOW* 24 ignored optional optional
DT_INIT_ARRAY 25 d_ptr optional optional
DT_FINI_ARRAY 26 d_ptr optional optional
DT_INIT_ARRAYSZ 27 d_val optional optional
DT_FINI_ARRAYSZ 28 d_val optional optional
DT_RUNPATH............29..........d_val........optional.....optional
DT_FLAGS 30 d_val optional optional
DT_ENCODING 32 unspecified unspecified unspecified
DT_PREINIT_ARRAY 32 d_ptr optional ignored
DT_PREINIT_ARRAYSZ 33 d_val optional ignored
DT_LOOS 0x6000000D unspecified unspecified unspecified
DT_HIOS 0x6ffff000 unspecified unspecified unspecified
DT_LOPROC 0x70000000 unspecified unspecified unspecified
DT_HIPROC 0x7fffffff unspecified unspecified unspecified

https://refspecs.linuxbase.org/elf/gabi4+/ch5.dynamic.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 34 / 94

RPATH example

an example of readelf output with RUNPATH and $ORIGIN:
Dynamic section at offset 0x210268 contains 30 entries:

Tag Type Name/Value

(d_tag) (DT_RUNPATH) (d_val)

0x000000000000001d (RUNPATH) Shared library: [$ORIGIN]

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 35 / 94

DT_RPATH

DT_RPATH element holds the string table offset of
a null-terminated search library search path string

the offset is an index into the table
recorded in the DT_STRTAB entry.
this entry is at level 2.
its use has been superseded by DT_RUNPATH

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 36 / 94

DT_RUNPATH

DT_RUNPATH element holds the string table offset
of a null-terminated library search path string
the offset is an index into the table
recorded in the DT_STRTAB entry.

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 37 / 94

$ORIGIN (1)

paths in rpath and runpath can be

1 absolute (e.g., /path/to/my/libs/)

1 relative to the current working directory (e.g., .)

1 relative to the executable
by using the $ORIGIN variable
in the rpath definition:

https://amir.rachum.com/shared-libraries/

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 38 / 94

$ORIGIN (2)

when the dynamic linker loads
an object that uses $ORIGIN,
it must calculate the pathname
of the directory containing the object

the pathname will contain
no symbolic links
no use of . or .. components.

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 39 / 94

$ORIGIN (3)

within a string provided by dynamic array entries
with the DT_NEEDED or DT_RUNPATH tags and
in pathnames passed as parameters to the dlopen() routine,
a dollar sign ($) introduces a substitution sequence.

substituion sequence consists of
the $ sign immediately followed by

either the longest name sequence
or a name contained within { and }

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 40 / 94

$ORIGIN (4)

If the name is ORIGIN,
then the dynamic linker replaces
the substitution sequence with
the absolute pathname of the directory
containing the object which
the substitution sequence originated.

Otherwise (when the name is not ORIGIN)
the behavior of the dynamic linker is unspecified

https://refspecs.linuxbase.org/elf/gabi4+/ch5.dynamic.html#shobj_dependencies

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 41 / 94

how to check the value of RPATH / RUNPATH

$ objdump -x path/to/executable | grep RPATH

$ readelf -d path/to/executable | head -20

$ chrpath -l path/to/executable

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 42 / 94

how to set the value of RPATH / RUNPATH (1)

during compilation time, use configure -rpath=

$./configure LDFLAGS=-Wl,-rpath=$ORIGIN/lib_path

this will tell the linker
to build and run the executable
under the specified library path,
usually used to override the default library paths.

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 43 / 94

how to set the value of RPATH / RUNPATH (2)

after compilation before execution

$ chrpath -r “\$\ORIGIN/lib_path” <executable>

this command could fail
if no rpath was set previously for the executable.

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 44 / 94

how to set the value of RPATH / RUNPATH (3)

try below command with patchelf utility,
which won’t complain about an unset rpath,
and will get RUNPATH set to achieve similar target.

$ patchelf --set-rpath ’$ORIGIN/lib_path’ <executable>

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 45 / 94

objdump -x

objdump -x

display all available header information,
including the symbol table and relocation entries

Using -x is equivalent to specifying all of
-a archive header information
-f file headers, summary from the overall header
-h section header
-p private headers, specific to the object file format
-r relocation entries
-t symbol table entries

objdump man page

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 46 / 94

readelf -d

readelf -d

displays the contents of the file’s dynamic section,
if it has one.

readelf man page

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 47 / 94

Configure the software (1)

The configure script is responsible for getting ready
to build the software on your specific system.
It makes sure all of the dependencies for the rest of
the build and install process are available, and
finds out whatever it needs to know to use those dependencies

https://thoughtbot.com/blog/the-magic-behind-configure-make-make-install

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 48 / 94

Configure the software (2)

Unix programs are often written in C,
so we’ll usually need a C compiler to build them.
in these cases the configure script will establish
that your system does indeed have a C compiler, and
find out what it’s called and where to find it.

https://thoughtbot.com/blog/the-magic-behind-configure-make-make-install

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 49 / 94

Build the software

Once configure has done its job,
we can invoke make to build the software.
this runs a series of tasks defined in a Makefile
to build the finished program from its source code.
The tarball you download usually
doesn’t include a finished Makefile.
Instead it comes with a template called Makefile.in and
the configure script produces a customised Makefile
specific to your system.

https://thoughtbot.com/blog/the-magic-behind-configure-make-make-install

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 50 / 94

Install the software (1)

when the software is built and ready to run,
the files can be copied to their final destinations
The make install command will copy

the built program, and
its libraries and
documentation,

to the correct locations.

https://thoughtbot.com/blog/the-magic-behind-configure-make-make-install

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 51 / 94

Install the software (2)

the program’s binary will be copied
to a directory on your PATH,
the program’s manual page will be copied
to a directory on your MANPATH, and
any other files it depends on will be safely stored
in the appropriate place.

https://thoughtbot.com/blog/the-magic-behind-configure-make-make-install

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 52 / 94

Install the software (3)

since the install step is also defined in the Makefile,
where the software is installed can change
based on options passed to the configure script, or
things the configure script discovered about your system.
depending on where the software is being installed,
you might need escalated permissions for this step
so you can copy files to system directories.
Using sudo will often do the trick.

https://thoughtbot.com/blog/the-magic-behind-configure-make-make-install

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 53 / 94

Configure script

a shell script (generally written by GNU Autoconf)
that goes up and looks for software and
even tries various things to see what works.

it then takes its instructions from Makefile.in and
builds Makefile (and possibly some other files)
that work on the current system.

https://tldp.org/LDP/LG/current/smith.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 54 / 94

Configure, make, makeinstall

You run configure, type ./configure
this builds a new Makefile
Type make
this builds the program.
look for the first target in Makefile and
do what the instructions said.
The expected end result would be to build an executable program
Now, as root, type make install
this again invokes make,
finds the target install in Makefile and
copies files to the directories to install the program.

https://tldp.org/LDP/LG/current/smith.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 55 / 94

patchelf (1)

PatchELF is a simple utility for modifying
existing ELF executables and libraries.

can change the dynamic loader ("ELF interpreter")
of executables
can change the RPATH of executables and libraries.

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 56 / 94

patchelf (2)

patchelf

--set-rpath RUNPATH
Change the DT_RUNPATH of the executable or library to RUNPATH

--add-rpath RUNPATH
Add RUNPATH to the existing DT_RUNPATH of the executable or library.

--remove-rpath
Removes the DT_RPATH or DT_RUNPATH entry
of the executable or library.

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 57 / 94

patchelf (3)

patchelf

--shrink-rpath
Remove from the DT_RUNPATH or DT_RPATH all directories
that do not contain a library referenced by DT_NEEDED fields
of the executable or library.

For instance, if an executable
references one library libfoo.so,
has an RPATH "/lib:/usr/lib:/foo/lib", and
libfoo.so can only be found in /foo/lib,
then the new RPATH will be "/foo/lib".

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 58 / 94

patchelf (4)

patchelf
--allowed-rpath-prefixes PREFIXES
Combined with the "--shrink-rpath" option,
this can be used for further rpath tuning.
for instance, if an executable has
an RPATH "/tmp/build-foo/.libs:/foo/lib",
it is probably desirable to keep the "/foo/lib" reference
instead of the "/tmp" entry.

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 59 / 94

patchelf (5)

patchelf
--print-rpath
Prints the DT_RUNPATH or DT_RPATH for an executable or library.
--force-rpath
Forces the use of the obsolete DT_RPATH in the file
instead of DT_RUNPATH.
By default DT_RPATH is converted to DT_RUNPATH

https://nehckl0.medium.com/creating-relocatable-linux-executables-by-setting-rpath-with-origin-45de573a2e98

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 60 / 94

-rpath man page (1)

-rpath dir
add a directory to the runtime library search path
used when linking an ELF executable with shared objects
also used when locating shared objects
which are needed by shared objects
explicitly included in the link
see the description of the -rpath-link option.
all -rpath arguments are concatenated and
passed to the runtime linker
the runtime linker uses them to locate shared objects at runtime

https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 61 / 94

-rpath man page (2)

-rpath dir
if -rpath is not used when linking an ELF executable,
the contents of the environment variable LD_RUN_PATH
will be used if it is defined.
if a -rpath option is used,
the runtime search path will be formed
exclusively using the -rpath options,
ignoring the -L options.
this can be useful when using gcc,
which adds many -L options
which may be on NFS mounted filesystems.

https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 62 / 94

-rpath man page (3)

-rpath dir
for compatibility with other ELF linkers,
if the -R option is followed by a directory name,
rather than a file name, it is treated as the -rpath option.

https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 63 / 94

LD_RUN_PATH

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 64 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (0)

LD_RUN_PATH LD_LIBRARY_PATH
link time resolution run time resolution
linker dynamic loader

https://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 65 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (1)

LD_RUN_PATH is used for the link time resolution of libraries
LD_LIBRARY_PATH is used for run time resolution of libraries.
LD_RUN_PATH is used by the linker to specify
where to search libraries only at run time
LD_LIBRARY_PATH is uded by the dynamic loader to specify
where to search the libraries required to execute the binary
(at the run time of the binary)
LD_RUN_PATH is the runtime library seach path
LD_LIBRARY_PATH paths are not searched during link time

https://www.quora.com/What-is-the-difference-between-LD_LIBRARY_PATH-and-LD_RUN_PATH

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 66 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (2)

LD_RUN_PATH variable is used by the linker (ld)
the same way as -rpath argument to ld is used
LD_RUN_PATH is used if -rpath is not specified

However, if some binary is linked
LD_RUN_PATH is not used and
-rpath is specified on ld command line
and you want to change the paths used
to look for libraries at run time,
LD_LIBRARY_PATH variable must be specified
which is used by the dynamic linker (/lib/ld-linux.so.*)

https://bugzilla.redhat.com/show_bug.cgi?id=20218

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 67 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (3)

When you use the -l option,
you must inform the dynamic linker about the directories
of the dynamically linked libraries
that are to be linked with your program at execution

The environment variable LD_RUN_PATH
lets you do this at link time

to set LD_RUN_PATH, list the colon separated
absolute pathnames of the directories
in the order you want them searched

LD_RUN_PATH=/home/mylibs
export LD_RUN_PATH

http://osr507doc.sco.com/en/tools/ccs_linkedit_dynamic_dirsearch.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 68 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (4)

the command:
cc -static -fpic -o prog file1.c file2.c -L/home/mylibs -lfoo

directs the dynamic linker to search for libfoo.so
in /home/mylibs when you execute your program prog

the dynamic linker searches the standard place by default,
after the directories you have assigned to LD_RUN_PATH

Note that as far as the dynamic linker is concerned,
the standard place for libraries is /usr/lib.
Any executable versions of libraries
supplied by the compilation system kept in /usr/lib

http://osr507doc.sco.com/en/tools/ccs_linkedit_dynamic_dirsearch.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 69 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (5)

The environment variable LD_LIBRARY_PATH lets you
do the same thing at run time.

Suppose you have moved libfoo.so to /home/sharedobs
/home/mylibs → /home/sharedobs

It is too late to change LD_RUN_PATH,
at least without link editing your program again
LD_RUN_PATH=/home/sharedobs
export LD_RUN_PATH (--> not woking)

however, you can change LD_LIBRARY_PATH
LD_LIBRARY_PATH=/home/sharedobs
export LD_LIBRARY_PATH

http://osr507doc.sco.com/en/tools/ccs_linkedit_dynamic_dirsearch.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 70 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (6)

compile command
cc -static -fpic -o prog file1.c file2.c -L/home/mylibs -lfoo

now when you execute your program prog

the dynamic linker
searches for libfoo.so first in /home/mylibs
and, not finding it there, in /home/sharedobs.
LD_RUN_PATH=/home/mylibs
LD_LIBRARY_PATH=/home/sharedobs

the directory assigned to LD_RUN_PATH is searched
before the directory assigned to LD_LIBRARY_PATH.

http://osr507doc.sco.com/en/tools/ccs_linkedit_dynamic_dirsearch.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 71 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (7)

because the pathname of libfoo.so
is not hard-coded in prog,

you can direct the dynamic linker
to search a different directory
when you execute your program. (LD_LIBRARY_PATH)

You can move a dynamically linked library
without breaking your application.
LD_RUN_PATH=/home/mylibs
LD_LIBRARY_PATH=/home/sharedobs

http://osr507doc.sco.com/en/tools/ccs_linkedit_dynamic_dirsearch.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 72 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (8)

You can set LD_LIBRARY_PATH
without first having set LD_RUN_PATH

once you have used LD_RUN_PATH for an application,
the dynamic linker searches the specified directories
whenever the application is executed

unless you have relinked the application
in a different environment

first LD_RUN_PATH, then LD_LIBRARY_PATH
LD_RUN_PATH overrides LD_LIBRARY_PATH

http://osr507doc.sco.com/en/tools/ccs_linkedit_dynamic_dirsearch.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 73 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (9)

can assign different directories to LD_LIBRARY_PATH
whenever you execute the application.

LD_LIBRARY_PATH directs the dynamic linker
to search the assigned directories
before it searches the standard place.

directories, including those in the optional second list,
are searched in the order listed.

http://osr507doc.sco.com/en/tools/ccs_linkedit_dynamic_dirsearch.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 74 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (10)

when linking a set-user or set-group program,
the dynamic linker ignores any directories
that are not built into the dynamic linker.

Currently, the only built-in directory is /usr/lib

http://osr507doc.sco.com/en/tools/ccs_linkedit_dynamic_dirsearch.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 75 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (11)

can use the environment variable LD_LIBRARY_PATH
which takes a colon(:) separated list of directories,
to add to the link-editor’s library search path.

In its most general form, LD_LIBRARY_PATH
takes two directory lists separated by a semicolon(;)

The first list is searched before
the list(s) supplied on the command-line
the second list is searched after

https://docs.oracle.com/cd/E19455-01/816-0559/chapter2-48927/index.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 76 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (12)

Here is the combined effect of setting LD_LIBRARY_PATH
and calling the link-editor with several -L occurrences:

$ LD_LIBRARY_PATH=dir1:dir2;dir3
$ export LD_LIBRARY_PATH
$ cc -o prog main.c -Lpath1 ... -Lpath2 ... -Lpathn -lfoo

the first path list dir1:dir2
the second path list dir3

The effective search path will be

dir1:dir2:path1:path2... pathn:dir3:/usr/ccs/lib:/usr/lib.

https://docs.oracle.com/cd/E19455-01/816-0559/chapter2-48927/index.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 77 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (13)

If no semicolon(;) is specified
as part of the LD_LIBRARY_PATH definition,
the specified directory list is interpreted
after any -L options (the second list)

$ LD_LIBRARY_PATH=dir1:dir2
$ export LD_LIBRARY_PATH
$ cc -o prog main.c -Lpath1 ... -Lpath2 ... -Lpathn -lfoo

Here the effective search path will be

path1:path2... pathn:dir1:dir2:/usr/ccs/lib:/usr/lib.

https://docs.oracle.com/cd/E19455-01/816-0559/chapter2-48927/index.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 78 / 94

LD_LIBRARY_PATH and LD_RUN_PATH (14)

This environment variable can also be used
to augment the search path of the runtime linker
(see "Directories Searched by the Runtime Linker" for more details).
To prevent this environment variable from
influencing the link-editor, use the -i option.

https://docs.oracle.com/cd/E19455-01/816-0559/chapter2-48927/index.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 79 / 94

Executable File (1)

executable files of various formats
can be directly executed by the CPU
once loaded by a suitable executable loader,
rather than being interpreted by other software

https://en.wikipedia.org/wiki/Comparison_of_executable_file_formats

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 80 / 94

Executable File (2)

typical executables contain

• binary application code
• headers and tables
with relocation and fixup information
• various kinds of meta data

https://en.wikipedia.org/wiki/Comparison_of_executable_file_formats

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 81 / 94

Executable File Formats

the examples executable file formats

PE on Microsoft Windows
ELF on Linux and most other versions of Unix
Mach-O on macOS and iOS
MZ on DOS

https://en.wikipedia.org/wiki/Comparison_of_executable_file_formats

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 82 / 94

BFD (Binary File Descriptor) (1)

BFD is a package which allows applications
to use the same routines to operate on object files
whatever the object file format.

BFD consists of two parts:
the front end - common for various object file formats
the back ends - one for each object file format

a new object file format can be supported simply
by creating a new BFD back end
and adding it to the library

https://ftp.gnu.org/old-gnu/Manuals/bfd-2.9.1/html_mono/bfd.html#SEC1

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 83 / 94

BFD (Binary File Descriptor) (2)

the front end of BFD provides the interface to the user.

manages memory and various canonical data structures
decides which back end to use
and when to call back end routines.

the back ends provide BFD its view of the real world.

provides a set of calls which the BFD front end
can use to maintain its canonical form
may keep around information for their own use,
for greater efficiency.

https://ftp.gnu.org/old-gnu/Manuals/bfd-2.9.1/html_mono/bfd.html#SEC1

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 84 / 94

BFD (Binary File Descriptor) (3)

to use the BFD library,
include bfd.h
link with libbfd.a

BFD provides a common interface
to the parts of an object file
for a calling application

when an application sucessfully opens
a target file (object, archive, or whatever),
a pointer to an internal structure is returned

https://ftp.gnu.org/old-gnu/Manuals/bfd-2.9.1/html_mono/bfd.html#SEC1

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 85 / 94

BFD (Binary File Descriptor) (4)

this returned pointer points to
a structure called bfd, described in bfd.h

our convention is to call this pointer, a BFD,
and instances of it within code, abfd.

all operations on the target object file are applied
as methods to the BFD

the mapping is defined within bfd.h in a set of macros,
all beginning with bfd_ to reduce namespace pollution

https://ftp.gnu.org/old-gnu/Manuals/bfd-2.9.1/html_mono/bfd.html#SEC1

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 86 / 94

BFD Libraries (1)

BFD libraries : the GNU Project’s main mechanism
for the portable manipulation of object files

as of 2003, it supports approximately 50 file formats
for some 25 instruction set architectures.

BFD libraries’s main clients

gas GNU Assembler
gld GNU Linker
binutil other GNU Binary Utilities tools
gdb the GNU Debugger

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 87 / 94

BFD Libraries (2)

the frequent need to tinker with the API
to accommodate new systems’ capabilities
has tended to limit its use

as a result, BFD is not distributed separately,
but is always included with releases of binutils and GDB

Nevertheless, BFD is a critical component
in the use of GNU tools
for embedded systems development

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 88 / 94

BFD linker (1)

ld combines a number of object and archive files,
relocates their data and ties up symbol references

Usually the last step in compiling a program is to run ld

ld accepts Linker Command Language files written
in a superset of AT&T’s Link Editor Command Language syntax,
to provide explicit and total control over the linking process.

https://manpages.debian.org/testing/binutils-common/ld.bfd.1.en.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 89 / 94

BFD linker (2)

the general purpose BFD libraries allows ld

to read, combine, and write
object files in many different formats

for example, COFF or a.out

to link different formats together
to produce any available kind of object file

to read the structured data out of a core dump

https://stackoverflow.com/questions/49138195/whats-the-difference-between-rpath-link-and-l

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 90 / 94

BFD linker (3)

flexibile
providing diagnostic information

many linkers abandon execution immediately
upon encountering an error;

whenever possible, BFD ld continues executing,
allowing you to identify other errors
(or, in some cases, to get an output file in spite of the error).

https://manpages.debian.org/testing/binutils-common/ld.bfd.1.en.html

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 91 / 94

gold linker (1)

gold is a linker for ELF files.

became an official GNU package
was added to binutils in March 2008 and
first released in binutils version 2.19.

gold was developed by Ian Lance Taylor
and a small team at Google

to make a linker that is faster than the GNU linker (BFD ld),
especially for large applications coded in C++.

https://en.wikipedia.org/wiki/Gold_(linker)

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 92 / 94

gold linker (2)

Unlike the GNU linker,
gold does not use the BFD library

While this limits the object file formats to ELF only,
a cleaner and faster implementation
is claimed to be achieved
without an additional abstraction layer.

the author cited complete removal of BFD
as a reason to create a new linker from scratch
rather than incrementally improve the GNU linker.

This rewrite also fixes some bugs in old ld that
break ELF files in various minor ways.

https://en.wikipedia.org/wiki/Gold_(linker)

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 93 / 94

gold linker (3)

To specify gold in a makefile,
one sets the LD or LD environmental variable to ld.gold.

to specify gold through a compiler option,
one can use the gcc option -fuse-ld=gold

https://en.wikipedia.org/wiki/Gold_(linker)

Young W. Lim Link 5. Search Libararies (II) Using RPATH 2023-04-22 Mon 94 / 94

	Based on
	Search libraries (II)
	-rpath-link
	-rpath
	LD_RUN_PATH
	BFD linkers
	Gold linkers

